高一数学竞赛

合集下载

数学竞赛试题高一及答案

数学竞赛试题高一及答案

数学竞赛试题高一及答案一、选择题(每题5分,共20分)1. 若函数f(x) = 2x^2 + 3x + 1的图像关于直线x = -1/2对称,则下列哪个函数的图像也关于直线x = -1/2对称?A. g(x) = x^2 + 2x + 3B. h(x) = -x^2 + 2x - 3C. i(x) = x^2 - 2x + 3D. j(x) = -x^2 - 2x - 3答案:B2. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∪B等于:A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3}D. {1, 3, 4}答案:A3. 若方程x^2 - 5x + 6 = 0的两个根为α和β,则α + β的值为:A. 1B. 2C. 3D. 5答案:C4. 函数y = |x - 2| + 3的图像与x轴交点的个数是:A. 0B. 1C. 2D. 3答案:B二、填空题(每题5分,共20分)1. 已知等差数列的前三项依次为2, 5, 8,则该数列的第五项为________。

答案:112. 圆的方程为x^2 + y^2 - 6x - 8y + 25 = 0,则圆心坐标为________。

答案:(3, 4)3. 函数y = sin(x)在区间[0, π]上的最大值为________。

答案:14. 已知三角形的三边长分别为3, 4, 5,则该三角形的面积为________。

答案:6三、解答题(每题15分,共30分)1. 证明:若一个三角形的两边长分别为a和b,且满足a^2 + b^2 =c^2(c为第三边长),则该三角形为直角三角形。

证明:根据勾股定理,若三角形的两边长为a和b,且满足a^2 + b^2 = c^2,则第三边c所对的角θ为直角,即θ = 90°。

因此,该三角形为直角三角形。

2. 解方程:2x^2 - 3x - 2 = 0。

解:首先,我们计算判别式Δ = b^2 - 4ac = (-3)^2 - 4*2*(-2) = 9 + 16 = 25。

高一数学竞赛试题

高一数学竞赛试题

高一数学竞赛试题一、选择题1. (5分)若一个等差数列的首项为3,公差为4,第10项为多少?A. 37B. 35C. 43D. 412. (5分)已知函数f(x) = x^3 - 6x^2 + 11x - 6,求f(2)的值。

A. 0B. 2C. 4D. 83. (5分)在平面直角坐标系中,点A(2,3)和点B(-2,-1)之间的距离是多少?A. 2√5B. 3√2C. 5D. √104. (5分)若一个圆的半径为5,圆心在坐标轴上,且圆上有一点P(3,4),则这个圆的方程是什么?A. (x-3)^2 + (y-4)^2 = 25B. (x-3)^2 + (y+4)^2 = 25C. (x+3)^2 + (y-4)^2 = 25D. (x+3)^2 + (y+4)^2 = 255. (5分)已知一个等比数列的前三项分别为2, 6, 18,这个等比数列的第5项是多少?A. 54B. 108C. 216D. 486二、填空题6. (5分)若一个等差数列的前5项和为50,公差为2,首项为_______。

7. (5分)在直角坐标系中,直线y = 2x + 3与x轴的交点坐标为_______。

8. (5分)一个圆的周长为20π,那么这个圆的面积是_______。

9. (5分)若函数g(x) = |2x - 3| + |x + 1|,求g(2)的值,结果为_______。

10. (5分)已知一个等比数列的前三项和为30,公比为3,那么第一项是_______。

三、解答题11. (15分)解方程:\( \frac{1}{x-1} + \frac{1}{x-2} =\frac{1}{x-3} \)12. (15分)已知一个等差数列的前10项和为110,公差为5,求首项a1。

13. (15分)在平面直角坐标系中,点A(1,2)、点B(5,6)和点C(3,-1)构成一个三角形ABC,请计算这个三角形的面积。

14. (15分)证明:若n是正整数,且n^2 - 3n + 2能被4整除,则n也能被4整除。

高一数学竞赛试题参考答案

高一数学竞赛试题参考答案

高一数学竞赛试题参考答案一、选择题:(本题共10小题,每题4分,共40分。

在每小题给出的四个选项中,只有一项符合题目要求的。

)1.[答案] B[解析] 当a ≤0时,B =∅,满足B ⊆A ;当a >0时,欲使B ⊆A ,则⎩⎪⎨⎪⎧3-a ≥-43+a ≤4⇒a ≤1.故选B.2.[答案] C[解析] 由已知ax 2+ax -3≠0恒成立, 当a =0时,-3≠0成立; 当a ≠0时,Δ<0,∴a 2+12a <0, ∴-12<a <0,综上所述,a ∈(-12,0].3.C 【解析】 依题意,函数y =x 2-ax +12存在大于0的最小值,则a >1且a 2-2<0,解得a∈(1,2),选择C.4.B 【解析】 ∵2=log 24>log 23>log 22=1,故f (log 23)=f (1+log 23)=f (2+log 23)=f (3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=124 5.C 【解析】 由f (x -1)=f (x +1)知f (x )是周期为2的偶函数,因为x ∈[0,1]时,f (x )=x 2,故当x ∈[-1,0],-x ∈[0,1]时,f (x )=f (-x )=(-x )2=x 2,由周期为2可以画出图象,结合y =⎝⎛⎭⎫110x的图象可知,方程f (x )=⎝⎛⎭⎫110x在x ∈⎣⎡⎦⎤0,103上有三个根,要注意在x ∈⎝⎛⎦⎤3,103内无解. 6.[答案] D[解析] 由题意,DE ⊥平面AGA ′, ∴A ,B ,C 正确,故选D. 7.[答案] B[解析] 设f (x )=2x -3-x ,因为2x ,-3-x 均为R 上的增函数,所以f (x )=2x -3-x 是R 上的增函数.又由2x -3-x >2-y -3y =2-y -3-(-y ),即f (x )>f (-y ),∴x >-y ,即x +y >0.8.[答案] A[解析] m =x -1-x ,令t =1-x ≥0,则x =1-t 2,∴m =1-t 2-t =-(t +12)2+54≤1,故选A.9.[答案] B[解析] 将f (x )=x 2+(a -4)x +4-2a 看作是a 的一次函数,记为g (a )=(x -2)a +x 2-4x +4. 当a ∈[-1,1]时恒有g (a )>0,只需满足条件⎩⎪⎨⎪⎧ g (1)>0,g (-1)>0,即⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0,解之得x <1或x >3. 10.[答案] B[解析] 由已知得f (x )=⎩⎨⎧x 2-2(-1≤x ≤32),x -x 2(x <-1或x >32),如图,要使y =f (x )-c 与x 轴恰有两个公共点,则-1<c <-34或c ≤-2,应选B.二、填空题(本大题共4小题,每小题4分,共16分。

高一数学竞赛试题及答案

高一数学竞赛试题及答案

高一数学竞赛试题及答案一、选择题(每题5分,共50分)1. 已知函数\( f(x) = x^2 - 4x + 3 \),求\( f(1) \)的值。

A. -2B. -1C. 0D. 12. 圆的半径为5,圆心到直线的距离为3,求圆与直线的位置关系。

A. 相切B. 相交C. 相离D. 内切3. 集合\( A = \{1, 2, 3\} \),\( B = \{2, 3, 4\} \),求\( A \cup B \)。

A. \( \{1, 2, 3, 4\} \)B. \( \{1, 2, 3\} \)C. \( \{2, 3, 4\} \)D. \( \{1, 4\} \)4. 已知等差数列的第1项为2,公差为3,求第5项的值。

A. 14B. 17C. 20D. 235. 已知正弦函数\( y = \sin x \)的周期为2π,求\( y = \sin 2x\)的周期。

A. πB. 2πC. 4πD. 8π6. 已知三角形ABC的三边长分别为3, 4, 5,求三角形ABC的面积。

A. 6B. 9C. 12D. 157. 函数\( g(x) = \frac{1}{x} \)在区间(1, 2)上的单调性是?A. 单调递增B. 单调递减C. 先减后增D. 先增后减8. 已知\( a^2 + b^2 = 13 \),\( a + b = 5 \),求ab的值。

A. 12B. 10C. 8D. 69. 已知\( \cos x = \frac{3}{5} \),\( \sin x \)的值在区间[-1,1]内,求\( \sin x \)的值。

A. \( -\frac{4}{5} \)B. \( \frac{4}{5} \)C. \( -\frac{3}{5} \)D. \( \frac{3}{5} \)10. 已知\( \log_2 8 = 3 \),求\( \log_{16} 8 \)的值。

A. \( \frac{3}{4} \)B. \( \frac{1}{2} \)C. \( \frac{3}{2} \)D. \( \frac{4}{3} \)二、填空题(每题5分,共30分)11. 已知函数\( h(x) = x^3 - 6x^2 + 11x - 6 \),求\( h(2) \)的值。

浙江省温州市2023-2024学年高一上学期数学家摇篮竞赛试题含解析

浙江省温州市2023-2024学年高一上学期数学家摇篮竞赛试题含解析

2023年苍南高一数学家摇篮竞赛(答案在最后)满分:120分考试时间:90分钟一、单选题1.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”.那么,函数解析式为2y x =-,值域为{}0,1,9--的同族函数共有()个.A.7 B.8C.9D.10【答案】C 【解析】【详解】1339⨯⨯=.选C.2.“23x <<”是“112x >-”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C 【解析】【分析】由分式不等式的解法,求得不等式112x >-的解集,结合充分条件和必要条件的判定方法,即可求解.【详解】由题意,不等式112x >-可化为131022x x x --=>--,即302x x -<-,解得23x <<,即不等式的解集为{|23}x x <<,所以“23x <<”是“112x >-”的充分必要条件.故选:C.【点睛】本题主要考查了分式不等式的求解,以及充分不必要条件的判定,其中解答中熟记分式不等式的解法,以及充分条件、必要条件的判定方法是解答的关键,着重考查推理与运算能力.3.设x R +∈.则y =+的最大值为().A.3 B.223C.2D.2【答案】D 【解析】【详解】令1 xt=,于是,1yt==≤+=+211122t t⎫=+=-=+⎪⎪++⎭23222≤=.=,即1t=,亦即1x=时成立.所以,y=+的最大值为2.故答案为D4.已知()f x是定义在()()00-∞∞,,+上的偶函数,对任意的()12,0x x∞∈+,满足()()1212f x f xx x->-且24f=(),则不等式()4f x≥的解集为()A.[)[)202,-⋃+∞, B.[)(]2002-⋃,,C.][()22-∞-+∞,, D.(](],20,2-∞-⋃【答案】C【解析】【分析】根据题意判断出()f x在()0+∞,上单调递增,再由函数()f x在()()00-∞∞,,+上为偶函数,得到()4f x≥,将24f=()代入解题即可.【详解】因为对任意的()12,0x x∞∈+,满足()()1212f x f xx x->-,所以()f x在()0+∞,上单调递增,又()f x是定义在()()00-∞∞,,+上的偶函数,且24f=(),所以()()24f x f≥=,所以2xx⎧≥⎨≠⎩,解得2x≤-或2x≥.故选:C5.已知函数()()221,134,1a x a x f x x x ⎧-+<=⎨+≥⎩的值域与函数y x =的定义域相同,则实数a 的取值范围是()A.(),1∞- B.(],2∞--C.[]2,3- D.][(),23,-∞-⋃+∞【答案】B 【解析】【分析】利用分段函数的值域是各段值域的并集,结合一次函数的单调性列不等式求解即可.【详解】因为函数y x =的定义域为R ,所以()f x 的值域是R ,当1x ≥时,2347y x =+≥,故当1x <时,()21y a x a =-+的值域为(),m -∞,所以7m ≥,所以21017a a a ->⎧⎨-+≥⎩,解得2a ≤-,所以实数a 的取值范围是(],2∞--.故选:B.6.已知函数()y f x =()x y N +∈、满足:(1)对任意a 、b N +∈,a b ¹,都有()()()()af a bf b af b bf a +>+;(2)对任意N n +∈,都有()()3f f n n =.则()()512f f +的值是.A.17B.21C.25D.29【答案】D 【解析】【详解】对任意的n N +=,由(1)得()()()()()()1111n f n nf n n f n nf n +++>+++,即()()1f n f n +>.故()f x 在N +上为单调增函数.对任意n N +∈,由(2)得()()()()()33f n f f f n f n ==.显然()11f ≠.否则,()()()311ff f ==.矛盾.若()13f ≥,则()()()()()313213f f f f f =≥>>≥,矛盾.所以,()12f =.故()()3316f f ==,()()()63339f ff ==⨯=.由()()()()634569f f f f =<<<=,得()47f =,()58f =.则()()()743412f ff ==⨯=,()()()1273721f f f ==⨯=.故()()51282129f f +=+=.故答案为D二、多选题7.已知定义在R 上的函数()f x 在(],2-∞上单调递增,且()2f x +为偶函数,则()A.()f x 的对称轴为直线2x =-B.()f x 的对称轴为直线2x =C.()()24f f ->D.不等式()()30f x f +>的解集为()3,1-【答案】BD 【解析】【分析】由偶函数的定义确定对称轴即可判断AB ;根据(4)(0)f f =和函数的单调性即可判断C ;利用函数的奇偶性和单调性解不等式即可判断D.【详解】A :因为(2)f x +为偶函数,其图象关于y 轴对称,所以函数()f x 的对称轴为直线2x =,故A 错误;B :由选项A 可知,B 正确;C :因为函数()f x 的对称轴为直线2x =,所以(4)(0)f f =,又函数()f x 在(,2]-∞上单调递增,所以()()02f f >-,则()()42f f >-,故C 错误;D :因为函数()f x 的对称轴为直线2x =,且()f x 在(,2]-∞上单调递增,所以函数()f x 在[2,)+∞上单调递减,且(2)(2)f x f x +=-,由(3)(0)f x f +>,得3202x +-<-,即12x +<,解得31x -<<,故D 正确.故选:BD.8.下列说法正确的有()A.已知1x ≠,则4211y x x =+--的最小值为1+B.若正数x 、y 满足3x y xy ++=,则xy 的最小值为9C.若正数x 、y 满足23x y xy +=,则2x y +的最小值为3D.设x 、y 为实数,若2291x y xy ++=,则3x y +的最大值为7【答案】BCD 【解析】【分析】利用基本不等式求最值逐项判断即可.【详解】对于A ,因为1x ≠,所以当1x >时,10x ->,()442121114111y x x x x =+-=-++≥=--,当且仅当()4211x x -=-,即1x =当1x <时,10x -<,()10x -->,()4211x x ⎡⎤--+-≥=⎡⎤⎣⎦⎢⎥-⎣⎦当且仅当()4211x x ⎡⎤--=-⎡⎤⎣⎦⎢⎥-⎣⎦,即1x =()4211x x -+≤--,所以()4421211111y x x x x =+-=-++≤---,所以函数的值域为(),11⎡-∞-⋃++∞⎣,故A 错误;对于B ,若正数x 、y 满足3x y xy ++=,可得33xy x y =++≥+,当且仅当3x y ==时等号成立,(),0t t =>,则()223,0t t t ≥+>,即()2230,0t t t --≥>,解得3t ≥,即9xy ≥,所以xy 的最小值为9,故B 正确;对于C ,若正数x 、y 满足23x y xy +=,则2213x y xy x y+==+,则()1122122552333321x y x y x y y x x y ⎛⎛⎫⎛⎫+=+=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝+当且仅当22x y y x=,即1x y ==时等号成立,所以2x y +的最小值为3,故C 正确;对于D ,221239x y xy x y ≥⋅-=⋅+,所以17xy ≤,()()222112395151577x y x y xy xy xy +=+++=+≤+⨯=所以37x y +≤,当且仅当37y x ==时,等号成立,故3x y +的最大值为7,故D 正确.故选:BCD.9.德国著名数学家狄利克雷是解析数学的创始人,以其名字命名的函数称为狄利克雷函数,其解析式为()1,0,x D x x ⎧=⎨⎩为有理数为无理数,则下列关于狄利克雷函数()D x 的说法错误..的是()A.对任意实数x ,()()1D D x =B.()D x 既不是奇函数又不是偶函数C.对于任意的实数x ,y ,()()()D x y D x D y +≤+D.若x ∈R ,则不等式()2430x D x x -+<的解集为{}13x x <<【答案】BCD 【解析】【分析】根据题意结合奇偶性、一元二次不等式的解法逐项分析判断.【详解】若x 是有理数,则()()()11D D x D ==;若x 是无理数,则()()()01D D x D ==,故A 正确;若x 是有理数,则x -也是有理数,此时()()1D x D x =-=;若x 是无理数,则x -也是无理数,此时()()0D x D x =-=;即()D x 为偶函数,故B 错误;若x 是无理数,取y x =-,则y 是无理数,此时()()01D x y D +==,()()0D x D y +-=,即()()()D x y D x D y +>+-,故C 错误;若x 是有理数,则()2243430x D x x x x -+=-+<的解集为{}13x Q x ∈<<;若x 是有理数,()224330x D x x x -+=+<,显然不成立,故D 错误.故选:BCD .10.已知函数()f x 是定义在实数集R 上的奇函数,当0x ≥时,()()1232f x x a x a a =-+--.若()()20f x f x --≤恒成立,则实数a 的取值可能是()A.-1B.12C.13D.1【答案】AC 【解析】【分析】()()20f x f x --≤等价于()()2f x f x ≤+恒成立,当0x ≥时,函数()f x 的解析式进行去绝对值,所以讨论0a ≤和0a >的情况,再根据函数()f x 是奇函数,得到0x <时()f x 的解析式或图像,结合图像得到a 的取值范围.【详解】因为()()20f x f x --≤等价于()()2f x f x ≤+恒成立.当0x ≥时,()()1232f x x a x a a =-+--.若0a ≤,则当0x ≥时,()()1232f x x a x a a x =-+-+=.因为()f x 是奇函数,所以当0x <时,0x ->,则()()f x x f x -=-=-,则()f x x =.综上,()f x x =,此时()f x 为增函数,则()()2f x f x ≤+恒成立.若0a >,当0x a ≤≤时,()()1232f x x a x a a x ⎡⎤=-+---=-⎣⎦;当2a x a <≤时,()()1232f x x a x a a a ⎡⎤=----=-⎣⎦;当2x a >时,()()12332f x x a x a a x a ⎡⎤=-+--=-⎣⎦.即当0x ≥时,函数()f x 的最小值为a -,由于函数()f x 是定义在R 上的奇函数,当0x <时,函数()f x 的最大值为a ,作出函数()f x 的图像如图:故函数()f x 的图像不能在函数()2f x +的图像的上方,结合图像可得323a a -≤-,即13a ≤,求得103a <≤.综上,13a ≤.故选:AC.【点睛】(1)运用函数图像解决问题时,先要正确理解和把握函数图像本身的含义,能够根据函数解析式和性质画出函数图像;(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图像的关系,结合图像研究.三、填空题11.已知不等式20x ax b --<的解集为(2,3),则不等式210bx ax ++>的解集为______【答案】(,)-116【解析】【分析】根据韦达定理求出,a b ,代入解二次不等式即可.【详解】由不等式20x ax b --<的解集为(2,3),则2323ab +=⎧⎨⨯=-⎩,则56a b =⎧⎨=-⎩,则210bx ax ++>,即为x x -++>26510,解得:(,)-116.故答案为:(,)-11612.正实数,x y 满足1423x y +=,且不等式24yx m m +≥-恒成立,则实数m 的取值范围__________.【答案】[2,3]-【解析】【分析】把恒成立问题转化成求最值问题,利用基本不等式求出4yx +的最小值,然后解不等式即可.【详解】因为1423x y +=且x ,y 是正数,所以314343((2(26424242y y y x x x x y x y +=++=++≥+=,当且仅当441423y x x y x y ⎧=⎪⎪⎨⎪+=⎪⎩,即312x y =⎧⎨=⎩时等号成立,因为不等式24yx m m +≥-恒成立,所以26m m -≤,解得23m -≤≤.故答案为:[]2,3-.13.若函数()f x 在区间[],a b 上的值域为11,b a ⎡⎤⎢⎥⎣⎦,则称区间[],a b 为函数()f x 的一个“倒值区间”.已知定义在R 上的奇函数()g x ,当(],0x ∈-∞时,()22g x x x =+.那么当()0,x ∈+∞时,()g x =______;求函数()g x 在()0,∞+上的“倒值区间”为______.【答案】①.22x x-+②.11,2⎡⎤+⎢⎥⎣⎦【解析】【分析】根据函数是奇函数求出0x >时,2()2g x x x =-+,再由二次函数的单调性及“倒值区间”的定义,列出方程求解即可.【详解】设0x >,则0x -<,2()2g x x x ∴-=-,由()g x 为奇函数,可得2()()2g x g x x x =--=-+,故当0x >,2()2g x x x =-+,对称轴方程为1x =,所以0x >时,max ()(1)1g x g ==,设[],a b 是()g x 在()0,∞+上的“倒值区间”,则值域为11,b a ⎡⎤⎢⎥⎣⎦,所以11a≤,即1a ≥,所以2()2g x x x =-+在[],a b 上单调递减,221()21()2g b b b b g a a a a ⎧=-+=⎪⎪⎨⎪=-+=⎪⎩,即22(1)(1)0(1)(1)0a a a b b b ⎧---=⎨---=⎩,解得112a b =⎧⎪⎨=⎪⎩,所以函数()g x 在()0,∞+上的“倒值区间”为511,2⎡⎤+⎢⎥⎣⎦.故答案为:22x x -+;11,2⎡⎤⎢⎥⎣⎦14.设0x >,对函数[][]1()111x xf x x x x x +=⎡⎤⎡⎤⋅+++⎢⎥⎢⎥⎣⎦⎣⎦,其中[]x 表示不超过x 的最大整数,其值域是_______.【答案】155,264⎧⎫⎡⎫⋃⎨⎬⎪⎢⎩⎭⎣⎭【解析】【分析】【详解】由于()f x 的表达式中,x 与1x对称.且0x >,不妨设1x ≥.(1)当1x =时,11x =,有1(1)2f =.(2)当1x >时,设,01,x n a a n N +=+≤<∈,则1[],0x n x ⎡⎤==⎢⎥⎣⎦,故1()1n a n a f x n +++=+.易证函数1()g x x x =+在[)1,x ∞∈+上递增,故11111n a n n n n a n +++<++++≤,则1111(),,(1,2,)11n n n n n f x I n n n ⎡⎫+++⎪⎢+∈==⎪⎢++⎪⎢⎣⎭故()f x 的值域为12n I I I ⋃⋃⋃⋃ .设22211,1(1)n n n a b n n n +==+++,则[),n n n I a b =.又12(1)(2)n n n a a n n n +--=++,当2n >时,2345n a a a a a =<<<<< ,易知n b 单调递减,故[)2223,n a b I I I =⊇⊇⊇⊇ .因为1255101,,,469I I ⎡⎫⎡⎫==⎪⎪⎢⎢⎣⎭⎣⎭,所以12125510551,,,46964n I I I I I ⎡⎫⎡⎫⎡⎫⋃⋃⋃⋃=⋃=⋃=⎪⎪⎢⎢⎢⎣⎭⎣⎭⎣⎭ .综上所述,值域为155[,264⎧⎫⋃⎨⎬⎩⎭.故答案为:155[,264⎧⎫⋃⎨⎬⎩⎭.四、解答题15.已知函数()()()2122R m f x m m x m -=--∈为幂函数,且()f x 在(0,)+∞上单调递增.(1)求m 的值,并写出()f x 的解析式;(2)解关于x 的不等式()()1f x a a x +>+,其中R a ∈.【答案】(1)3,()2f x x=(2)答案见解析【解析】【分析】(1)根据幂函数的定义和性质即可求解;(2)由(1)可得原不等式变形为()()10x x a -->,分类讨论含参一元二次不等式即可求解.【小问1详解】因为()()()2122R m f x m m x m -=--∈为幂函数,且()f x 在(0,)+∞上单调递增,则222110m m m ⎧--=⎨->⎩,解得3m =,所以()2f x x =;【小问2详解】不等式()21x a x a -++>0,即()()10x x a -->当1a =,1x ≠,即不等式解集为{}|1x x ≠,当1a >,1x <或x a >,即不等式解集为()(),1,x a ∈-∞⋃+∞,当1a <,x a <或1x >,即不等式解集为()(),1,x a ∈-∞⋃+∞.所以,当1a =,不等式解集为{}|1x x ≠,当1a >,不等式解集为()(),1,x a ∈-∞⋃+∞,当1a <,不等式解集为()(),1,x a ∈-∞⋃+∞.16.中华人民共和国第14届冬季运动会将于2024年2月17日至2月27日在内蒙古自治区呼伦贝尔市举行,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少0.2万件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元(2)为了抓住此次契机,扩大该商品的影响力,提高年销售量,公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入21(600)6x -万元作为技改费用,投入50万元作为固定宣传费用,投入5x 万元作为浮动宣传费用.试问:当该商品改革后的销售量 a 至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.【答案】(1)40元;(2) a 至少应达到10.2万件,每件定价30元.【解析】【分析】(1)设每件定价为t 元,由题设有[80.2(25)]258t t --≥⨯,解一元二次不等式求t 范围,即可确定最大值;(2)问题化为>25x 时,151506x a x +≥+有解,利用基本不等式求右侧最小值,并确定等号成立条件,即可得到结论.【小问1详解】设每件定价为t 元,依题意得[80.2(25)]258t t --≥⨯,则2651000(25)(40)0t t t t -+=--≤,解得2540t ≤≤,所以要使销售的总收入不低于原收入,每件定价最多为40元【小问2详解】依题意,>25x 时,不等式21(600)6525850ax x x -≥++⨯+有解,等价于>25x 时,151506x a x +≥+有解,因为1501+6x x ≥(当且仅当30x =时等号成立),所以10.2a ≥,此时该商品的每件定价为30元,当该商品明年的销售量a 至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.17.已知函数()212f x x x=+,定义域为[)(]1,00,1- .(1)写出函数()f x 的奇偶性(无需证明),判断并用定义法证明函数()f x 在(]0,1上的单调性;(2)若(]0,1x ∀∈,都有()2f x m >+恒成立,求实数m 的取值范围;(3)解不等式()()1f t f t ->.【答案】(1)()f x 在定义域[)(]1,00,1- 为偶函数;()212f x x x =+在区间(]0,1上单调递减,证明见解析.(2)()1∞-,(3)1,12⎛⎫ ⎪⎝⎭【解析】【分析】(1)由偶函数和单调性的定义可得;(2)先根据函数的单调性求最小值,根据恒成立即可得1m <;(3)根据函数的定义域,单调性,偶函数,结合()()1f t f t ->列出不等式组即可.【小问1详解】()f x 在定义域为[)(]1,00,1- 因()()()221122x x f x f x x x =-+=+=--,所以()f x 为偶函数;.()212f x x x =+在区间(]0,1上单调递减,证明如下设1201x x <<≤,则()()()22211212122222121211222x x f x f x x x x x x x x x --=+--=-+()()12121222221212121122x x x x x x x x x x x x ⎡⎤⎛⎫⎛⎫+=--=--+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦因1201x x <<≤,所以120x x -<,21211x x >,21211x x >,所以()()120f x f x ->,所以()212f x x x=+在区间(]0,1上单调递减.【小问2详解】由(1)可知()f x 在区间(]0,1上单调递减,所以,当1x =时,()f x 取得最小值()13f =,又(]0,1x ∀∈,都有()2f x m >+恒成立,所以只需32m >+成立,即1m <,故实数m 的取值范围为()1∞-,.【小问3详解】由(1)知,()f x 在定义域[)(]1,00,1- 为偶函数且在区间(]0,1上单调递减,故由()()1f t f t ->得111101101t t t t t t -≤-≤⎧⎪-≠⎪⎪-≤≤⎨⎪≠⎪-<⎪⎩,即02111012t t t t t ≤≤⎧⎪≠⎪⎪-≤≤⎨≠⎪⎪⎪>⎩,解得112t <<,所以实数m 的取值范围为1,12⎛⎫ ⎪⎝⎭18.设函数2()f x ax bx c =++(a ≠0)满足(0)2f ≤,|(2)|2f ≤,(2)2f -≤,求当[2,2]x ∈-时|()|y f x =的最大值.【答案】52【解析】【详解】解:由题意知()()()0422422c f a b c f a b c f ⎧=⎪++=⎨⎪-+=-⎩,解得()()()()()()022208224c f f f f a f f b ⎧⎪=⎪+--⎪=⎨⎪⎪--=⎪⎩,从而当[]2,2x ∈-时,()()()()()()()2222022084f f f f f y f x x x f +----==++()()()222224220884x x x x x f f f +--=+-+222224442x x x x x +--≤++..因为[]2,2x ∈-时2222044x x x x +-⋅≤,从而()222222224224442442x x x x x x x x x x f x +--+--≤++=-+222x x =-++.易知当[]0,2x ∈时22522222x x x x -++=-++≤当[]2,0x ∈-时22522222x x x x -++=--+≤得()2225max max 222x x x f x x ≤≤⎛⎫≤-++≤ ⎪⎝⎭.最后取()2122f x x x =-++,则()()()2202f f f =-==.故该函数满足题设条件且在[]2,2-上能取到最大值52.因此()y f x =的最大值为52.。

高一数学竞赛试题

高一数学竞赛试题

高一数学竞赛试题(1)(注意:共有二卷,时间100分钟, 满分150)第一卷(本卷100分)一、选择题(每小题5分,共50分)1.下列结论中正确的是( )A .{}{}3,2,1,00∈B .{}无理数∈2C .{}φ==0|2x xD .{}{}等腰直角三角形等腰三角形∈2.若集合M={x │x 2-3x+2≥0},N={x|5<x ,R x ∈},则M ∩N 是( )A .}15|{≤<-x x B. }52|{<≤x xC. }5215|{<≤≤<-x x x 或D. φ3.函数2-=x y 的图象是( )4. 一个教室的面积为x m 2, 其窗子的面积为y m 2, (x>y), 如果把y/x 称为这个教室的亮度, 现在教室和窗子同时增加z m 2, 则其亮度将( ) A. 增加 B. 减小 C. 不变 D. 不确定5.奇函数)()0,(,)(),0()(x f x x x f x f 上的则在上的表达式为在-∞+=+∞的 表达式为f(x)=( )A .x x +- B .x x -- C .x x -+-D .x x --- 6.函数()22--+=x x x f 是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数7.已知x x 322-≤0,则函数f (x ) = x 2 +x +1 ( )A. 有最小值43, 但无最大值 B. 有最小值43, 有最大值1C. 有最小值1,有最大值419D. 以上选项都不对8. 方程ax 2+2x+1=0至少有一个负实根的充要条件是( )A. 0<a ≤1B. a<1C. 0<a ≤1或a<0D. a ≤19. 已知)2(log ax y a -=在[0,1]上为x 的减函数,则a 的取值范围为() A .(0,1) B .(1,2) C .(0,2) D .),2[+∞ 10.若 02log 2log <<b a ,则( )A. 0<a <b <1B. 0<b <a <1C. a >b >1D. b >a >1二.填空题(每小题5分,共15分)11.数y=)1(log 21--x x 的定义域是____________________12.“若0)2)(1(=+-y x ,则21-==y x 或”的否命题是_________________________________________________13.函数y=1313+-x x 的反函数是______________________________三.解答题(共35分. 需要写出详细求解过程)14.(10分)(1)求函数4236)(22-++-=x x x x f 的定义域;(2)已知函数43)(-=x x f 的值域为[-1,5],求函数)(x f 的定义域。

高一全国数学竞赛试题

高一全国数学竞赛试题

高一全国数学竞赛试题一、选择题(每题5分,共10分)1. 下列哪个数不是有理数?- A. π- B. √2- C. 0.33333...(无限循环小数)- D. -1/32. 如果一个函数f(x)在区间[a, b]上连续,并且在这个区间上f(x)的值域为[c, d],那么下列哪个选项是正确的?- A. f(a) = c- B. f(b) = d- C. f(a) ≤ c- D. f(x)在[a, b]上存在最大值和最小值二、填空题(每题5分,共20分)1. 已知函数f(x) = 2x^2 - 3x + 1,求f(-1)的值。

2. 若a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是____。

3. 一个圆的半径为5,求该圆的面积。

三、解答题(每题15分,共30分)1. 证明:对于任意正整数n,n^5 - n 能被30整除。

2. 解不等式:|x + 2| + |x - 3| ≥ 5。

四、综合题(每题25分,共50分)1. 某工厂生产一种产品,每件产品的成本为c元,售价为p元。

工厂每月固定成本为F元,每月生产x件产品。

求工厂的月利润函数,并讨论其增减性。

2. 在平面直角坐标系中,已知点A(-1, 2)和点B(4, -1),求直线AB的方程,并求出该直线与x轴和y轴的交点坐标。

五、附加题(10分)1. 一个数列{a_n}的前n项和为S_n,已知a_1 = 1,且对于所有n > 1,有a_n = 1/2(a_{n-1} + S_{n-1})。

求证:数列{a_n}是等差数列。

结束语数学竞赛不仅是一场智力的较量,更是一次思维的锻炼。

希望同学们能够通过练习这些题目,提高自己的数学素养和解题能力。

预祝大家在数学竞赛中取得优异的成绩!。

上海高一高中数学竞赛题目

上海高一高中数学竞赛题目

上海高一高中数学竞赛题目为了准确满足标题描述的内容需求,我将按照数学竞赛试题的格式给你写一篇关于上海高一高中数学竞赛的文章。

以下是正文:上海高一高中数学竞赛题目第一题:几何问题已知正方形ABCD的边长为2,点E、F分别是线段BC、CD上的点,且满足BE = 3CF。

若四边形AEFD的面积为S,求S的值。

解析:首先,我们可以根据题意得知三角形BEA与三角形CFD是全等三角形,因为它们的两条边相等,所以它们的面积也相等。

又根据正方形的特性可知,三角形BEA和三角形CFD是等腰直角三角形,所以它们的面积可以通过直角边的平方除以2来求得。

设BE = x,则CF = (2 - x) / 3。

根据等腰直角三角形的面积公式,BEA的面积为 x^2 / 2,CFD的面积为 [(2 - x) / 3]^2 / 2。

由于AEFD是正方形ABCD减去三角形BEA和三角形CFD所得到的四边形,所以S = 2 - (x^2 / 2) - {[(2 - x) / 3]^2 / 2}。

将式子进行整理和计算,可得S = (5x^2 - 16x + 8) / 18。

第二题:函数问题已知函数f(x) = x^3 + ax^2 + bx + c的图像经过点P(2, 2),Q(3, 4),R(4, 8)。

求函数f(x)的解析式。

解析:首先,我们将点P(2, 2)代入函数f(x),可得 2 = 8 + 4a + 2b + c。

同理,将点Q(3, 4)代入函数f(x),可得 4 = 27 + 9a + 3b + c。

再将点R(4, 8)代入函数f(x),可得 8 = 64 + 16a + 4b + c。

通过解这个线性方程组,可以求得函数f(x)的解析式。

解方程组得到 a = -4, b = 2, c = -4,所以函数f(x)的解析式为 f(x) =x^3 - 4x^2 + 2x - 4。

第三题:概率问题若从一副完整的扑克牌中随机抽取两张牌,求这两张牌中至少有一张是红心的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学竞赛
时间:80分钟 满分:120分
一、填空题(本题满分64分,每小题8分,共8小题)
1、)(x f 是定义在R 上的奇函数,且)1()(x f x f -=,则=)2010(f .
2、对任意实数m ,过函数1)(2++=mx x x f 图象与y=2x-3相切,则点m 的值为 .
3、已知关于x 的方程()()lg 2lg 1=+kx x 仅有一个实数解,则实数k 的取值范围是 .
4、如图,∆AEF 是边长为x 的正方形ABCD 的内接三角形,
已知90∠=︒AEF ,,,==>AE a EF b a b ,则=x .
5、设正三棱锥ABC S -的底面边长为3,侧棱长为2,则侧棱SA 与底面ABC 所成的 角的大小是 .
6、函数(
)f x =的值域是 .
7、函数()232x
x f x a
a =+-(0a >,1a ≠)在区间[]1,1x ∈-上的最大值为8,则它在这个区间上的最小值
是 .
8、已知函数4
24
)42()(24224+++-++=x x x k k x x f 的最小值是0,则非零实数k 的值是 .
二、解答题(本题满分56分) 9、(本题16分)设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,求实数a 的取值范围 .
10、(本题20分)解不等式:121086422log (3531)1log (1)x x x x x ++++<++.
11、(本题20分)如图,在平行四边形ABCD 中,AB x =,1BC =,对角线AC 与BD 的夹角
45BOC ∠=︒,记直线AB 与CD 的距离为()h x .
求()h x 的表达式,并写出x 的取值范围.
O
D C
B
A
A。

相关文档
最新文档