贵阳(三)文科数学-双向细目表
最新推荐高中数学基础知识双向细目表(定稿)

了解
(识记)
理解
掌握
应用
综合
空
间
几
何
体
公理1
√
A
0.95
公理2
√
A
0.9
公理3
√
A
0.85
公理4
√
A
0.85
等角定理
√
A
0.8
线面平行的判定定理
√
A、B、C
0.8
3
面面平行的判定定理
√
A、B、C
0.8
线面平行的性质定理
√
A、B、C
0.8
面面平行的性质定理
√
A、B、C
0.8
1
线面垂直的判定定理
秦九韶算法
√
B
0.8
进位制
√
B
0.65
统
计
简单随机抽样
√
A
0.95
抽签法
√
A
0.95
随机数法
√
A
0.9
系统抽样
√
AC
0.7
1
分层抽样
√
B
0.88
频率分布
√
BC
0.7
总体密度曲线
√
A
0.95
茎叶图
√
BC
0.8
1
众数、中位数、平均数
√
B
0.8
标准差与方差
√
AC
0.75
1
频率分布直方图的应用
√
A
0.8
1
两个变量的线性相关
分项细目
了解
(识记)
理解
掌握
应用
全国新课标卷数学(文科)双向细目表

考试内容能力层次高考要求07年08年09年10年11年12年备注理解有关集合的概念和意义逻辑联结词四种命题及其相互关系理解逻辑联结词"或". "且" "非"的含义;四种命题及其相互关系全特称命题的否定理解24(全特称命题的真假)充分条件与必要条件掌握充要条件的意义映射与函数理解有关概念抽象函数函数的单调性掌握判断一些简单函数单调性的方法3二次函数掌握解决有关数学问题21(2)(二次函数最值及解含参二次不等式)指数函数与对数函数掌握指数函数与对数函数的概念图象和性质11(指对都有的不等式)全国高考数学(新课标)知识双向细目表(文史类)1(不等式)16(奇偶性求和)1(有限集)31(绝对值不等式与有限集)1(有限集)1(不等式)1(不等式)14(二次函数是偶函数求字母)有关术语和符号,能正确地表示出一些简单的集合有关概念能利用函数的奇偶性与图象的对称性的关系描述函数图象掌握掌握掌握集合与集合运算函数的定义域·解析式·值域函数的奇偶性函数的图象理解有关概念,利用特值、单调、周期、奇偶判断12(画图象求最值)12(综合周期、奇偶绝对值画图求交点个数)11(指对都有的不等式)零点与方程理解有关概念,会求零点区间、个数10(求零点区间)利用函数知识解应用题掌握应用函数知识解决实际难度问题18(1)函数的综合问题掌握综合运用函数知识解决数学问题9(奇偶与指数不等式结合)12(图象与对数运算结合)推理与证明数列的概念理解数列、通项公式的概念等比数列掌握等比数列的通项公式,前n 项和公式6(等比性质)8(和与项的比)1517(1)14(由和求公比)掌握差比裂项求和17(2)12(求和)17(求完通项、和后求和最值)8(性质应用)13(通项应用)16(基本量求d )有关概念及解决实际问题由Sn求an的公式等差数列的通项公式,前n 项和公式掌握掌握掌握等差数列数列的综合应用三角函数概念公式掌握任意角的正弦、余弦、正切的定义,用三角函数线表示正弦、余弦和正切;同角三角函数的基本关系式;正弦、余弦的诱导公式7(用到定义)和差倍公式掌握通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力9(二倍角、和差公式约分,含π/4的)11(二倍角化为二次函数求最值)17(1)107、11(用到)17(1)求值图象与性质掌握会用三角函数线画正弦函数,正切函数的图象,由诱导公式画余弦函数的图象;理解它们的性质; 会用"五点法"3(一个半周期闭区间上图象)6(由定义得解析式并判断图象)11(单调区间、对称轴)用"五点法"画函数y=Asin(ωx+Φ)的简图9(由图象求ω、Φ)16(由图象求ω、Φ进而求值)A 、ω、Φ的物理意义理解掌握y=Asin(ωx+Φ)的图象图象变换掌握利用三角知识求范围最值掌握运用所学三角知识解决实际问题了解共线向量,平面向量基本定理理解向量,向量共线的充要条件,平面向量的坐标9(共线条件)掌握向量的几何表示,实数与向量的积,向量加法与减法,平面向量的坐标运算4(线性运算的坐标表示)了解用平面向量的数量积可以处理有关长度、角度和垂直等问题2(用数量积坐标运算求夹角)掌握平面向量的数量积及其几何意义;向量垂直的条件5(由垂直求字母)7(由垂直求字母)13(由垂直求字母,非坐标)向量综合掌握综合不等式的概念性质理解不等式的性质不等式证明分析法、综合法、比较法证明简单的不等式均值不等式掌握并会简单的应用;17(2)15(解三角形后求面积)16(解三角形求线段长)17(实际测量求值)17(2)17(实际测量,用字母表示)正弦定理、余弦定理,并能运用它们解斜三角形掌握掌握ωx+Φ)的图象三角最值及综合应用正余弦定理向量、向量的加法与减法、实数与向量的积数量积解不等式掌握二次不等式、简单的分式不等式的解法7(二次不等式解法,三个范围公共解)21(2)(讨论解含参二次不等式)掌握简单的绝对值不等式的解法直线方程及位置关系理解直线的倾斜角和斜率20(斜率取值范围,化为不等式问题)掌握两点斜率公式:一点和斜率求出直线方程的方法;点斜式、两点式和一般式,熟练求出直线方程.两条直线平行与垂直的条件,两条直线成的角、点到直线的距离公式,两条直线的位直关系了解简单的线性规划问题,线性规划的意义掌握二元一次不等式表示平面区域,简单线性规划问题10(线段点到原点距离)611145圆与圆理解16(外切)20(1)(结合抛物线条件求圆的方20(1)(由三点定方程)13(求圆的方程)5(求关于直线对称的圆)20(1)(1次比2次型不不等式|a+b|≤|a|+|b|有关概念圆的标准方程和一般方程掌握理解灵活运用不等式的应用线性规化圆的方程绝对值不等式直线与圆掌握直线与圆的位置关系21(交点个数,结合向量共线类似椭圆问题)20(2)(分成弧的比)20(2)(结合OA、OB垂直类似椭圆问题)掌握椭圆的标准方程及其几何性质20(1)由定义性质求方程20(1)椭圆定义4(离心率)4理解椭圆的定义、概念双曲线了解双曲线的标准方程及其几何性质13(几何性质应用求离心率)2(直接求焦距)5(渐近线求离心率)10抛物线了解抛物线的标准方程及其几何性质7(从坐标考抛物线定义)14(弦中点求抛物线方程)4(知切点求切线)9(定义应用求距离)10(用到)20(2)(切线方程)轨迹方程了解20(2)代入法求轨迹并讨论什么曲线直线与圆锥曲线掌握综合16(求交点与原点组成三角形面积)20(2)(弦长问题)综合应用熟练掌握综合线面、面面平行12(平行垂直判断)18椭圆线面、面面垂直18(面面垂直化为线面垂直,存在问题)12(平行垂直判断)18(线线垂直与线面垂直、面面垂直转化,求体积)18(1)1819(1)三视图掌握三视图8(体积)1811(三视图求全面积)1587(三视图求体积)体积计算了解会求几何体的表面积、体积,会处理几何体的侧面展开图问题8,111818(2)19(2)了解球的概念11(球内接三棱锥)掌握球的性质、表面积、体积公式,球面距离14(球内接正六棱柱求球的体积)7(知内接长方体求表面积)16(球中直角三角形)综合18(由直观图得三视图计算体积,证线面平行)9(平行、垂直,体积计算)算法初步掌握程序框图5(求和)6(三数输出最大)10(条件结构)56(图的含义)古典概型掌握计算等可能性事件的概率,会用互斥事件的概率加法公式和相互独立事件的概率乘法公式计算一些事件的概率20(1)19(2)14(估计古典概型)618(2)几何概型了解计算几何概型概率20(2)球了解独立性检验19(2)了解线性回归的方法简单应用3(散点图观察正负相关)3(相关系数的理解)了解茎叶图16(说明直观含义)掌握频率分布直方图19(2)(画图并由图估计平均数)抽样19(1)(分层抽样人数)19(1)(估计比例)(3)(用分层更好)导数概念运算掌握函数在一点处的导数的定义和导数的几何意义;基本导数公式;和、差、积、商的求导法则;会求某些简单函数的导数;4掌握导数求切线1021(切线求字母,切线与定直线围成面积)1321(1)(切线求字母)13(知切点求切线)19(1)12平均数与方差计算掌握统计掌握会求一些实际问题的最大值和最小值19掌握导数证明不等式、恒成立21(2)(有特点)21(2)(有特点,用上了分析法)了解复数的有关概念及复数的代数表示和几何意义掌握运算法则,能进行复数代数形式的加法、减法、乘法、除法运算153(除法)2(除法)3(乘除)2(除法)2(除法)说明21题必考有选修选考有选修选考有选修选考,有选修选考,有选修选考,19是频率估计概率,数学期望21(1)(单调区间)21(1)(2)(恒成立求字母范围)21(1)(求极值)19可导函数的单调性与其导数的关系;可导函数在某点取得极值的必要条件和充分条件了解导数应用复数。
如何编制双向细目表

双向细目表简介双向细目表( two-way checklist )是一个测量的内容材料维度和行为技能所构成的表格,它能帮助成就测量工具的编制者决定应该选择哪些方面的题目以及各类型题目应占的比例。
双向细目表( Table of specifications )考试命题双向细目表是一种考查目标(能力)和考查内容之间的关联表。
双向细目表的制作应该同课程大纲及考试大纲的相关规定具有一致性。
考核知识内容的选择,要依照教学大纲(考试大纲)的要求,试题范围应覆盖课程的全部内容,既要注意覆盖面,又要选择重点内容,时间以中等学生120 分钟能答完为限。
制作双向细目表时,试卷中拟对学生进行考核的“考核知识点”须按章次进行编排;双向细目表中考核知识点的个数须与试卷中涉及的知识点个数相一致。
双向细目表中的能力层次采用“识记”、“ 理解”、“ 应用”、“分析”、“综合”、“评价”等作目标分类,体现了对学生从最简单的、基本的到复杂的、高级的认知能力的考核。
每前一目标都是后续目标的基础,即没有识记,就不能有理解;没有识记与理解,就难以应用。
所以一个考核知识点在同一试卷中对应一种题型,原则上只能对应一种能力层次。
特点按照《考试规范》要求,识记、理解类试题须控制在60%以内,并应尽量避免单纯考核记忆水平的题目。
试题的题目类型应根据考试课程的特点和考试目标合理选择,例如填空题、选择题、判断题、名词解释、辨析题、简答题、证明题、计算题、案例分析等。
一份试卷中主观性试题和客观性试题的搭配应合理,且题型种类数应适中。
在双向细目表中不同“能力层次”和不同“题型”下面对应的各列中,应填写各考核知识点在试卷中所占的分值。
不能简单的划“∨”,也不能填写题号和题目个数如何编制双向细目表?一、什么是双向细目表?简单来说,双向细目表是测验编制的计划书、蓝图和命题的依据。
它是以能力层次和学习内容为两个轴,分别说明各项测评目标。
建立双向细目表可以帮助命题者理清能力层次和学习内容的关系,以确保测验能反映考察的内容,并能够真正评量到预期之学习结果。
数学双向细目表

序号
考点
1 集合的运算(求并)
2 函数定义域(指数不等式)
3 函数的表示法(列表法)
4 函数相等
5 求函数值
6 函数的奇偶性及值域
7 指、对数比较大小
8 基本初等函数图象识别
9 含参二次函数(单调性)
10 奇偶性、单调性应用(抽象函数)
11 指数型函数应用
12 零点问题
13 反函数定义
14 幂函数定义
15 零点存在性定理
16 函数凹凸性
17 指数式、对数式化简
18 函数单调性证明及求最值
19 对数型函数图象、求值
20 对数型函数奇偶性判断、单调性应用
21 分段函数应用
22 零点与含参二次函数应用
A识记 ✓
✓
B理 解
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
✓ ✓
✓ ✓ ✓
C应用 本题分值
5
5
5
5
5
5
5
5
5
5
5
✓
5
5
5
5
✓
5
10
12
Байду номын сангаас
12
✓
12
✓
12
✓
12
数学双向明细表

12 0.5 5 0.5 5 0.5 10 0.4
认知能力
记忆 理解 分析 应用 综合
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
题型
选择题 选择题 选择题 填空题 选,填 选择题 填空题 解答题 选择题 填空题 选择题 选,填 选择题 填空题 选择题 选择题 解答题 解答题 选择题 填空题 选择题 填空题 解答题 选择题 填空题
26 导数的应用(二)——极值与最值 27 导数的综合应用 28 三角函数的基本概念 29 同角三角函数的基本关系及诱导公式 30 两角和与差的三角函数 31 两角和与差的三角函数 32 简单的的三角恒等变换 33 三角函数的图象 34 三角函数的性质 35 正余弦定理 36 向量的概念及线性运算 37 平面向量的基本定理及坐标运算 38 平面向量的数量积 40 复数 41 数列的基本概念 42 等差数列 43 等差数列 44 等比数列 45 等比数列 46 数列的通项 47 数列的求和 48 数列的综合和应用 49 一元二次不等式的解法 50 一元二次方程根的分布 51 简单的线性规划 52 基本不等式 53 合情推理与演绎推理
6 0.5 12 0.3 5 0.6 5 0.6 5 0.5 4 0.6 5 0.6 5 0.7 12 0.6 5 0.7 5 0.7 5 0.6 5 0.6 5 0.8 5 0.7 5 0.7 4 0.7 5 0.6 4 0.6 4 0.5 8 0.4 12 0.4 5 0.6 5 0.4 5 0.7 5 0.6 5 0.7
最新推荐高中数学基础知识双向细目表(定稿)

最新推荐高中数学基础知识双向细目表(定稿)最新的高中数学基础知识双向细目表包括集合的含义、表示和基本关系、空集的概念、并集、交集、补集、函数的概念、定义域、表示法、解析式、分段函数、映射、单调性、值域、奇偶性、图象、抽象函数、根式、指数幂的运算等知识点。
要求掌握这些知识点的应用、综合和理解,包括识记、填空和解答题型。
五年的高考考试频数为0.7至1,难度在0.6至0.95之间。
基本初等函数包括指数函数、对数函数和幂函数,要掌握它们的概念、性质、图象以及特殊点等内容。
此外,还要了解函数的零点与方程根的联系、一元二次方程根的存在性及根的个数,以及根据具体函数的突象判断相应方程解的情况。
对于几何学,要了解棱柱、棱锥、棱台、圆柱、圆锥、圆台、球和简单组合体的结构特征。
空间几何体的投影研究空间几何体的投影,包括中心投影和平行投影。
掌握三视图的画法,能够根据给定的图形画出其三视图。
理解主观图的画法,能够根据给定的图形画出其主观图。
了解平面图与直观图面积的关系,能够根据给定的图形计算其面积。
掌握棱柱、棱锥、棱台的表面积和体积的计算方法,能够根据给定的图形计算其表面积和体积。
理解球的表面积和体积的计算方法,能够根据给定的半径计算其表面积和体积。
了解几何体内切球和外接球的问题,能够根据给定的图形计算其内切球和外接球的半径。
空间几何体的投影是几何学中的重要内容,包括中心投影和平行投影。
掌握三视图的画法,可以根据给定的图形画出其三视图。
此外,理解主观图的画法,能够根据给定的图形画出其主观图。
在计算面积方面,需要了解平面图与直观图面积的关系,并能够根据给定的图形计算其面积。
在计算体积和表面积方面,需要掌握棱柱、棱锥、棱台的计算方法,以及球的表面积和体积的计算方法。
此外,需要了解几何体内切球和外接球的问题,能够根据给定的图形计算其内切球和外接球的半径。
本文介绍了数学必修三中的两个知识点:圆的方程和算法概念,以及一个统计学知识点。
2024届贵州省六校联盟高考实用性联考卷(三)数学-双向细目表

及格率
平均分
2%
45%
85
数学抽象
0.7
6
单项选择题
5
二项式定理应用
逻辑推理
0.6
7
单项选择题
5
轨迹方程问题
数学建模
0.6
8
单项选择题
5
椭圆离心率
数学运算
0.4
9
多项选择题
6
复数综合
数学运算
0.8
10
多项选择题
6
三角函数图像性质
逻辑推理
0.7
11
多项选择题
6
抽象函数性质
数学建模
0.4
12
填空题
5
集合关系求参
数学运算
0.9
13
填空题
5
外接球问题
直观想象
0.7
14
填空题
5
不等式性质
逻辑推理0.2ຫໍສະໝຸດ 15解答题13
导函数应用
数学运算
0.8
16
解答题
15
统计概率实际应用题
数据分析
0.7
17
解答题
15
立体几何空间向量
直观想象
0.7
18
解答题
17
双曲线综合问题
逻辑推理
0.4
19
解答题
17
数列背景创新定义问题
逻辑推理
0.2
命题思想
达成目标
2024届贵州省六校联盟高考实用性联考卷(三)·双向细目表
数学
题号
题型
分值
考查内容
核心素养
难度系数
(得分率)
1
单项选择题
高考文科数学双向细目表

证明过程 解决最值问题
√ √
命题的概念
√
命题及其关系
常用基本逻辑用语
命题及其关系 四种命题及其关系
√
常用基本逻辑用语
简单的逻辑连接 词
全称量词与 存在量词
充分、必要、充要条件 或、且、非 全称量词 存在量词
含有量词的命题的否定
√ √
√ √
实际背景
√
椭圆定义、几何图形、标准方程、
简单性质
圆锥曲线与方程
√
代数方法处理几何问题的思想
√
空间直角坐标系 空间直角坐标表示点的位置
√
空间两点间的距离公式
√
算法的含义、 算法的含义与思想
√
算法初步
程序框图 基本算法语句
随机抽样
顺 输序 入、 、条 输件 出分 、支 赋、 值循 、环 条逻 件辑 、结 循构 环语
句 简单随机抽样
√
分层抽样和系统抽样
√
√ √
样本频率分布表、频率分布直方图 、折线图
√
三角恒等变换
积化和差、和差化积 半角公式
√ √
解三角形
正余弦定理
正弦定理 余弦定理
应用
三角形度量问题
数列的概念 与简单的表示法
数列的概念 列表、图像、通项公式表示法 数列是自变量为正整数的函数
√ √ √
等差数列的概念
√
数列
等差数列通项公式和求和公式
等差数列、 等比数列概念
√
等比数列 等比数列通项公式和求和公式
生活中的优化问 题
合情推理与 演绎推理
函数的最值 实际问题 归纳和类比推理 演绎推理的基本模式
√ √ √
推理与证明
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文科数学
题号
题型
分值
试题内容
难度
备注
1
选择题
5
集合的运算
0.9
2
选择题
5
复数的概念及运算表示
0.7
3
选择题
5
平面向量基本运算及几何意义
0.8
4
选择题
5
算法及框图
0.7
5
选择题
5
线面、线线位置关系
0.7
6
选择题
5
分段函数不等式
0.6
7
选择题
5
指数、对数函数零点
0.6
8
选择题
5
三视图
0.6
9
选择题
5
线性规划
0.7
10
选择题
5
函数、均值不等式的应用
0.5
11
选择题
5
三角函数图象及求值
0.6
12
选择题
5
双曲线性质
0.4
13
填空题
5
等比数列求和公式
0.7
14
填空题
5
圆的标准方程的应用
0.7
15
填空题
5
回归方程的应用
0.5
16
填空题
5
古典概率
0.3
17
解答题
12
三角函数
0.7
18
解答题
12立体几何ຫໍສະໝຸດ 0.6519解答题
12
概率统计
0.65
20
解答题
12
椭圆性质
0.6
21
解答题
12
导数
0.4
22
选做题
10
平面几何
0.65
23
选做题
10
极坐标与参数方程
0.65
24
选做题
10
含绝对值不等式的解法
0.65
命题
思想
达成
目标
优秀率
及格率
平均分
30%
65%
80
考查高考中的所有内容及考试热点