流体流动阻力测定实验指导书

合集下载

流体力学综合实验流动阻力测定

流体力学综合实验流动阻力测定

管内径(mm) 管路号 管内径
测量段长 度(cm)
装置1 粗糙管 镀锌铁管
1A
21.0
100
光滑管 不锈钢管
1B
20.0
100
局部阻力管 不锈钢管
1A
20.0
94.5
• 四、实验步骤
• 1.泵启动:首先对水箱进行灌水,然后关闭 出口阀,打开总电源和仪表开关,对水泵进行 灌泵,以防止气缚,然后打开水泵,待电机转动 平稳后,把出口阀缓缓开到最大.
图2 倒U型管压差计 1-低压侧阀门;2-高压侧阀门;
3-进气阀门; 4-平衡阀门; 5-出水活栓
• a>排出系统和导压管内的气泡.关闭管路总出口阀 7,使系统处于零流量、高扬程状态.关闭进气阀门 <3>和出水活栓<5>以及平衡阀门<4>.打开高压侧 阀门<2>和低压侧阀门<1>使实验系统的水经过系 统管路、导压管、高压侧阀门<2>、倒U形管、低 压侧阀门<1>排出系统.
流体力学综合实验装置
流体流动阻力测定
• 一、实验目的
• 1.掌握测定流体流经直管、管件和阀门时阻力损 失的一般实验方法.
• 2.测定直管摩擦系数λ与雷诺准数Re的关系,验 证在一般湍流区内λ与Re的关系曲线.
• 3.测定流体流经管件、阀门时的局部阻力系数 .
• 4.学会倒U形压差计和涡轮流量计的使用方法.
• 2. 实验管路选择:选择实验管路,把对应的 进口阀打开,并在出口阀最大开度下,保持全 流量流动5-10min.
• 3. 排气:号倒U 型管〔这种压差计内充空气,以待测液体为 指示液,一般用于测量液体小压差的场合〕 进行操作如下,其结构如图2所示.

流体流动阻力测定实验指导书

流体流动阻力测定实验指导书

流体流动阻力的测定一、实验目的1.掌握管道沿程阻力系数和局部阻力系数的测定方法。

2.掌握三点法、四点法量测局部阻力系数的技能。

3.通过对圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式的实验验证与分析,熟悉用理论分析法和经验法建立函数式的途径;加深对局部阻力损失机理的理解;二、实验仪器设备三、 实验原理1.阀门局部阻力实验图2 阀门的局部水头损失测压管段对1、4两断面列能量方程式,可求得阀门的局部水头损失及2(L 1+ L 2)长 度上的沿程水头损失,以h w1表之,则1411h p p h w ∆=-=γ对2、3两断面列能量方程式,可求得阀门的局部水头损失及(L 1+ L 2)长 度上的沿程水头损失,以h w2表之,则2322h p p h w ∆=-=γ∴阀门的局部水头损失h 1应为:1212h h h ∆-∆=亦即 12222h h gv ∆-∆=ζ∴阀门的局部水头损失系数为:2122)2(vg h h ∆-∆=ζ 式中v 为管道的平均流速 2. 突扩突缩局部阻力损失实验图2 突扩突缩的局部水头损失测压管段写出局部阻力前后两断面的能量方程根据推导条件,扣除沿程水头损失可得:1)突然扩大采用三点法计算,A 为突扩点。

下式中h f1-2由h f2-3按流长比例换算得出。

实测:= [(Z1 +) +] - [ (Z2 +) ++ h f1-2 ]=/理论:= (1 - )2=2)突然缩小采用四点法计算,下式中B 点为突缩点,B f h -3由32-f h 换算得出,4-fB h 由54-f h 换算得出。

实测:= [(Z3 +) +] - [ (Z4 +) ++ h fB-4 ]=/理论:= 0.5(1 - )=3. 沿程阻力系数的测定对沿程阻力两点的端面列能量方程得h pg P pg P hr ∆=-=//21由达西公式:g u d L hr 2//2⋅⋅=λ用体积法测得流量, 并计算出断面平均流速,即可求得沿程阻力系数λ2/2u L gdh r ⋅=λ四、 实验步骤1.实验前准备关闭阀1、2、3全开阀4全开阀E开启水泵,把恒压水箱注满水,再调节阀4,使水箱的水有少量溢流,并保持压力过渡管(测压管)水头的连线为一平行基准线的水平线。

实验一流体流动阻力测定实验

实验一流体流动阻力测定实验

实验一 流体流动阻力测定实验1.实验目的(1) 辨别组成管路的各种管件、阀门,并了解其作用。

(2)测定流体在圆形直管内流动时摩擦系数λ与雷诺数Re 的关系。

(3)测定流体流经闸阀时的局部阻力系数ξ。

2.基本原理(1)直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:2221u d l p p p h ff λρρ=-=∆=则直管阻力摩擦系数可写成:22lu p d fρλ∆=雷诺准数Re 的定义是:μρdu =Re层流时:Re 64=λ湍流时:λ是雷诺准数Re 和相对粗糙度(ε/d )的函数。

完全湍流时:λ只是相对粗糙度(ε/d )的函数。

上式中d :直管内径,m ;f p ∆:流体在l 米直管内流动时由于流动阻力而产生的压降,Pa ;f h :单位质量流体流经l 米直管时产生的流动阻力,J/kg ; ρ :流体密度,kg/m 3; l :直管长度,m ;u :流体在管内流动的平均流速,m/s ;μ :流体粘度,P a ·s 。

其中l 、d 为装置参数,ρ、μ通过测定流体温度,再查有关手册而得,u 通过测定流体流量,再由管径计算得到。

本装置采用涡轮流量计测流量V (m 3/h ),则2900d Vu π=f p ∆采用倒置U 型管液柱压差计和差压变送器测量。

(2)局部阻力系数ξ的测定根据阻力系数法,流体通过某一管件或阀门时的机械能损失可表示为流体在管内流动时平均动能的某一倍数,即:22u p h ff ξρ='∆='故22u p fρξ'∆=式中ξ:局部阻力系数,无因次;f p '∆:局部阻力引起的压降,Pa (本装置中,所测得的压降应扣除两测压口间直管段的压降后才是闸阀局部阻力引起的压降,直管段的压降由直管阻力实验结果求取)。

3.实验装置与流程实验装置流程(本装置为流体流动阻力与离心泵性能综合实验装置,做流动阻力实验时将仪控柜上“实验选择”转到“管阻力”)如图2-1所示,实验仪控柜面板如图2-2所示。

流体流动阻力的测定实验

流体流动阻力的测定实验

流体流动阻力的测定实验一、实验内容1.测定流体在特定的材质和ξ/d 的直管中流动时的阻力摩擦系数λ, 并确定λ和Re 之间的关系。

2.测定流体通过阀门时的局部阻力系数。

二、实验目的1. 解测定流体流动阻力摩擦系数的工程定义, 掌握测定流体阻力的实验组织方法。

2.测定流体流经直管的摩擦阻力和流经管件或阀门的局部阻力, 确定直管阻力摩擦系数与雷诺数之间的关系。

3. 熟悉压差计和流量计的使用方法。

4. 认识组成管路系统的各部件、阀门并了解其作用。

三、实验原理流体通过由直管和阀门组成的管路系统时, 由于粘性剪应力和涡流应力的存在, 要损失一定的机械能。

流体流经直管时所造成机械能损失称为直管阻力损失。

流体通过阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。

1.直管阻力 流体流动过程是一个多参数过程, 。

由因次分析法, 从诸多影响流体流动的因素中组合流体流经管件时的阻力损失可用下式表示:⎥⎦⎤⎢⎣⎡ξμρ=ρ∆d ,du ,d l F u P 2 λ=Ψ(Re, ε/d ) 雷诺准数μρdue =R ;22u d l Ph f ⋅⋅=∆=λρ只要找出λ、ξ就可计算出流体在管道内流动时的能量损失。

g P Hg )R(ρρ-=∆易知, 直管摩擦系数λ仅与Re 和 有关。

因此, 只要在实验室规模的装置上, 用水做实验物系, 进行试验, 确定λ与Re 和 的关系, 然后计算画图即可。

2.局部阻力局部阻力可以用当量长度法或局部阻力系数法来表示, 本实验用局部阻力系数法来表示, 即流体通过某一管件或阀门的阻力损失用流体在管路中的动能系数来表示, 用公式表示:一般情况下, 由于管件和阀门的材料及加工精度不完全相同, 每一制造厂及每一批产品的阻力系数是不尽相同的。

四、实验设计由和知, 当实验装置确定后, 只要改变管路中流体流速u及流量V, 测定相应的直管阻力压差ΔP1和局部阻力压差ΔP2, 就能通过计算得到一系列的λ和ξ的值以及相应的Re的值,【原始数据】在实验中, 我们要测的原始数据有流量V, 用来计算直管阻力压差ΔP1和局部阻力压差ΔP2的U型压差计的左右两边水银柱高度, 流体的温度t(据此确定ρ和μ), 还有管路的直径d和直管长度l。

2流体流动阻力的测定说明书

2流体流动阻力的测定说明书

JK-ZL流体流动阻力测定实验装置使用说明书目录一、概述 (1)二、设备性能与主要技术参数 (1)三、实验目的 (1)四、实验原理 (2)五、实验流程图 (3)六、实验操作步骤 (4)七、注意事项 (5)八、实验数据处理 (5)湘潭金凯化工装备技术有限公司流体流动阻力的测定实验装置使用说明书一、概述本实验装置可以测定对比:DN20粗糙直管、光滑管和阀门等阻力系数。

在实际生产中,许多过程都涉及到流体流动的内部细节,尤其是流体的流动阻力。

流体在流动过程中为克服流动阻力必定要消耗能量。

流体流动阻力产生根本的原因是流体具有粘性,流动时存在着内磨擦,而固定的管壁或其它形状固体壁面,促使流动流体的内部发生相对运动,为流体流动阻力的产生提供了条件,因此液体阻力的大小与流体的物性、流动状况及壁面等因素有关。

流体在流动系统中作定态流动时,流体在各截面上的流速、密度、压强等物理参数仅随位置而改变而不随时间而变。

二、设备性能及主要技术参数1、该实验装置主要由:离心泵、蓄水箱、沿程阻力光滑管、沿程阻力粗糙管、局部阻力管、U型压差计、涡轮流量计、流量显示仪阀门、实验台架及电控箱等组成。

2、光滑直管段:管径DN-20mm、管长L=1.7m、测压段L=1.3m,材质:不锈钢管。

3、粗糙直管段:管径 DN-18mm、管长L=1.7m、测压段L=0.5m,材质:镀锌铁管。

4、局部阻力直管段:管径 DN-20mm;管长 L=1.7m、测压段L=1.3m,材质:不锈钢管。

5、涡轮流量计:量程(0.8~8 m3/h), 精度 0.5。

6、水泵参数:流量: 5m3/h,扬程: 20m,电机功率: 750W。

7、蓄水箱为不锈钢材质,容积约80L。

三、实验目的1、掌握流体流经直管和阀门时的阻力损失和测定方法,通过实验了解流体流动中能量损失的变化规律。

2、测定直管摩擦系数λ与雷诺数Re的关系。

3、测定流体流经闸阀时的局部阻力系数 。

四、实验原理a) 直管阻力与局部阻力实验:流体阻力产生的根源是流体具有粘性,流动时存在内摩擦。

流体流动阻力的测定

流体流动阻力的测定

实验名称:流体流动阻力的测定一、实验目的及任务:1.掌握测定流体流动阻力实验的一般方法.2.测定直管的摩擦阻力系数及突然扩大管的局部阻力系数.3.验证湍流区内摩擦阻力系数为雷诺数和相对粗糙度的函数.4.将所得光滑管的方程与Blasius方程相比较.二、实验原理:流体输送的管路由直管和阀门、弯头、流量计等部件组成.由于粘性和涡流作用,流体在输送过程中会有机械能损失.这些能量损失包括流体流经直管时的直管阻力和流经管道部件时的局部阻力,统称为流体流动阻力.1.根据机械能衡算方程,测量不可压缩流体直管或局部的阻力H f=(gz1+p1ρ+u122)−(gz2+p2ρ+u222)+H e如果管道无变径,没有外加能量,无论水平或倾斜放置,上式可简化为:H f=p1′−p2′ρ=pρΔp为截面1到2之间直管段的虚拟压强差,即单位体积流体的总势能差,通过压差传感器直接测量得到.2.流体流动阻力与流体性质、流道的几何尺寸以及流动状态有关,可表示为:p=fd,l,u,ρ,μ,ε由量纲分析可以得到四个无量纲数群:欧拉数Eu=p/ρu2,雷诺数Re=duρ/μ,相对粗糙度ε/d和长径比l/d从而有p ρu2=Ψduρμ,εd,ld取λ=ΦRe,ε/d,可得摩擦系数与阻力损失之间的关系:H f=pρ=λld×u22从而得到实验中摩擦系数的计算式λ=2pd ρu2l当流体在管径为d的圆形管中流动时,选取两个截面,用压差传感器测出两个截面的静压差,即可求出流体的流动阻力.根据伯努利方程摩擦系数与静压差的关系,可以求出摩擦系数.改变流速可测得不同Re下的λ,可以求出某一相对粗糙度下的λ-Re关系.在湍流区内摩擦系数λ=ΦRe,ε/d,对于光滑管水力学光滑,大量实验证明,Re在103~105氛围内,λ与Re的关系遵循Blasius关系式,即λ=0.3163/Re0.25对于粗糙管,λ与Re的关系以图来表示.3.对局部阻力,可用局部阻力系数法表示:4.H f= ζu22对于扩大和缩小的直管,式中的流速按照细管的流速来计算.对一段突然扩大的圆直管,局部阻力远大于其直管阻力.由忽略直管阻力时的伯努利方程H f= ζu122=(p1ρ+u122)−(p2ρ+u222)可以得到局部阻力系数的计算式:ζ=1−u22+2p/ρu12式中,u1、u2分别为细管和粗管中的平均流速,p为2,1截面的压差.突然扩大管的理论计算式为:ζ=1−A1/A22 ,A1、A2分别为细管和粗管的流通截面积.三、实验流程:本实验装置如图1所示,管道水平安装,水循环使用,其中管5为不锈钢管,测压点之间距,内径;管6为镀锌钢管,测压点间距离,内径22..5mm;管7为突然扩大管,由扩大至.各测量元件由测压口与压差传感器相连,通过管口的球阀切换被测管路,系统流量由涡轮流量计3调节,离心泵的功率由变频器通过改变输入频率控制转速来实现控制.四、实验操作要点:1.开泵:在关闭所有阀门的情况下,打开电源,启动变频器至50Hz,固定转速,观察泵出口压力稳定后,即可进行排气.2.排气:在对某一管路进行实验之前,排尽设备主管和该管路及对应测压管路内的空气,每切换管路都要排一次气.关闭其他控制阀,打开对应管路的控制阀、测压阀和排气阀,在50Hz下,调节流量至1-2m3/ℎ,待2min以上,压差传感器示数稳定后,关闭排气阀和流量调节阀,在流量为0下观察压差传感器示数是否为0,若有较大偏差则气未排尽,若偏差较小且稳定则记录初始偏差值.3.实验数据测取:确定排气完毕且其余管路切换阀和测压阀关闭后,调节变频器至25Hz左右.对于直管阻力,按照流量由大到小的顺序,测取10组数据,控制压差在~之间.对于突然扩大管的阻力,可测取3组数据.测取数据时,每个数据点取值应等待2min以上且压差和流量稳定为某值或在很小范围内波动.波动时可取其中点.五、原始数据及处理:1.原始数据记录水的物理性质:测定光滑管时,25℃下,ρ=m3,μ=s测定粗糙管及突然扩大管时,℃下,ρ=m3,μ=s1光滑管和粗糙管实验数据光滑管数据:不锈钢管,l=,d=,ε≈,零点误差p=.=.粗糙管数据:镀锌钢管,l=,d=,ε≈,零点误差p表1 光滑管和粗糙管原始数据记录表光滑管粗糙管序号流量/m3h-1压差/kPa流量/m3h-1压差/kPa 123456789102突然扩大局部阻力系数测定数据突扩管: d1=,d2=,初始误差p0=.表2 突然扩大局部阻力系数数据记录表序号流量/m3h-1压差/kPa1232.数据处理表3 光滑管数据处理表序号流量/m3h-1流速/ms-1实际压差/kPaReλλb169034 262486 357996 450513 545836 638913 731991 825443 919270 1012909 其中,λb项为根据Blasius公式计算的理论摩擦系数值.直管阻力系数的计算示例:由表3中第1组数据为例,u=q vA=4q vπd2=4×3.693.14×21.0×10−32×13600m/s=2.96m/s Re=duρμ=21.0×10−3×2.96×996.950.8973×10−3=69034λ=2pdρu2l=2×7.18×103×21.0×10−3996.95×2.962×1.5=0.02303λb=0.3163Re0.25=0.3163690340.25=0.01951表4 粗糙管数据处理表序号流量/m3h-1流速/ms-1实际压差/kPaReλ166896260913355474449854544234636620731363824837918310 1012509图2 光滑管和粗糙管的λ-Re关系曲线曲线分析:a光滑管和粗糙管的摩擦系数均随Re的增大而减小,且随着Re的增大,摩擦系数减小的趋势趋缓.b在同一Re下,相对粗糙度更高的粗糙管比光滑管的摩擦系数更大,说明ε/d 越大,摩擦系数越大.c在同一Re下,光滑管的摩擦系数大于水力学光滑摩擦系数的理论值,说明实验用的光滑管和理论光滑有一定差距.表5 突然扩大管数据处理表序号流量/m3h-1压差/kPa细管流速/ms-1粗管流速/ms-1ζ123局部阻力的计算示例:以表5中第1组数据为例,u1=qvA1=4qvπd12=4×3.573.14×16.0×10−32×13600m/s=4.93m/su2=qvA2=4qvπd22=4×3.573.14×42.0×10−32×13600m/s=0.72m/sζ=1−u22+2pρu12=1−0.722+2×3.20×103996.584.932=0.7149ζ̅=∑ζi3=0.7159理论值ζt=1−A1/A22=1−d12/d222=1−162/4222=0.7308相对偏差δ=|ζ−ζtζt|×100%=|0.7159−0.73080.7308|×100%=2.04%测量值与理论值基本符合,但存在一定误差.五、结果讨论分析1.本次曲线拟合的相对大小比较准确,但是其中表现的趋势不明显,并未得到随着雷诺数增大,摩擦系数趋近于某一值的结论.可能是测定的摩擦系数和雷诺数范围较小,如果增大测定的雷诺数上限,即在更高的流速下做实验,可以看到更好的趋势.2.测定的局部阻力系数和理论值接近,说明实验结果较好.实验值低于理论值,可能是实验设备本身存在损耗,细管在高流量下腐蚀变粗的结果.可以看到随着流量增大有上升趋势,而的三次结果的差值应该是被忽略的直管阻力的影响,因而随着流量增大,表观的局部阻力系数应该增大而不是减小,可能是实验记录和计算舍入的影响.六、思考题1.在不同设备包括相对粗糙度相同而管径不同、不同温度下测定的λ-Re数据能否关联在一条曲线上答:仅在相对粗糙度不同时可以.由λ=ΦRe,ε/d知,摩擦系数是雷诺数和相对粗糙度的函数,当相对粗糙度不变时,可以关联出一条摩擦系数和雷诺数的曲线,而相对粗糙度与温度无关.因此,当且仅当相对保持粗糙度不变时,不同设备,不同温度的λ-Re数据能关联在一条曲线上.2.以水为工作流体所测得的λ-Re关系能否适用于其他种类的牛顿性流体为什么答:可以.由λ=ΦRe,ε/d知,摩擦系数是雷诺数和相对粗糙度的函数,当保持相对粗糙度不变时,流体性质对λ-Re关系不产生影响,可以适用于所有流体.3.测出的直管摩擦阻力与设备的放置状态有关系吗为什么管径、管长一样,且R1=R2=R3,见图3答:没有关系.因为计算中的压差值实际上是总势能差,可以通过压差传感器直接测得.本实验中因为管道水平放置,所以总势能差等于静压能差.由U型压差计的伯努利方程:p=ρ1−ρgR又H f=p/ρ,得:H f=(ρ1−ρ)gR/ρ即H f与摆放方式无关.。

实验一 流体流动阻力测定实验

实验一 流体流动阻力测定实验

实验一流体流动阻力测定实验
实验目的:
1. 掌握流体流动阻力的测量方法;
2. 研究液体流动速度与流动阻力的关系;
3. 探究不同液体的流动阻力之间的差异。

实验器材:
1. 测量罐(配有胶管和流量计);
2. U形玻璃管;
3. 液体(水和甘油);
4. 秒表;
5. 卡尺。

实验原理:
在实验中,将液体从一容器倾泻到另一容器中,同时测量流量计时流量、升高高度、液体的密度和粘度等参数,然后根据流量和压力的大小计算出液体的流动阻力大小。

实验步骤:
1. 将测量罐放在试验台上,它应该与液体倾泻的容器保持水平。

2. 将U形玻璃管的两端插入液体倾泻的容器中和流入测量罐中。

3. 调整流量计,使其指针刻度为零,然后开始倾泻液体。

4. 记录下液体流动的时间和流量,以及液体的高度和温度。

5. 测量液体的密度,并计算出其粘度。

6. 重复以上步骤,倾泻另一种液体,记录相关数据。

7. 计算并比较两种液体的流动阻力。

实验注意事项:
1. 测量液体的过程中,要保持容器和测量罐平稳,以避免产生冲击和震动。

2. 测量液体的温度和粘度要准确,否则将影响结果的准确性。

3. 测量过程中,要充分排除管路和装置中的气泡。

4. 测量结束后,要及时清洗仪器,以免对下次实验造成影响。

实验一 流体流动阻力测定实验

实验一  流体流动阻力测定实验

实验一流体流动阻力测定的实验一、实验目的1. 了解流体流动阻力的测定原理及方法;2. 测定流体流过直管时的摩擦阻力,并确定摩擦系数与雷诺数的关系;3. 测定流体流过管件时的局部阻力,并求出阻力系数;4. 了解与本实验有关的各种流量测量仪表、压差测量仪表的结构特点和安装方式,掌握其测量原理、学会正确使用。

二、实验原理流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地会引起压强损耗。

这种损耗包括流体经过直管的沿程阻力以及因流体运动方向改变或因管子大小形状改变所引起的局部阻力。

1.沿程阻力流体在水平均匀管道中稳定流动时,由截面1到截面2,阻力损失表现在压强的降低。

影响阻力损失的因素十分复杂,目前尚不能用理论方法求解,必须通过实验研究其规律。

为了减少实验工作量,扩大实验结果的应用范围,可采用因次分析法将各变量综合成准数关系式。

影响阻力损失的诸因素由:(1)流体性质:密度,粘度;(2)管路的几何尺寸:管径,管长,管壁粗糙度;(3)流动条件:流速。

2.局部阻力局部阻力通常有两种表示方法,即当量长度法和阻力系数法。

(1)当量长度法流体流过某管件或阀门时,因局部阻力造成的损失,相当于流体通过与其具有相同管径的若干米长度的直管阻力损失,这个直管长度称为当量长度。

(2)阻力系数法流体通过某一管件或阀门的阻力损失用流体在管路中的动能系数来表示。

由于管件两侧距测压孔间的直管长度很短,引起的摩擦阻力与局部阻力相比,可以忽略不计,因此动能系数之值可应用伯努利方程由压差计读数求出。

三、实验设备的功能与特点本实验装置可用于实验教学和科研。

利用该实验装置,可学习和掌握光滑直管、粗糙直管的阻力系数与雷诺准数的测量方法;也可学习局部阻力的测量方法;学习几种压差测量方法;加深对流体流动阻力概念的理解。

本实验装置的特点:⑴本实验装置数据稳定,重现性好,能给实验者明确的流体流动阻力概念。

⑵雷诺准数的数据范围宽,可作出102~104三个数量级。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流体流动阻力测定实验指导书第 1 页共8页第 2 页 共 8页流体流动阻力的测定一、实验目的1.掌握测定流体流经直管、管件和阀门时阻力损失的一般实验方法。

2.测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区内λ与Re 的关系曲线。

3.测定流体流经管件、阀门时的局部阻力系数ξ。

4.学会倒U 形压差计和涡轮流量计的使用方法。

5.识辨组成管路的各种管件、阀门,并了解其作用。

二、基本原理流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。

流体流经直管时所造成机械能损失称为直管阻力损失。

流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。

1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:2221u d l p p p w ff λρρ=-=∆=(1)即, 22lu p d fρλ∆= (2)式中: λ —直管阻力摩擦系数,无因次;d —直管内径,m ;f p ∆—流体流经l 米直管的压力降,Pa ;f w —单位质量流体流经l 米直管的机械能损失,J/kg ;ρ —流体密度,kg/m 3;l —直管长度,m ;u —流体在管内流动的平均流速,m/s 。

第 3 页 共 8页滞流(层流)时,Re 64=λ (3) μρdu =Re (4)式中:Re —雷诺准数,无因次;μ —流体粘度,kg/(m·s)。

湍流时λ是雷诺准数Re 和相对粗糙度(ε/d )的函数,须由实验确定。

由式(2)可知,欲测定λ,需确定l 、d ,测定f p ∆、u 、ρ、μ等参数。

l 、d 为装置参数(装置参数表格中给出), ρ、μ通过测定流体温度,再查有关手册而得, u 通过测定流体流量,再由管径计算得到。

例如本装置采用涡轮流量计测流量,V ,m 3/h 。

2900dVu π=(5) f p ∆可用U 型管、倒置U 型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。

(1)当采用倒置U 型管液柱压差计时gR p f ρ∆= (6) 式中:R -水柱高度,m 。

(2)当采用U 型管液柱压差计时()gR p f ρρ∆-=0 (7)式中:R -液柱高度,m ;0ρ-指示液密度,kg/m 3。

根据实验装置结构参数l 、d ,指示液密度0ρ,流体温度t 0(查流体物性ρ、μ),及实验时测定的流量V 、液柱压差计的读数R ,通过式(5)、(6)或(7)、(4)和式(2)求取Re 和λ,再将Re 和λ标绘在双对数坐标图上。

2.局部阻力系数ξ 的测定局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。

(1) 当量长度法第 4 页 共 8页流体流过某管件或阀门时造成的机械能损失看作与某一长度为e l 的同直径的管道所产生的机械能损失相当,此折合的管道长度称为当量长度,用符号e l 表示。

这样,就可以用直管阻力的公式来计算局部阻力损失,而且在管路计算时可将管路中的直管长度与管件、阀门的当量长度合并在一起计算,则流体在管路中流动时的总机械能损失∑fw为:22u d l l w e f ∑∑+=λ (8)(2) 阻力系数法流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。

即:2'2u p w ff ξρ='∆= (9) 故 22up fρξ'∆=(10)式中:ξ —局部阻力系数,无因次;f p '∆ -局部阻力压强降,Pa ;(本装置中,所测得的压降应扣除两测压口间直管段的压降,直管段的压降由直管阻力实验结果求取。

)ρ —流体密度,kg/m 3; g —重力加速度,9.81m/s 2;u —流体在小截面管中的平均流速,m /s 。

待测的管件和阀门由现场指定。

本实验采用阻力系数法表示管件或阀门的局部阻力损失。

根据连接管件或阀门两端管径中小管的直径d ,指示液密度0ρ,流体温度t 0(查流体物性ρ、μ),及实验时测定的流量V 、液柱压差计的读数R ,通过式(5)、(6)或(7)、(10)求取管件或阀门的局部阻力系数ξ。

三、实验装置与流程1.实验装置实验装置如图1所示:1-水箱;2-管路泵;3-转子流量计;4-球阀;5-倒U型差压计;6-均压环;7-球阀;8-局部阻力管上的闸阀;9-出水管路闸阀;10-水箱放水阀;图1 实验装置流程示意图2.实验流程实验对象部分是由贮水箱,离心泵,不同管径、材质的水管,各种阀门、管件,涡轮流量计和倒U型压差计等所组成的。

管路部分有三段并联的长直管,分别为用于测定局部阻力系数,光滑管直管阻力系数和粗糙管直管阻力系数。

测定局部阻力部分使用不锈钢管,其上装有待测管件(闸阀);光滑管直管阻力的测定同样使用内壁光滑的不锈钢管,而粗糙管直管阻力的测定对象为管道内壁较粗糙的镀锌管。

流量使用涡轮流量计测量,将涡轮流量计的信号传给相应的显示仪表显示出转速,管路和管件的阻力采用倒U型差压计直接读出读数。

第 5 页共8页3.装置参数装置参数如表1所示。

由于管子的材质存在批次的差异,所以可能会产生管径的不同,所以表1中的管内径只能做为参考。

装置1名称材质管内径(mm)测量段长度(cm)管路号管内径局部阻力闸阀1A 20.0 95光滑管不锈钢管1B 20.0 100粗糙管镀锌铁管1C 21.0 100表1四、实验步骤1. 实验准备:(1)清洗水箱,清除底部杂物,防止损坏泵的叶轮和涡轮流量计。

关闭箱底侧排污阀,灌清水至离水箱上缘约15cm高度,既可提供足够的实验用水又可防止出口管处水花飞溅。

(2)接通控制柜电源,打开总开关电源及仪表电源,进行仪表自检。

打开水箱与泵连接管路间的球阀,关闭泵的回流阀,全开转子流量计下的闸阀。

如上步骤操作后,若泵吸不上水,可能是叶轮反转,首先检查有无缺相,一般可从指示灯判断三相电是否正常。

其次检查有无反相,需检查管道离心泵电机部分电源相序,调整三根火线中的任意两线插口即可。

2.实验管路选择:选择实验管路,把对应的进口阀打开,并在出口阀最大开度下,保持全流量流动5-10min。

3. 排气:先进行管路的引压操作。

需打开实验管路均压环上的引压阀,对倒U型管进行操作如下,其结构如图2所示。

a)排出系统和导压管内的气泡。

关闭管路总出口阀9,使系统处于零流量、高扬程状态。

关闭进气阀门(3)和出水活栓(5)以及平衡阀门(4)。

打开高压侧阀门(2)和低压侧阀门(1)使实验系统的水经过系统管路、导压管、高压侧阀门(1)、倒U形管、低压侧阀门(2)排出系统。

b)玻璃管吸入空气。

排净气泡后,关闭(1)和(2)两个阀门,打图2 倒U型管压差计1-低压侧阀门;2-高压侧阀门;3-进气阀门;4-平衡阀门;5-出水阀门第 6 页共8页开平衡阀(4)和出水活栓(5)进气阀(3),使玻璃管内的水排净并吸入空气。

c)平衡水位。

关闭阀(4)、(5)、(3),然后打开(1)和(2)两个阀门,让水进入玻璃管至平衡水位(此时系统中的出水阀门始终是关闭的,管路中的水在零流量时,U形管内水位是平衡的,压差计即处于待用状态。

d)被测对象在不同流量下对应的差压,就反应为倒U型管压差计的左右水柱之差。

4.流量调节:进行不同流量下的管路压差测定实验。

让流量从0.8到4m3/h范围内变化,建议每次实验变化0.5m3/h左右。

由小到大或由大到小调节管路总出口阀,每次改变流量,待流动达到稳定后,读取各项数据,共作8-10组实验点。

主要获取实验参数为:流量Q、测量段压差 P,及流体温度t。

5.实验结束:实验完毕,关闭管路总出口阀,然后关闭泵开关和控制柜电源,将该管路的进口球阀和对应均压环上的引压阀关闭,清理装置(若长期不用,则管路残留水可从排空阀进行排空,水箱的水也通过排水阀排空)。

五、实验数据处理根据上述实验测得的数据填写到下表:实验日期:实验人员:学号:温度:装置号:直管基本参数:光滑管径粗糙管径局部阻力管径序号流量(m3/h)光滑管mmH2O 粗糙管mmH2O 局部阻力mmH2O左右压差左右压差左右压差第7 页共8页六、实验报告1.根据粗糙管实验结果,在双对数坐标纸上标绘出λ~Re曲线,对照化工原理教材上有关曲线图,即可估算出该管的相对粗糙度和绝对粗糙度。

2.根据光滑管实验结果,在双对数坐标纸上标绘出λ~Re曲线,对照柏拉修斯方程,计算其误差。

3.根据局部阻力实验结果,求出闸阀全开时的平均ξ值。

4.对以上的实验结果进行分析讨论。

七、思考题1.在对装置做排气工作时,是否一定要关闭流程尾部的出口阀?为什么?2.如何检测管路中的空气已经被排除干净?3.以水做介质所测得的λ~Re关系能否适用于其它流体?如何应用?4.在不同设备上(包括不同管径),不同水温下测定的λ~Re数据能否关联在同一条曲线上?5.如果测压口、孔边缘有毛刺或安装不垂直,对静压的测量有何影响?第8 页共8页。

相关文档
最新文档