武汉理工大学大一上04年05年高数试卷
高中数学复习资料2005年高考文科数学试题及答案(湖北)

绝密★启用前2005年普通高等学校招生全国统一考试(湖北卷)数学试题卷(文史类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 满分150分. 考试时间120分钟.第I 部分(选择题 共60分)注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3.考试结束,监考人员将本试题卷和答题卡一并收回.一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P 、Q 为两个非空实数集合,定义集合P +Q =},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P +Q 中元素的个数是 ( )A.9B.8C.7D.6 2.对任意实数a ,b ,c ,给出下列命题: ①“b a =”是“bc ac =”充要条件; ②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件;④“a <5”是“a <3”的必要条件. 其中真命题的个数是 ( ) A.1 B.2 C.3 D.4 3.已知向量a =(-2,2),b =(5,k).若|a +b |不超过5,则k 的取值范围是 ( ) A.[-4,6] B.[-6,4] C.[-6,2] D.[-2,6] 4.函数|1|||ln --=x e y x 的图象大致是( )5.木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的 ( )A.60倍B.6030倍C.120倍D.12030倍6.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A.163 B.83 C.316 D.38 7.在x y x y x y y x 2cos ,,log ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是 ( )A.0B.1C.2D.3 8.已知a 、b 、c 是直线,β是平面,给出下列命题:①若c a c b b a //,,则⊥⊥; ②若c a c b b a ⊥⊥则,,//; ③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直.其中真命题的个数是 ( ) A.1 B.2 C.3 D.49.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是 ( ) A.168 B.96 C.72 D.144 10.若∈<<=+απαααα则),20(tan cos sin( )A.)6,0(πB.)4,6(ππ C.)3,4(ππ D.)2,3(ππ 11.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( ) A.3 B.2 C.1 D.012.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是 ( ) A.②、③都不能为系统抽样 B.②、④都不能为分层抽样 C.①、④都可能为系统抽样 D.①、③都可能为分层抽样第Ⅱ卷(非选择题 共90分)注意事项:第Ⅱ卷用0.5毫米黑色的签字或黑色墨水钢笔直接答在答题卡上.答在试题卷上无效. 二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在答题卡相应位置上. 13.函数x x x x f ---=4lg 32)(的定义域是 . 14.843)1()2(xx xx ++-的展开式中整理后的常数项等于 . 15.函数1cos |sin |-=x x y 的最小正周期与最大值的和为 .16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元. 在满足需要的条件下,最少要花费 元. 三、解答题:本大题共6小题,共74分,解答时应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量x f t x x x ⋅=-=+=)(),,1(),1,(2若函数在区间(-1,1)上是增函数,求t 的取值范围.18.(本小题满分12分) 在△ABC 中,已知63,31cos ,3tan ===AC C B ,求△ABC 的面积.19.(本小题满分12分)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且.)(,112211b a a b b a =-=(Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设nnn b a c =,求数列}{n c 的前n 项和T n .20.(本小题满分12分)如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1.(Ⅰ)求BF的长;(Ⅱ)求点C到平面AEC1F的距离.21.(本小题满分12分)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字).22.(本小题满分14分)设A 、B 是椭圆λ=+223y x 上的两点,点N(1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由.2005年普通高等学校招生全国统一考试数学试题(文史类)参考答案一、选择题:本题考查基本知识和基本运算,每小题4分,满分16分. 1.B 2.B 3.C 4.D 5.C 6.A 7.B 8.A 9.D 10.C 11.D 12.D 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分.13.)4,3()3,2[⋃ 14.38 15.212-π 16.500 三、解答题17.本小题主要考查平面向量数量积的计算方法、利用导数研究函数的单调性,以及运用基本函数的性质分析和解决问题的能力.解法1:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.23)(2t x x x f ++-='则.0)()1,1(,)1,1()(≥'--x f x f 上可设则在上是增函数在若,23)(,)1,1(,230)(22x x x g x x t x f -=--≥⇔≥'∴考虑函数上恒成立在区间,31)(=x x g 的图象是对称轴为由于开口向上的抛物线,故要使x x t 232-≥在区间(-1,1)上恒成立⇔.5),1(≥-≥t g t 即.)1,1()(,0)()1,1()(,5上是增函数在即上满足在时而当->'-'≥x f x f x f t5≥t t 的取值范围是故.解法2:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.0)()1,1(,)1,1()(.23)(2≥'--++-='x f x f t x x x f 上可设则在上是增函数在若)(x f ' 的图象是开口向下的抛物线,时且当且仅当05)1(,01)1(≥-=-'≥-='∴t f t f.5.)1,1()(,0)()1,1()(≥->'-'t t x f x f x f 的取值范围是故上是增函数在即上满足在18.本小题主要考查正弦定理、余弦定理和三角形面积公式等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力.解法1:设AB 、BC 、CA 的长分别为c 、a 、b ,.21cos ,23sin ,60,3tan ==∴==B B B B 得由 应用正弦定理得又,322cos 1sin 2=-=C C 8232263sin sin =⨯==B C b c ..3263332213123sin cos cos sin )sin(sin +=⨯+⨯=+=+=∴C B C B C B A 故所求面积.3826sin 21+==∆A bc S ABC 解法3:同解法1可得c =8. 又由余弦定理可得.64,,364,32321236330sin sin sin sin ,sin sin .12030,900,60.64,64.0108,21826454,cos 222122222+=<-=>=⋅=⋅>⋅==<<∴<<=-=+==+-∴⨯⨯-+=-+=a a B b A B b a B b A a A C B a a a a a a B ac c a b 故舍去而得由所得即 故所求面积.3826sin 21+==∆B ac S ABC 19.本小题主要考查等差数列、等比数列基本知识和数列求和的基本方法以及运算能力.解:(1):当;2,111===S a n 时 ,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 设{b n }的通项公式为.41,4,,11=∴==q d b qd b q 则 故.42}{,4121111---=⨯-=n n n n n n b b q b b 的通项公式为即(II),4)12(422411---=-==n n nn n n n b a c]4)12(4)32(454341[4],4)12(45431[13212121nn n n n n n n T n c c c T -+-++⨯+⨯+⨯=-++⨯+⨯+=+++=∴--两式相减得].54)56[(91]54)56[(314)12()4444(2131321+-=∴+-=-+++++--=-n n n n n n n T n n T20.本小题主要考查线面关系和空间距离的求法等基础知识,同时考查空间想象能力和推理运算能力.解法1:(Ⅰ)过E 作EH//BC 交CC 1于H,则CH =BE =1,EH//AD,且EH =AD. 又∵AF ∥EC 1,∴∠FAD =∠C 1EH.∴Rt △ADF ≌Rt △EHC 1. ∴DF =C 1H =2..6222=+=∴DF BD BF(Ⅱ)延长C 1E 与CB 交于G ,连AG,则平面AEC 1F 与平面ABCD 相交于AG . 过C 作CM ⊥AG ,垂足为M,连C 1M,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC,且AG ⊂面AEC 1F,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q,则CQ 的长即为C 到平面AEC 1F 的距离..113341712317123,17121743cos 3cos 3,.17,1,2211221=+⨯=⨯=∴=⨯===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CGBGCC EB 知由从而可得由解法2:(I)建立如图所示的空间直角坐标系,则D(0,0,0),B(2,4,0),A(2,0,0), C(0,4,0),E(2,4,1),C 1(0,4,3).设F(0,0,z ). ∵AEC 1F 为平行四边形,.62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF BF EF F z z EC AF F AEC =--=∴∴=∴-=-=∴∴(II)设1n 为平面AEC 1F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然 ⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x n n 得由⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即111),3,0,0(n CC CC 与设又=的夹角为a ,则 .333341161133||||cos 1111=++⨯=⋅=n CC α ∴C 到平面AEC 1F 的距离为.11334333343cos ||1=⨯==αCC d 21.本小题主要考查概率的基础知识和运算能力,以及运用概率的知识分析和解决实际问题能力.解:(I)在第一次更换灯泡工作中,不需要换灯泡的概率为,51p 需要更换2只灯泡的概率为;)1(213125p p C -(II)对该盏灯来说,在第1、2次都更换了灯泡的概率为(1-p 1)2;在第一次未更换灯泡而在第二次需要更换灯泡的概率为p 1(1-p 2),故所求的概率为);1()1(2121p p p p -+-=(III)至少换4只灯泡包括换5只和换4只两种情况,换5只的概率为p 5(其中p 为(II)中所求,下同)换4只的概率为415p C (1-p),故至少换4只灯泡的概率为.34.042.34.04.06.056.06.07.08.02.0,3.0,8.0).1(45322141553只灯泡的概率为年至少需要换即满时又当=⨯⨯+=∴=⨯+===-+=p p p p p p C p p22.本小题主要考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.(I)解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得.0)3()3(2)3(222=--+--+λk x k k x k ①设是方程则212211,),,(),,(x x y x B y x A ①的两个不同的根,0])3(3)3([422>--+=∆∴k k λ ②)3,1(.3)3(2221N k k k x x 由且+-=+是线段AB 的中点,得 .3)3(,12221+=-∴=+k k k x x 解得k =-1,代入②得,λ>12,即λ的取值范围是(12,+∞).于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即解法2:设则有),,(),,(2211y x B y x A.0))(())((33,32121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ 依题意,.)(3,212121y y x x k x x AB ++-=∴≠.04),1(3).,12(.12313,)3,1(.1,6,2,)3,1(222121=-+--=-+∞∴=+⨯>-==+=+∴y x x y AB N k y y x x AB N AB 即的方程为直线的取值范围是在椭圆内又由从而的中点是λλ(II)解法1:.02,13,=---=-∴y x x y CD AB CD 即的方程为直线垂直平分 代入椭圆方程,整理得 .04442=-++λx x ③是方程则的中点为又设43004433,),,(),,(),,(x x y x M CD y x D y x C ③的两根,).23,21(,232,21)(21,10043043-=+=-=+=-=+∴M x y x x x x x 即且于是由弦长公式可得 ).3(2||)1(1||432-=-⋅-+=λx x kCD ④ 将直线AB 的方程代入椭圆方程得,04=-+y x.016842=-+-λx x ⑤同理可得.)12(2||1||212-=-⋅+=λx x k AB ⑥.||||.,)12(2)3(2,12CD AB <∴->->λλλ时当假设在在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为.2232|42321|2|4|00=-+-=-+=y x d ⑦ 于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ 故当12>λ时,A 、B 、C 、D 四点均在以M 为圆心,2||CD 为半径的圆上. (注:上述解法中最后一步可按如下解法获得:A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角即|,|||||2DN CN AN ⋅=⇔).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边=.212-λ 由④和⑦知,⑧式右边=)2232)3(2)(2232)3(2(--+-λλ ,2122923-=--=λλ ∴⑧式成立,即A 、B 、C 、D 四点共圆解法2:由(II)解法1及12>λ.,13,-=-∴x y CD AB CD 方程为直线垂直平分 代入椭圆方程,整理得 .04442=-++λx x ③将直线AB 的方程,04=-+y x 代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得 .231,2122,4,321-±-=-±-λλx x 不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A ∴)21233,23123(---+-+-+=λλλλ )21233,23123(-------+=λλλλ 计算可得0=⋅,∴A 在以CD 为直径的圆上.又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆.(注:也可用勾股定理证明AC ⊥AD)。
历年高考数学真题-2005年高考文科数学(湖北卷)试题及答案

2005湖北卷试题及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 满分150分 考试时间120分钟第I 部分(选择题 共60分)注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3.考试结束,监考人员将本试题卷和答题卡一并收回一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是 ( ) A .9 B .8C .7D .62.对任意实数a ,b ,c ,给出下列命题:①“b a =”是“bc ac =”充要条件; ②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件;④“a <5”是“a <3”的必要条件. 其中真命题的个数是( ) A .1 B .2 C .3 D .4 3.已知向量a =(-2,2),b =(5,k ).若|a +b |不超过5,则k 的取值范围是( ) A .[-4,6] B .[-6,4] C .[-6,2] D .[-2,6] 4.函数|1|||ln --=x ey x 的图象大致是( )A B C D5.木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的( )A .60倍B .6030倍C .120倍D .12030倍6.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163 B .83 C .316 D .387.在x y x y x y y x 2co s ,,lo g ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是( )A .0B .1C .2D .3 8.已知a 、b 、c 是直线,β是平面,给出下列命题:①若c a c b b a //,,则⊥⊥; ②若c a c b b a ⊥⊥则,,//; ③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直.其中真命题的个数是( ) A .1 B .2 C .3 D .49.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是( ) A .168 B .96 C .72 D .144 10.若∈<<=+απαααα则),20(tan cos sin ( )A .)6,0(πB .)4,6(ππ C .)3,4(ππD .)2,3(ππ 11.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( ) A .3 B .2 C .1 D .012.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是 ( ) A .②、③都不能为系统抽样 B .②、④都不能为分层抽样 C .①、④都可能为系统抽样 D .①、③都可能为分层抽样第Ⅱ卷(非选择题 共90分)注意事项:第Ⅱ卷用0.5毫米黑色的签字或黑色墨水钢笔直接答在答题卡上.答在试题卷上无效 二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在答题卡相应位置上13.函数x x x x f ---=4lg 32)(的定义域是 14.843)1()2(xx x x ++-的展开式中整理后的常数项等于 15.函数1cos |sin |-=x x y 的最小正周期与最大值的和为 16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元. 在满足需要的条件下,最少要花费 元三、解答题:本大题共6小题,共74分,解答时应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量b a x f t x b x x a ⋅=-=+=)(),,1(),1,(2若函数在区间(-1,1)上是增函数,求t 的取值范围18.(本小题满分12分)在△ABC 中,已知63,31cos ,3tan ===AC C B ,求△ABC 的面积19.(本小题满分12分)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且.)(,112211b a a b b a =-=(Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设nnn b a c =,求数列}{n c 的前n 项和T n20.(本小题满分12分)如图所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截面而得到的,其中AB=4,BC=2,CC 1=3,BE=1 (Ⅰ)求BF 的长;(Ⅱ)求点C 到平面AEC 1F 的距离121.(本小题满分12分) 某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p 1,寿命为2年以上的概率为p 2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换 (Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; (Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p 1=0.8,p 2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字) 22.(本小题满分14分)设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由2005湖北卷试题及答案参考答案一、选择题:本题考查基本知识和基本运算,每小题4分,满分16分1.B 2.B 3.C 4.D 5.C 6.A 7.B 8.A 9.D 10.C 11.D 12.D 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分13.)4,3()3,2[⋃ 14.38 15.212-π 16.500 三、解答题17.本小题主要考查平面向量数量积的计算方法、利用导数研究函数的单调性,以及运用基本函数的性质分析和解决问题的能力.解法1:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.23)(2t x x x f ++-='则.0)()1,1(,)1,1()(≥'--x f x f 上可设则在上是增函数在若,23)(,)1,1(,230)(22x x x g x x t x f -=--≥⇔≥'∴考虑函数上恒成立在区间,31)(=x x g 的图象是对称轴为由于开口向上的抛物线,故要使x x t 232-≥在区间(-1,1)上恒成立⇔.5),1(≥-≥t g t 即.)1,1()(,0)()1,1()(,5上是增函数在即上满足在时而当->'-'≥x f x f x f t≥t t 的取值范围是故解法2:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.0)()1,1(,)1,1()(.23)(2≥'--++-='x f x f t x x x f 上可设则在上是增函数在若)(x f ' 的图象是开口向下的抛物线,时且当且仅当05)1(,01)1(≥-=-'≥-='∴t f t f.5.)1,1()(,0)()1,1()(≥->'-'t t x f x f x f 的取值范围是故上是增函数在即上满足在18.本小题主要考查正弦定理、余弦定理和三角形面积公式等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力解法1:设AB 、BC 、CA 的长分别为c 、a 、b ,.21cos ,23sin ,60,3tan ==∴==B B B B 得由 应用正弦定理得又,322cos 1sin 2=-=C C 8232263sin sin =⨯==B C b c . .3263332213123sin cos cos sin )sin(sin +=⨯+⨯=+=+=∴C B C B C B A 故所求面积.3826sin 21+==∆A bc S ABC 解法3:同解法1可得c=8. 又由余弦定理可得2222212cos ,546428,8100.2b ac ac B a a a a =+-=+-⨯⨯∴-+=即124460,090,30120.a a B C A ===<<∴<<所得361,sin sin 303,sin sin sinsin 22a b b b a A A B B B ==⋅>⋅==>由得 243,,4a a =<=而舍去故故所求面积.3826sin 21+==∆B ac S ABC 19.本小题主要考查等差数列、等比数列基本知识和数列求和的基本方法以及运算能力.解:(1):当;2,111===S a n 时,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 设{b n }的通项公式为.41,4,,11=∴==q d b qd b q 则 故.42}{,4121111---=⨯-=n n n n n n b b q b b 的通项公式为即(II ),4)12(422411---=-==n n nn n n n b a c ]4)12(4)32(454341[4],4)12(45431[13212121nn n n n n n n T n c c c T -+-++⨯+⨯+⨯=-++⨯+⨯+=+++=∴--两式相减得].54)56[(91]54)56[(314)12()4444(2131321+-=∴+-=-+++++--=-n n n n n n n T n n T20.本小题主要考查线面关系和空间距离的求法等基础知识,同时考查空间想象能力和推理运算能力 解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. 又∵AF ∥EC 1,∴∠FAD=∠C 1EH.∴Rt △ADF ≌Rt △EHC 1. ∴DF=C 1H=2..6222=+=∴DF BD BF(Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG. 过C 作CM ⊥AG ,垂足为M ,连C 1M ,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC ,且 AG ⊂面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到平面AEC 1F 的距离.113341712317123,17121743cos 3cos 3,.17,1,2211221=+⨯=⨯=∴=⨯===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CGBGCC EB 知由从而可得由解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0),A (2,0,0),C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ). ∵AEC 1F 为平行四边形,.62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF F z z EC F AEC =--=∴∴=∴-=-=∴∴(II )设1n 为平面AEC 1F 的法向量,1,,(,11y x n ADF n =故可设不垂直于平面显然⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x n n 得由1⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即 111),3,0,0(n CC CC 与设又=的夹角为a ,则 .333341161133cos 1111=++⨯==α ∴C 到平面AEC 1F 的距离为.11334333343cos ||1=⨯==αCC d 21.本小题主要考查概率的基础知识和运算能力,以及运用概率的知识分析和解决实际问题能力解:因为该型号的灯泡寿命为1年以上的概率为p 1,寿命为2年以上的概率为p 2. 所以寿命为1~2年的概率应为p 1-p 2. 其分布列为:寿命 0~1 1~2 2~ p 1-P 1 P 1-p 2 P 2(I )在第一次更换灯泡工作中,不需要换灯泡的概率为,51p 需要更换2只灯泡的概率为;)1(213125p p C -(II )在第二次灯泡更换工作中,对其中的某一盏灯来说,该盏灯需要更换灯泡是两个独立事件的和事件:①在第1、2次都更换了灯泡的概率为(1-p 1)2;②在第一次未更换灯泡而在第二次需要更换灯泡的概率为p 1-p 2。
2004高考数学试题(湖北理)及答案

2004年普通高等学校招生湖北卷理工类数学试题一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.与直线042=+-y x 的平行的抛物线2x y =的切线方程是 ( ) A .032=+-y x B .032=--y x C .012=+-y x D .012=--y x2.复数ii 31)31(2++-的值是 ( )A .-16B .16C .41-D .i 4341- 3.已知)(,11)11(22x f xx x x f 则+-=+-的解析式可取为( )A .21x x+ B .212x x+-C .212x x+ D .21x x+-4.已知c b a ,,为非零的平面向量. 甲:则乙,:,c b c a b a =⋅=⋅ ( ) A .甲是乙的充分条件但不是必要条件; B .甲是乙的必要条件但不是充分条件 C .甲是乙的充要条件; D .甲既不是乙的充分条件也不是乙的必要条件 5.若011<<b a ,则下列不等式①ab b a <+;②|;|||b a >③b a <;④2>+baa b 中,正确的不等式有( )A .1个B .2个C .3个D .4个6.已知椭圆191622=+y x 的左、右焦点分别为F 1、F 2,点P 在椭圆上,若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A .59 B .3 C .779 D .49 7.函数]1,0[)1(log )(在++=x a x f a x 上的最大值和最小值之和为a ,则a 的值为( )A .41B .21C .2D .48.已知数列{n a }的前n 项和),,2,1]()21)(1(2[])21(2[11 =+---=--n n b a S n n n 其中a 、b 是非零常数,则存在数列{n x }、{n y }使得 ( )A .}{,n n n n x y x a 其中+=为等差数列,{n y }为等比数列B .}{,n n n n x y x a 其中+=和{n y }都为等差数列C .}{,n n n n x y x a 其中⋅=为等差数列,{n y }都为等比数列D .}{,n n n n x y x a 其中⋅=和{n y }都为等比数列9.函数1)(3++=x ax x f 有极值的充要条件是( )A .0>aB .0≥aC .0<aD .0≤a10.设集合044|{},01|{2<-+∈=<<-=mx mx R m Q m m P 对任意实数x 恒成立},则下列关系中成立的是 ( ) A .P Q B .Q P C .P=Q D .P Q= 11.已知平面βα与所成的二面角为80°,P 为α、β外一定点,过点P 的一条直线与α、β所成的角都是30°,则这样的直线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条12.设)(t f y =是某港口水的深度y (米)关于时间t (时)的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:A CA 1C 1A BC近似表示表中数据间对应关系的函数是 ( ) A .]24,0[,6sin 312∈+=t t y πB .]24,0[),6sin(312∈++=t t y ππC .]24,0[,12sin312∈+=t t y πD .]24,0[),212sin(312∈++=t t y ππ二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.设随机变量ξ的概率分布为====a k a ak P k则为常数,,2,1,,5)( ξ . 14.将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内,每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的放入方法共有 种.(以数字作答)15.设A 、B 为两个集合,下列四个命题: ①A ⊄B ⇔对任意B x A x ∉∈有, ②A ⊄ B ⇔=B A φ ③A ⊄B ⇔A B ④A ⊄ B ⇔存在B x A x ∉∈使得, 其中真命题的序号是 .(把符合要求的命题序号都填上)16.某日中午12时整,甲船自A 处以16km/h 的速度向正东行驶,乙船自A 的正北18km 处以24km/h 的速度向正南行驶,则当日12时30分时两船之间距间对时间的变化率是 km/h. 三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知)32sin(],,2[,0cos 2cos sin sin 622παππααααα+∈=-+求的值.18.(本小题满分12分)如图,在棱长为1的正方体ABCD —A 1B 1C 1D 1中,点E 是棱BC 的中点,点F 是棱CD 上的动点.(I )试确定点F 的位置,使得D 1E ⊥平面AB 1F ;(II )当D 1E ⊥平面AB 1F 时,求二面角C 1—EF —A 的大小(结果用反三角函数值表示).19.(本小题满分12分)如图,在Rt △ABC 中,已知BC=a ,若长为2a 的线段PQ 以点A 为中点,问与 的夹角θ取何值时CQ BP ⋅的值最大?并求出这个最大值.20.(本小题满分12分)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两点A 、B. (I )求实数k 的取值范围;(II )是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在, 求出k 的值;若不存在,说明理由. 21.(本小题满分12分) 某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成 400万元的损失. 现有甲、乙两种相互独立的预防措施可供采用. 单独采用甲、乙预防措施 所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率为0.9 和0.85. 若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防 方案使总费用最少. (总费用...=采取预防措施的费用+发生突发事件损失的期望值.) 22.(本小题满分14分)已知.,2,1,1,}{,011 =+==>+n a a a a a a a nn n 满足数列 (I )已知数列}{n a 极限存在且大于零,求n n a A ∞→=lim (将A 用a 表示);AC A 1C 1(II )设;)(:,,2,1,1A b A b b n A a b n nn n n +-==-=+证明(III )若 ,2,121||=≤n b nn 对都成立,求a 的取值范围. 2004年普通高等学校招生湖北卷理工类数学试题参考答案一、选择题1.D 2.A 3.C 4.B 5.B 6.D 7.B 8.C 9.C 10.A 11.D 12.A 二、填空题13.4 14.240 15.(4) 16.-1.6 三、解答题17.本小题考三角函数的基本公式以及三角函数式的恒等变形等基础知识和基本运算技能,满分12分. 解法一:由已知得:0)cos sin 2)(cos 2sin 3(=-+αααα 0cos sin 20cos 2sin 3=-=+⇔αααα或 由已知条件可知).,2(,2,0cos ππαπαα∈≠≠即所以 .32tan ,0tan -=∴<αα于是3sin2cos 3cos2sin )32sin(παπαπα+=+22222222222sin cos cos sin tan 1tan sin cos sin ).cos sin cos sin 1tan 1tan αααααααααααααααα--=+-==++++代入上式得将32tan -=α22222()1()633sin(2).223131()1()33πα---+=-+=-++-+-解法二:由已知条件可知所以原式可化为则,2,0cos παα≠≠26tan tan 20.(3tan 2)(2tan 1)0.2(,),tan 0.tan .23.ααααπαπαα+-=+-=∈∴<∴=-即又下同解法一18.本小题主要考查线面关系和正方体等基础知识,考查空间想象能力和推理运算能力,满分12分. 解法一:(I )连结A 1B ,则A 1B 是D 1E 在面ABB 1A ;内的射影∵AB 1⊥A 1B ,∴D 1E ⊥AB 1,于是D 1E ⊥平面AB 1F ⇔D 1E ⊥AF.连结DE ,则DE 是D 1E 在底面ABCD 内的射影.∴D 1E ⊥AF ⇔DE ⊥AF. ∵ABCD 是正方形,E 是BC 的中点.∴当且仅当F 是CD 的中点时,DE ⊥AF , 即当点F 是CD 的中点时,D 1E ⊥平面AB 1F.…………6分 (II )当D 1E ⊥平面AB 1F 时,由(I )知点F 是CD 的中点. 又已知点E 是BC 的中点,连结EF ,则EF ∥BD. 连结AC , 设AC 与EF 交于点H ,则CH ⊥EF ,连结C 1H ,则CH 是 C 1H 在底面ABCD 内的射影. C 1H ⊥EF ,即∠C 1HC 是二面角C 1—EF —C 的平面角.BP在Rt △C 1CH 中,∵C 1C=1,CH=41AC=42,∴tan ∠C 1HC=224211==CH C C . ∴∠C 1HC=arctan 22,从而∠AHC 1=22arctan -π.故二面角C 1—EF —A 的大小为22arctan -π.解法二:以A 为坐标原点,建立如图所示的空间直角坐标系 (1)设DF=x ,则A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B (1,0,1),D 1(0,1,1),E )0,21,1(,F (x ,1,0)FAB E D CD F x x D AF E D F AB E D AB E D AB D x AF AB E D 111111111111,.21210,011)0,1,(),1,0,1(),1,21,1(平面的中点时是故当点即平面于是即⊥==-⇔=⋅⇔⇔⊥⊥=-=⋅∴==--=∴ (1)当D 1E ⊥平面AB 1F 时,F 是CD 的中点,又E 是BC 的中点,连结EF ,则EF ∥BD. 连结AC ,设AC 与EF 交于点H ,则AH ⊥EF. 连结C 1H ,则CH 是C 1H 在底面ABCD 内的射影.∴C 1H ⊥EF ,即∠AHC 1是二面角C 1—EF —A 的平面角.1111133(1,1,1),(,,0),441133(,,1),(,,0).444431cos 3||||9C H HC HA HA HC AHC HA HC ==---⋅∴∠===-⋅.31arccos .31arccos )31arccos(11----=-=∠ππ的大小为故二面角即A EF C AHC 19.本小题主要考查向量的概念,平面向量的运算法则,考查运用向量及函数知识的能力,满分12分.)()(,,,.0,:AC AB AC AB -⋅-=⋅∴-=-=-==⋅∴⊥ 解法一222222()11cos .22AP AQ AP AC AB AQ AB AC a AP AC AB AP a AP AB AC a PQ BC a PQ BC a a θ=⋅-⋅-⋅+⋅=--⋅+⋅=--⋅-=-+⋅=-+⋅=-+ .0.,)(0,1cos 其最大值为最大时方向相同与即故当CQ BP BC PQ ⋅==θθ解法二:以直角顶点A 为坐标原点,两直角边所在直线为坐标轴建立如图所示的平面直角坐标系..)()())(().2,2(),,(),,(),,().,(),,(.||,2||),,0(),0,(),0,0(,||||22by cx y x b y y x c x y x b c b y x CQ y c x BP y x Q y x P a BC a PQ b C c B A b AC c AB -++-=--+--=⋅∴--=-=---=-=∴--====则的坐标为设点且则设22cos .cos .||||cos 1,0(),,0.PQ BC cx by cx by a BP CQ a PQ BC PQ BC BC CQ θθθθ⋅-==∴-=∴⋅⋅==⋅故当即与方向相同时最大其最大值为 20.本小题主要考查直线、双曲线的方程和性质,曲线与方程的关系,及其综合应用能力,满分12分.解:(Ⅰ)将直线整理得后的方程代入双曲线的方程,12122=-+=y x C kx y l.022)2(22=++-kx x k ……①依题意,直线l 与双曲线C 的右支交于不同两点,故.22.02222,0)2(8)2(,0222222-<<-⎪⎪⎪⎩⎪⎪⎪⎨⎧>->-->--=∆≠-k k k k k k k k 的取值范围是解得(Ⅱ)设A 、B 两点的坐标分别为),(11y x 、),(22y x ,则由①式得⎪⎪⎩⎪⎪⎨⎧-=⋅-=+.22,22222221k x x kk x x ……②假设存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F (c,0).则由FA ⊥FB 得:12121212()()0.()()(1)(1)0.x c x c y y x c x c kx kx --+=--+++=即 整理得.01))(()1(221212=+++-++c x x c k x x k ……③把②式及26=c 代入③式化简得.066252=-+k k 解得))(2,2(566566舍去或--∉-=+-=k k 可知566+-=k 使得以线段AB 为直径的圆经过双曲线C 的右焦点.21.本小题考查概率的基本知识和数学期望概念及应用概率知识解决实际问题的能力,满分12分. 解:①不采取预防措施时,总费用即损失期望为400×0.3=120(万元); ②若单独采取措施甲,则预防措施费用为45万元,发生突发事件的概率为1-0.9=0.1,损失期望值为400×0.1=40(万元),所以总费用为45+40=85(万元)③若单独采取预防措施乙,则预防措施费用为30万元,发生突发事件的概率为1-0.85=0.15,损失期望值为400×0.15=60(万元),所以总费用为30+60=90(万元);④若联合采取甲、乙两种预防措施,则预防措施费用为45+30=75(万元),发生突发事件的概率为(1-0.9)(1-0.85)=0.015,损失期望值为400×0.015=6(万元),所以总费用为75+6=81(万元).综合①、②、③、④,比较其总费用可知,应选择联合采取甲、乙两种预防措施,可使总费用最少.22.本小题主要考查数列、数列极限的概念和数学归纳法,考查灵活运用数学知识分析问题和解决问题的能力,满分14分.解:(I )由两边取极限得对且存在nn n n n n a a a A a A a 1),0(lim ,lim 1+=>=+∞→∞→ .24,0.24,122++=∴>+±=+=a a A A a a A A a A 又解得(II ).11,11Ab a A b a a a A b a n n n n n n ++=++=+=++得由都成立对即 ,2,1)(.)(11111=+-=+-=++-=++-=∴++n A b A b b A b A b A b A A b A a b n nn n n n n n(III ).21|)4(21|,21||21≤++-≤a a a b 得令113|)|.1,.22231,||1,2,.22n n a a a a b n ∴≤≤≥≥≤=解得现证明当时对都成立(i )当n=1时结论成立(已验证).(ii )假设当那么即时结论成立,21||,)1(k k b k k n ≤≥= k k k k k A b A A b A b b 21||1|)(|||||1⨯+≤+=+故只须证明.232||,21||1成立对即证≥≥+≤+a A b A A b A k k.212121||,23.2||,1212||||.2,14,23,422411222++=⨯≤≥≥+≥-≥-≥+∴≥∴≤-+≥-+=++=k k k k k k k b a A b A b A A b A a a a aa a a A 时故当即时而当由于即n=k+1时结论成立.根据(i )和(ii )可知结论对一切正整数都成立. 故).,23[,2,121||+∞=≤的取值范围为都成立的对a n b nn。
高考卷05高考文科数学(湖北卷)试题及答案

高考卷05高考文科数学(湖北卷)试题及答案2005年高考文科数学湖北卷试题及答案本试卷分第I卷(选择题)和第II卷(非选择题)两部分.满分150分考试时间120分钟第I部分(选择题共60分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3.考试结束,监考人员将本试题卷和答题卡一并收回一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P、Q为两个非空实数集合,定义集合P+Q=,则P+Q中元素的个数是()A.9B.8C.7D.62.对任意实数a,b,c,给出下列命题:①“”是“”充要条件;②“是无理数”是“a是无理数”的充要条件③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的个数是()A.1B.2C.3D.43.已知向量a=(-2,2),b=(5,k).若|a+b|不超过5,则k的取值范围是()A.[-4,6]B.[-6,4]C.[-6,2]D.[-2,6]4.函数的图象大致是()5.木星的体积约是地球体积的倍,则它的表面积约是地球表面积的()A.60倍B.60倍C.120倍D.120倍6.双曲线离心率为2,有一个焦点与抛物线的焦点重合,则mn 的值为()A.B.C.D.7.在这四个函数中,当时,使恒成立的函数的个数是()A.0B.1C.2D.38.已知a、b、c是直线,是平面,给出下列命题:①若;②若;③若;④若a与b异面,且相交;①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是()A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样第Ⅱ卷(非选择题共90分)注意事项:第Ⅱ卷用0.5毫米黑色的签字或黑色墨水钢笔直接答在答题卡上.答在试题卷上无效二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡相应位置上13.函数的定义域是14.的展开式中整理后的常数项等于15.函数的最小正周期与最大值的和为16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元.在满足需要的条件下,最少要花费元三、解答题:本大题共6小题,共74分,解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知向量在区间(-1,1)上是增函数,求t的取值范围18.(本小题满分12分)在△ABC中,已知,求△ABC的面积19.(本小题满分12分)设数列的前n项和为Sn=2n2,为等比数列,且(Ⅰ)求数列和的通项公式;(Ⅱ)设,求数列的前n项和Tn20.(本小题满分12分)如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1(Ⅰ)求BF的长;(Ⅱ)求点C到平面AEC1F的距离21.(本小题满分12分)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字)22.(本小题满分14分)设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点(Ⅰ)确定的取值范围,并求直线AB的方程;(Ⅱ)试判断是否存在这样的,使得A、B、C、D四点在同一个圆上?并说明理由2005年高考文科数学湖北卷试题及答案参考答案一、选择题:本题考查基本知识和基本运算,每小题4分,满分16分1.B2.B3.C4.D5.C6.A7.B8.A9.D10.C11.D12.D二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分13.14.3815.16.500三、解答题17.本小题主要考查平面向量数量积的计算方法、利用导数研究函数的单调性,以及运用基本函数的性质分析和解决问题的能力.解法1:依定义开口向上的抛物线,故要使在区间(-1,1)上恒成立解法2:依定义的图象是开口向下的抛物线,18.本小题主要考查正弦定理、余弦定理和三角形面积公式等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力解法1:设AB、BC、CA的长分别为c、a、b,.故所求面积解法3:同解法1可得c=8.又由余弦定理可得故所求面积19.本小题主要考查等差数列、等比数列基本知识和数列求和的基本方法以及运算能力.解:(1):当故{an}的通项公式为的等差数列.设{bn}的通项公式为故(II)两式相减得20.本小题主要考查线面关系和空间距离的求法等基础知识,同时考查空间想象能力和推理运算能力解法1:(Ⅰ)过E作EH//BC交CC1于H,则CH=BE=1,EH//AD,且EH=AD.又∵AF∥EC1,∴∠FAD=∠C1EH.∴Rt△ADF≌Rt△EHC1.∴DF=C1H=2.(Ⅱ)延长C1E与CB交于G,连AG,则平面AEC1F与平面ABCD相交于AG.过C作CM⊥AG,垂足为M,连C1M,由三垂线定理可知AG⊥C1M.由于AG⊥面C1MC,且AG面AEC1F,所以平面AEC1F⊥面C1MC.在Rt△C1CM中,作CQ⊥MC1,垂足为Q,则CQ的长即为C到平面AEC1F的距离解法2:(I)建立如图所示的空间直角坐标系,则D(0,0,0),B(2,4,0),A(2,0,0),C (0,4,0),E(2,4,1),C1(0,4,3).设F(0,0,z).∵AEC1F为平行四边形,(II)设为平面AEC1F的法向量,的夹角为a,则∴C到平面AEC1F的距离为21.本小题主要考查概率的基础知识和运算能力,以及运用概率的知识分析和解决实际问题能力解:因为该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.所以寿命为1~2年的概率应为p1-p2. 其分布列为:寿命0~11~22~p1-P1P1-p2P2(I)在第一次更换灯泡工作中,不需要换灯泡的概率为需要更换2只灯泡的概率为(II)在第二次灯泡更换工作中,对其中的某一盏灯来说,该盏灯需要更换灯泡是两个独立事件的和事件:①在第1、2次都更换了灯泡的概率为(1-p1)2;②在第一次未更换灯泡而在第二次需要更换灯泡的概率为p1-p2。
05年高数真题

专升本 高等数学一、选择题:1~10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。
1、lim sin x xx→05等于( )A 0B 15C 1D 52、设y x=+-33,则y '等于( )A --34xB --32xC 34x -D -+-334x 3、设f x x ()cos =2,则f '()0等于( )A -2B -1C 0D 2 4. 曲线y x =3的拐点坐标是( )A (-1,-1)B (0,0)C (1,1)D (2,8) 5、sin xdx ⎰等于( )A cos xB -cos xC cos x C +D -+cos x C 6、11201+⎰x dx 等于( )A 0B π4C π2D π 7、设0()()xt x e t dt φ=+⎰,则φ'()x 等于( )A 0B e x x+22C e x x +D e x+18、设函数z e x y=+,则∂∂zx等于( ) A ex y+ B yex y+ C xex y+ D ()x y ex y++9、设函数z x y =2,则∂∂∂2zx y等于( )A x y +B xC yD 2x 10. 已知事件A 的概率P (A )=0.6,则A 的对立事件A 的概率P A ()等于( ) A. 0.3B. 0.4C. 0.6D. 0.7二、填空题:11~20小题,每小题4分,共40分。
把答案填写在题中横线上。
11、lim()x x x →-+=132____________________。
12、lim()x xx→∞-=13____________________。
13、函数y x =+ln()12的驻点为x =____________________。
14、设函数y ex=2,则y "()0=____________________。
2005年高考文科数学试题及答案(湖北)

绝密★启用前2005年普通高等学校招生全国统一考试(湖北卷)数学试题卷(文史类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 满分150分. 考试时间120分钟.第I 部分(选择题 共60分)注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3.考试结束,监考人员将本试题卷和答题卡一并收回.一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是 ( )A .9B .8C .7D .6 2.对任意实数a ,b ,c ,给出下列命题: ①“b a =”是“bc ac =”充要条件; ②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件;④“a <5”是“a <3”的必要条件. 其中真命题的个数是 ( ) A .1 B .2 C .3 D .4 3.已知向量a =(-2,2),b =(5,k ).若|a +b |不超过5,则k 的取值范围是 ( ) A .[-4,6] B .[-6,4] C .[-6,2] D .[-2,6] 4.函数|1|||ln --=x e y x 的图象大致是( )5.木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的 ( )A .60倍B .6030倍C .120倍D .12030倍6.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163 B .83 C .316 D .38 7.在x y x y x y y x 2c o s ,,l o g ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是 ( )A .0B .1C .2D .3 8.已知a 、b 、c 是直线,β是平面,给出下列命题:①若c a c b b a //,,则⊥⊥; ②若c a c b b a ⊥⊥则,,//; ③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直.其中真命题的个数是 ( ) A .1 B .2 C .3 D .49.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是 ( ) A .168 B .96 C .72 D .144 10.若∈<<=+απαααα则),20(tan cos sin( )A .)6,0(πB .)4,6(ππ C .)3,4(ππ D .)2,3(ππ 11.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( ) A .3 B .2 C .1 D .012.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是 ( ) A .②、③都不能为系统抽样 B .②、④都不能为分层抽样 C .①、④都可能为系统抽样 D .①、③都可能为分层抽样----资料来源高中数学教师交流分享QQ 群 545423319----整理收集不易,转载请注明出处第Ⅱ卷(非选择题 共90分)注意事项:第Ⅱ卷用0.5毫米黑色的签字或黑色墨水钢笔直接答在答题卡上.答在试题卷上无效.二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在答题卡相应位置上. 13.函数x x x x f ---=4lg 32)(的定义域是 . 14.843)1()2(xx xx ++-的展开式中整理后的常数项等于 . 15.函数1cos |sin |-=x x y 的最小正周期与最大值的和为 .16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元. 在满足需要的条件下,最少要花费 元. 三、解答题:本大题共6小题,共74分,解答时应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量x f t x x x ⋅=-=+=)(),,1(),1,(2若函数在区间(-1,1)上是增函数,求t 的取值范围. 18.(本小题满分12分) 在△ABC 中,已知63,31cos ,3tan ===AC C B ,求△ABC 的面积.19.(本小题满分12分)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且.)(,112211b a a b b a =-=(Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设nnn b a c =,求数列}{n c 的前n 项和T n .----资料来源高中数学教师交流分享QQ群545423319----整理收集不易,转载请注明出处20.(本小题满分12分)如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1.(Ⅰ)求BF的长;(Ⅱ)求点C到平面AEC1F的距离.21.(本小题满分12分)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字).----资料来源高中数学教师交流分享QQ 群 545423319----整理收集不易,转载请注明出处22.(本小题满分14分)设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由.2005年普通高等学校招生全国统一考试数学试题(文史类)参考答案一、选择题:本题考查基本知识和基本运算,每小题4分,满分16分.1.B 2.B 3.C 4.D 5.C 6.A 7.B 8.A 9.D 10.C 11.D 12.D 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分.13.)4,3()3,2[⋃ 14.38 15.212-π 16.500 三、解答题17.本小题主要考查平面向量数量积的计算方法、利用导数研究函数的单调性,以及运用基本函数的性质分析和解决问题的能力.解法1:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.23)(2t x x x f ++-='则.0)()1,1(,)1,1()(≥'--x f x f 上可设则在上是增函数在若,23)(,)1,1(,230)(22x x x g x x t x f -=--≥⇔≥'∴考虑函数上恒成立在区间,31)(=x x g 的图象是对称轴为由于开口向上的抛物线,故要使x x t 232-≥在区间(-1,1)上恒成立⇔.5),1(≥-≥t g t 即.)1,1()(,0)()1,1()(,5上是增函数在即上满足在时而当->'-'≥x f x f x f t5≥t t 的取值范围是故.解法2:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.0)()1,1(,)1,1()(.23)(2≥'--++-='x f x f t x x x f 上可设则在上是增函数在若)(x f ' 的图象是开口向下的抛物线,时且当且仅当05)1(,01)1(≥-=-'≥-='∴t f t f.5.)1,1()(,0)()1,1()(≥->'-'t t x f x f x f 的取值范围是故上是增函数在即上满足在18.本小题主要考查正弦定理、余弦定理和三角形面积公式等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力.解法1:设AB 、BC 、CA 的长分别为c 、a 、b ,.21cos ,23sin ,60,3tan ==∴==B B B B 得由 应用正弦定理得又,322cos 1sin 2=-=C C 8232263sin sin =⨯==B C b c ..3263332213123sin cos cos sin )sin(sin +=⨯+⨯=+=+=∴C B C B C B A 故所求面积.3826sin 21+==∆A bc S ABC 解法3:同解法1可得c=8. 又由余弦定理可得----资料来源高中数学教师交流分享QQ 群 545423319----整理收集不易,转载请注明出处.64,,364,32321236330sin sin sin sin ,sin sin .12030,900,60.64,64.0108,21826454,cos 222122222+=<-=>=⋅=⋅>⋅==<<∴<<=-=+==+-∴⨯⨯-+=-+=a a B b A B b a B b A a A C B a a a a a a B ac c a b 故舍去而得由所得即 故所求面积.3826sin 21+==∆B ac S ABC 19.本小题主要考查等差数列、等比数列基本知识和数列求和的基本方法以及运算能力.解:(1):当;2,111===S a n 时 ,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 设{b n }的通项公式为.41,4,,11=∴==q d b qd b q 则 故.42}{,4121111---=⨯-=n n n n n n b b q b b 的通项公式为即(II ),4)12(422411---=-==n n nn n n n b a c ]4)12(4)32(454341[4],4)12(45431[13212121nn n n n n n n T n c c c T -+-++⨯+⨯+⨯=-++⨯+⨯+=+++=∴--两式相减得].54)56[(91]54)56[(314)12()4444(2131321+-=∴+-=-+++++--=-n n n n n n n T n n T20.本小题主要考查线面关系和空间距离的求法等基础知识,同时考查空间想象能力和推理运算能力.解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. 又∵AF ∥EC 1,∴∠FAD=∠C 1EH.∴Rt △ADF ≌Rt △EHC 1. ∴DF=C 1H=2..6222=+=∴DF BD BF(Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG . 过C 作CM ⊥AG ,垂足为M ,连C 1M ,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC ,且AG ⊂面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到平面AEC 1F 的距离..113341712317123,17121743cos 3cos 3,.17,1,2211221=+⨯=⨯=∴=⨯===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CGBGCC EB 知由从而可得由解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0),A (2,0,0), C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ). ∵AEC 1F 为平行四边形,.62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF BF EF F z z EC AF F AEC =--=∴∴=∴-=-=∴∴(II )设1n 为平面AEC 1F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然 ⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x n n 得由⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即111),3,0,0(n CC CC 与设又=的夹角为a ,则 .333341161133||||cos 1111=++⨯=⋅=n CC α ∴C 到平面AEC 1F 的距离为.11334333343cos ||1=⨯==αCC d 21.本小题主要考查概率的基础知识和运算能力,以及运用概率的知识分析和解决实际问题能力.----资料来源高中数学教师交流分享QQ 群 545423319----整理收集不易,转载请注明出处解:(I )在第一次更换灯泡工作中,不需要换灯泡的概率为,51p 需要更换2只灯泡的概率为;)1(213125p p C -(II )对该盏灯来说,在第1、2次都更换了灯泡的概率为(1-p 1)2;在第一次未更换灯泡而在第二次需要更换灯泡的概率为p 1(1-p 2),故所求的概率为);1()1(2121p p p p -+-=(III )至少换4只灯泡包括换5只和换4只两种情况,换5只的概率为p 5(其中p 为(II )中所求,下同)换4只的概率为415p C (1-p ),故至少换4只灯泡的概率为 .34.042.34.04.06.056.06.07.08.02.0,3.0,8.0).1(45322141553只灯泡的概率为年至少需要换即满时又当=⨯⨯+=∴=⨯+===-+=p p p p p p C p p22.本小题主要考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.(I )解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得.0)3()3(2)3(222=--+--+λk x k k x k ①设是方程则212211,),,(),,(x x y x B y x A ①的两个不同的根,0])3(3)3([422>--+=∆∴k k λ ②)3,1(.3)3(2221N k k k x x 由且+-=+是线段AB 的中点,得 .3)3(,12221+=-∴=+k k k x x 解得k=-1,代入②得,λ>12,即λ的取值范围是(12,+∞).于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即解法2:设则有),,(),,(2211y x B y x A.0))(())((33,32121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ 依题意,.)(3,212121y y x x k x x AB ++-=∴≠.04),1(3).,12(.12313,)3,1(.1,6,2,)3,1(222121=-+--=-+∞∴=+⨯>-==+=+∴y x x y AB N k y y x x AB N AB 即的方程为直线的取值范围是在椭圆内又由从而的中点是λλ(II )解法1:.02,13,=---=-∴y x x y CD AB CD 即的方程为直线垂直平分 代入椭圆方程,整理得 .04442=-++λx x ③是方程则的中点为又设43004433,),,(),,(),,(x x y x M CD y x D y x C ③的两根,).23,21(,232,21)(21,10043043-=+=-=+=-=+∴M x y x x x x x 即且于是由弦长公式可得 ).3(2||)1(1||432-=-⋅-+=λx x kCD ④ 将直线AB 的方程代入椭圆方程得,04=-+y x.016842=-+-λx x ⑤同理可得.)12(2||1||212-=-⋅+=λx x k AB ⑥.||||.,)12(2)3(2,12CD AB <∴->->λλλ时当假设在在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为.2232|42321|2|4|00=-+-=-+=y x d ⑦ 于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ 故当12>λ时,A 、B 、C 、D 四点均在以M 为圆心,2||CD 为半径的圆上. (注:上述解法中最后一步可按如下解法获得:A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角即|,|||||2DN CN AN ⋅=⇔----资料来源高中数学教师交流分享QQ 群 545423319----整理收集不易,转载请注明出处).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边=.212-λ 由④和⑦知,⑧式右边=)2232)3(2)(2232)3(2(--+-λλ ,2122923-=--=λλ ∴⑧式成立,即A 、B 、C 、D 四点共圆解法2:由(II )解法1及12>λ.,13,-=-∴x y CD AB CD 方程为直线垂直平分 代入椭圆方程,整理得 .04442=-++λx x ③将直线AB 的方程,04=-+y x 代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得 .231,2122,4,321-±-=-±-λλx x 不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A ∴)21233,23123(---+-+-+=λλλλ )21233,23123(-------+=λλλλ 计算可得0=⋅,∴A 在以CD 为直径的圆上.又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆.(注:也可用勾股定理证明AC ⊥AD )。
2005年高考试题——数学文(湖北卷)

绝密★启用前2005年普通高等学校招生全国统一考试(湖北卷)数学试题卷(文史类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 满分150分. 考试时间120分钟.第I 部分(选择题 共60分)注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3.考试结束,监考人员将本试题卷和答题卡一并收回.一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若 }6,2,1{=Q ,则P+Q 中元素的个数是( )A .9B .8C .7D .62.对任意实数a ,b ,c ,给出下列命题: ①“b a =”是“bc ac =”充要条件; ②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件;④“a <5”是“a <3”的必要条件. 其中真命题的个数是 ( )A .1B .2C .3D .43.已知向量a =(-2,2),b =(5,k ).若|a +b |不超过5,则k 的取值范围是 ( )A .[-4,6]B .[-6,4]C .[-6,2]D .[-2,6] 4.函数|1|||ln --=x e y x 的图象大致是 ( )5.木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的 ( )A .60倍B .6030倍C .120倍D .12030倍6.双曲线)0(122≠=-mn nymx离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163B .83C .316D .387.在x y x y x y y x 2c o s ,,lo g ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是( )A .0B .1C .2D .3 8.已知a 、b 、c 是直线,β是平面,给出下列命题:①若c a c b b a //,,则⊥⊥; ②若c a c b b a ⊥⊥则,,//; ③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直. 其中真命题的个数是( )A .1B .2C .3D .49.把一排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是 ( )A .168B .96C .72D .144 10.若∈<<=+απαααα则),20(tan cos sin( )A .)6,0(πB .)4,6(ππ C .)3,4(ππ D .)2,3(ππ11.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( )A .3B .2C .1D .012.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是 ( )A .②、③都不能为系统抽样B .②、④都不能为分层抽样C .①、④都可能为系统抽样D .①、③都可能为分层抽样第Ⅱ卷(非选择题 共90分)注意事项:第Ⅱ卷用0.5毫米黑色的签字或黑色墨水钢笔直接答在答题卡上.答在试题卷上无效. 二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在答题卡相应位置上. 13.函数x x x x f ---=4lg 32)(的定义域是 .14.843)1()2(xx xx ++-的展开式中整理后的常数项等于 .15.函数1cos |sin |-=x x y 的最小正周期与最大值的和为 .16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元. 在满足需要的条件下,最少要花费 元.三、解答题:本大题共6小题,共74分,解答时应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量b a x f t x b x x a ⋅=-=+=)(),,1(),1,(2若函数在区间(-1,1)上是增函数,求t 的取值范围.18.(本小题满分12分) 在△ABC 中,已知63,31cos ,3tan ===AC C B ,求△ABC 的面积.19.(本小题满分12分)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且.)(,112211b a a b b a =-=(Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设nn n b a c =,求数列}{n c 的前n 项和T n .20.(本小题满分12分)如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1.(Ⅰ)求BF的长;(Ⅱ)求点C到平面AEC1F的距离.21.(本小题满分12分)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作中,至少需要更换4只灯泡的概率(结果保留两个有效数字).22.(本小题满分14分)设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由.(此题不要求在答题上画图)2005年普通高等学校招生全国统一考试数学试题(文史类)参考答案一、选择题:本题考查基本知识和基本运算,每小题4分,满分16分.1.B 2.B 3.C 4.D 5.C 6.A 7.B 8.A 9.D 10.C 11.D 12.D 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分.13.)4,3()3,2[⋃ 14.38 15.212-π 16.500三、解答题17.本小题主要考查平面向量数量积的计算方法、利用导数研究函数的单调性,以及运用基本函数的性质分析和解决问题的能力.解法1:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.23)(2t x x x f ++-='则.0)()1,1(,)1,1()(≥'--x f x f 上可设则在上是增函数在若,23)(,)1,1(,230)(22x x x g x x t x f -=--≥⇔≥'∴考虑函数上恒成立在区间,31)(=x x g 的图象是对称轴为由于开口向上的抛物线,故要使x x t 232-≥在区间(-1,1)上恒成立⇔.5),1(≥-≥t g t 即.)1,1()(,0)()1,1()(,5上是增函数在即上满足在时而当->'-'≥x f x f x f t5≥t t 的取值范围是故.解法2:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.0)()1,1(,)1,1()(.23)(2≥'--++-='x f x f t x x x f 上可设则在上是增函数在若)(x f ' 的图象是开口向下的抛物线,时且当且仅当05)1(,01)1(≥-=-'≥-='∴t f t f.5.)1,1()(,0)()1,1()(≥->'-'t t x f x f x f 的取值范围是故上是增函数在即上满足在18.本小题主要考查正弦定理、余弦定理和三角形面积公式等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力.解法1:设AB 、BC 、CA 的长分别为c 、a 、b ,.21cos ,23sin ,60,3tan ==∴==B B B B得由应用正弦定理得又,322cos 1sin 2=-=C C8232263sin sin =⨯==BC b c ..3263332213123sin cos cos sin )sin(sin +=⨯+⨯=+=+=∴C B C B C B A故所求面积.3826sin 21+==∆A bc S ABC解法2:同解法一可得c=8,又由余弦定理得,3826sin 21646822,038226136322233121sin sin cos cos )cos(cos .cos 2222+==+=+=∴>+=-=⨯+⨯-=+-=+-=-+=∆B ac S a a C B C B C B A A bc c b aABC 故所求面积而解法3:同解法1可得c=8. 又由余弦定理可得.12030,900,60.64,64.0108,21826454,cos 22122222<<∴<<=-=+==+-∴⨯⨯-+=-+=A C B a a a a a a B ac c a b所得即.64,,364,32321236330sin sin sin sin ,sin sin 2+=<-=>=⋅=⋅>⋅==a a Bb A Bb a Bb Aa 故舍去而得由故所求面积.3826sin 21+==∆B ac S ABC19.本小题主要考查等差数列、等比数列基本知识和数列求和的基本方法以及运算能力.解:(1):当;2,111===S a n 时,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 设{b n }的通项公式为.41,4,,11=∴==q d b qd b q 则故.42}{,4121111---=⨯-=n n n n n n b b qb b 的通项公式为即(II ),4)12(422411---=-==n n nn n n n b a c]4)12(4)32(454341[4],4)12(45431[13212121nn n n n n n n T n c c c T -+-++⨯+⨯+⨯=-++⨯+⨯+=+++=∴--两式相减得].54)56[(91]54)56[(314)12()4444(2131321+-=∴+-=-+++++--=-nn nnn n n T n n T20.本小题主要考查线面关系和空间距离的求法等基础知识,同时考查空间想象能力和推理运算能力.解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. 又∵AF ∥EC 1,∴∠FAD=∠C 1EH. ∴Rt △ADF ≌Rt △EHC 1. ∴DF=C 1H=2. .6222=+=∴DFBDBF(Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG .过C 作CM ⊥AG ,垂足为M ,连C 1M ,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC ,且AG ⊂面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到平面AEC 1F 的距离..113341712317123,17121743cos 3cos 3,.17,1,2211221=+⨯=⨯=∴=⨯===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BGABAG BG CGBG CC EB 知由从而可得由解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0),A (2,0,0), C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ). ∵AEC 1F 为平行四边形,.62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF BF BF F z z EC AF F AEC =--=∴∴=∴-=-=∴∴(II )设1n 为平面AEC 1F 的法向量, )1,,(,11y x n ADF n =故可设不垂直于平面显然⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x AF n AE n 得由⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即 111),3,0,0(n CC CC 与设又=的夹角为a ,则 .333341161133cos 11=++⨯=⋅=n CC α∴C 到平面AEC 1F 的距离为.11334333343cos ||1=⨯==αCC d21.本小题主要考查概率的基础知识和运算能力,以及运用概率的知识分析和解决实际问题能力.解:(I )在第一次更换灯泡工作中,不需要换灯泡的概率为,51p 需要更换2只灯泡的概率为;)1(213125p p C -(II )对该盏灯来说,在第1、2次都更换了灯泡的概率为(1-p 1)2;在第一次未更换灯泡而在第二次需要更换灯泡的概率为p 1(1-p 2),故所求的概率为);1()1(2121p p p p -+-=(III )至少换4只灯泡包括换5只和换4只两种情况,换5只的概率为p 5(其中p 为(II )中所求,下同)换4只的概率为415p C (1-p ),故至少换4只灯泡的概率为 .34.042.34.04.06.056.06.07.08.02.0,3.0,8.0).1(45322141553只灯泡的概率为年至少需要换即满时又当=⨯⨯+=∴=⨯+===-+=p p p p p p C p p22.本小题主要考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.(I )解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得.0)3()3(2)3(222=--+--+λk x k k x k①设是方程则212211,),,(),,(x x y x B y x A ①的两个不同的根,0])3(3)3([422>--+=∆∴k k λ ②)3,1(.3)3(2221N kk k x x 由且+-=+是线段AB 的中点,得.3)3(,12221+=-∴=+k k k x x解得k=-1,代入②得,λ>12,即λ的取值范围是(12,+∞). 于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即 解法2:设则有),,(),,(2211y x B y x A.0))(())((33,32121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ 依题意,.)(3,212121y y x x k x x AB ++-=∴≠.04),1(3).,12(.12313,)3,1(.1,6,2,)3,1(222121=-+--=-+∞∴=+⨯>-==+=+∴y x x y AB N k y y x x AB N AB 即的方程为直线的取值范围是在椭圆内又由从而的中点是λλ(II )解法1:.02,13,=---=-∴y x x y CD AB CD 即的方程为直线垂直平分 代入椭圆方程,整理得.04442=-++λx x ③是方程则的中点为又设43004433,),,(),,(),,(x x y x M CD y x D y x C ③的两根,).23,21(,232,21)(21,10043043-=+=-=+=-=+∴M x y x x x x x 即且于是由弦长公式可得 ).3(2||)1(1||432-=-⋅-+=λx x kCD ④将直线AB 的方程代入椭圆方程得,04=-+y x.016842=-+-λx x ⑤同理可得.)12(2||1||212-=-⋅+=λx x k AB ⑥.||||.,)12(2)3(2,12CD AB <∴->->λλλ时当假设在在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为.2232|42321|2|4|00=-+-=-+=y x d ⑦于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ故当12>λ时,A 、B 、C 、D 四点均在以M 为圆心,2||CD 为半径的圆上.(注:上述解法中最后一步可按如下解法获得:A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角即|,|||||2DN CN AN ⋅=⇔).2||)(2||()2||(2d CD d CD AB -+= ⑧由⑥式知,⑧式左边=.212-λ由④和⑦知,⑧式右边=)2232)3(2)(2232)3(2(--+-λλ,2122923-=--=λλ∴⑧式成立,即A 、B 、C 、D 四点共圆 解法2:由(II )解法1及12>λ.,13,-=-∴x y CD AB CD 方程为直线垂直平分 代入椭圆方程,整理得.04442=-++λx x ③将直线AB 的方程,04=-+y x 代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得 .231,2122,4,321-±-=-±=λλx x不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A∴)21233,23123(---+-+-+=λλλλCA)21233,23123(-------+=λλλλDA计算可得0CA,∴A在以CD为直径的圆上.⋅DA=又B为A关于CD的对称点,∴A、B、C、D四点共圆. (注:也可用勾股定理证明AC⊥AD)。
2004-2005学年度阶段考试高三数学试卷(附答案)

2004—2005学年度阶段考试高三数学试卷一、选择题(本题共12小题,每小题5分,共60分)1、已知集合P={x| x=2m+1,m ∈Z},Q={x| x=4n ±1,n ∈Z},则P 、Q 之间的关系是 A 、PQ B 、PQ C 、P=Q D 、P ≠Q2、a ∈R ,| a |<3成立的一个必要不充分条件是A 、a<3B 、| a |<2C 、a 2<9D 、0<a<2 3、已知映射f :A →B ,其中A=B=R ,对应法则为f :x →y=x 2+2x+3,若对实数k ∈B ,在集合A 中不存在原象,则k 的取值范围是A 、(-∞,0)B 、(-∞,2)C 、(2,+∞)D 、(3,+∞) 4、已知函数11)(-=x x f ,则函数f[f(x)]的定义域为 A 、{x| x ≠1} B 、{x| x ≠2} C 、{x| x ≠1且x ≠2} D 、{x| x ≠1或x ≠2}5、已知35)(-=x xx f 且f[g(x)]=4-x ,则g(1)= A 、3 B 、25- C 、29=x D 、29-=x6、下列函数中,值域为[0,)1的函数是 A 、||2x y -= B 、122+=x x y C 、22x x y -= D 、y=log 2(x 2+1)7、若命题p :x ∈A ∩B ,则p 是A 、B A x ⋃∉ B 、A x ∉或B x ∉C 、A x ∉且B x ∉D 、B A x ⋃∈ 8、图象通过平移或翻折后,不能与函数y=-log 2x 的图象重合的函数是A 、y=2-xB 、y=2log 4xC 、y=222xD 、y=log 2x1+19、函数21)(++=x ax x f 在区间(-2,+∞)上单调递增,则实数a 的取值范围是A 、0<a<21 B 、a<-1或a>1 C 、a>21D 、a>-2 10、已知)1lg()(22+++=x x x x f ,若f(a)=M ,则f(-a)=A 、2a 2-MB 、M -2a 2C 、2M -a 2D 、a 2-2M 11、已知二次函数f(x)=x 2+x+a (a>0),若f(m)<0,则f(m+1)的值是A 、正数B 、负数C 、零D 、符号与a 有关 12、已知函数f(x)是定义在R 上的奇函数,且f(x)=-f(x+2),当0≤x ≤1时,2)(xx f =,那么使21)(-=x f 成立的x 的值为 A 、2n (n ∈Z ) B 、2n -1(n ∈Z ) C 、4n+1(n ∈Z ) D 、4n -1(n ∈Z ) 一、选择题答题表二、填空题(本大题共4小题,每小题4分,共16分)13、已知函数f(x)的定义域为R ,且f(x)=10001000)],5([,3<≥⎩⎨⎧+-x x x f f x ,则f(999)=________14、定义在R 上的奇函数f(x),当x>0时,f(x)=x 2-4x+5,则当x<0时,f(x)=x 2-4x+5,则当x ≥0时,f(x)=________________15、已知f(x)是R 上的增函数,则函数f[log 2(x 2-2x -3)]的递减区间为___________ 16、设函数f(x)=lg(x 2+ax -a -1),给出下列命题: ①f(x)有最小值;②当a=0时,f(x)的值域为R ; ③当a>0时,f(x)在区间[2,)∞+上有反函数;④若f(x)在区间[2,)∞+上单调递增,则实数a 的取值范围是a ≥-4, 则其中正确的命题是_____________________(把正确命题的序号都填上)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉理工大学教务处试题标准答案及评分标准用纸 | 课程名称:高等数学(上)( A 卷) |一、单项选择题(每题3分,共15分)1.D ;2.C ;3.C ;4.B ;5.B . |二、填空题(每题3分,共15分) | 1.21dx x+; 2.1(1)(1)!n n ---; 3. arctan(sin )x c + 4. 2; 5. 8k .|三、计算极限(每题7分,共14分) | 1.23tan tan limlimtan x x x x x xx xx→→--==原式 ------------------------------------3分2222sec 1tan 1limlim333x x x x xx→→-===---------------------------------------------------7分 2.22ln cos ln cos exp{lim}exp{lim}ln(1)x x x x x x→→==+原式 --------------------------------------3分120sin cos exp{lim }2x xx e x-→-== ---------------------------------------------------------------7分 |四、计算导数(每题7分,共14分) | 1.解 原方程两边对x 求导,得:sin cos 0y ydy dy e x e x dxdx⋅⋅+⋅+= --------4分| 解得:cos sin 1yy dy e x dxe x =-+ -----------------------------5分| 当0x =时,1y =; 故 0x dy e dx==- ------------------------------------7分2.解sin sin (cot)(1cos )1cos 2dy a t t t dxa t t===-- ----------------------------------------------3分22222cos (1cos )sin 1(1cos )(1cos )(1cos )t t td y t dxa t a t ---==---------------------------------------7分五、计算下列积分(每题7分,共21分) | 1.解 1ln 2xdx=-⎰原式 ---------------------------------------------2分ln 2(2)x dxxx x =---⎰ -----------------------------------------4分ln 1[]222x dx dx xx x=-+--⎰⎰------------------------------------5分l n 1ln222x x c xx=-+-- --------------------------------------7分| 2.解 23322sec cos tan tan sec sin tdt tdt x tt ttππππ==⋅⎰⎰44原式-------------------------4分341sin 3tππ=-=分3.解 11211()x x edx e -+∞-=+⎰原式 ------------------------------------------4分11arctan 4x eπ-+∞==-----------------------------------------7分|六、应用题(本题11分) | 解(1)122120()()aaS S S ax x dx x ax dx =+=-+-⎰⎰-----------------------4分3111323a a =-+---------------------------------------------6分(2)21022dS a a da=-==由,得(负值舍去) ----------------------9分2220a a d S ada==>又所以当2a =时,S 取极小值,而驻点唯一,故所以当2a =时,S 取最小值,最小值为26- ---11分七、证明题(每题5分,共10分) 1.证明 设21()ln(1)2f x x x x=+-+ ------------------------------------2分21()10,011xf x x x xx'=-+=>>++ ---------------------------3分(0)0f =又,0()(0)0x f x f >>=则当时, ----------------4分故当0x > 时,21ln(1)2x x x -<+ -------------------------------5分2.证明 设1()()()xxF x f t dt g t dt =⎰⎰ --------------------------------------2分显然在[0,1]上连续,在(0,1)内可导又(0)(1)0F F == ------------------------------------------------3分 由罗尔定理知,(0,1)ξ∃∈,使()0F ξ'= --------------------------4分 而 1()()()()()xxF x g x f t dt f x g t dt '=-⎰⎰所以 1()()()()g f x dx f g x dx ξξξξ=⎰⎰.-----------------------------5分武汉理工大学教务处试题标准答案及评分标准用纸课程名称 高等数学( A 卷) 2006.01.12一 1 0 ;2 ),(+∞-∞ ; 3 0 ; 4 dx ; 5 2ln 23- 。
二 B ; A ; A ; A ; A 三 1 )1(1lim)111(lim 0---=--→→xxx xx e x x e e x(2分) =21limxxe xx --→(4分)=xe xx 21lim-→(6分) =21(7分)2 )]arctan 2ln(lim exp[)arctan 2(lim x x x x xx ππ+∞→+∞→=(1分)=]1)arctan 2ln(limexp[xx x π+∞→(2分)=]tan arg )1(limexp[22xx xx +-+∞→(5分) =π2-e(7分)四 设圆桶的半径为r ,则侧面积为 rr r S ππ63)(2+=(2分) 266)(rr r S ππ-='(4分)解0)(='r S 得1=r ,又0)1(>''S (6分) 所以1=r 时,成本最底。
(7分) 五 1 x e x x y )2(2+='(2分) x e x x y )24(2++='' (4分)x n n e C nx x y)22(22)(++=(6分) )1()0()(-=n n y n (7分) 2)(,)(t f dtdx t f t dtdy ''=''=(2分)t dxdy =(4分))(122t f dxdt dxy d ''==(7分)3 0)1(cos )(=-'---x et t x (3分)t ex t x cos 1)(-+='(4分) 1)0(=x (6分)e x +='1)0((7分)六 1 ⎰⎰⎰-+-=--12)2)(1(x dxx dxx x dx (3分)=C x x +---2ln 1ln =C x x +--21ln(7分)2 dx x x dx x x cos sinsinsin0353⎰⎰=-ππ(2分)=xdx x xdx x cos sincos sin2323⎰⎰-πππ(4分)=πππ225225sin52sin52xx-(6分) =54(7分)3 ⎰⎰⎰+-=e ee exdx xdx dx x 1111ln ln ln (2分)=⎰⎰-++---e eeedx x x dx xx 1111ln ln 11(5分)=)11(2e-(7分)七(1) 令x e x f x G -=)()((1分)则0)()(()(=-'='-x e x f x f x G (2分)x e x f G x G =⇒==)(1)0()((3分)(2) 令⎰=xdt t p e x f x F 0)()()((4分) 0))()()(()(0)(>⎰+'='xdtt p e x f x p x f x F (5分))(x F 单调增0>⇒x 有0)(0)(>⇒>x f x F (6分)所以)(0)()()(x f x f x p x f ⇒>->'在),0[+∞上单调增(7分。