复变(07.12统)A
复变函数习题及答案解释

第一篇 复变函数第一章 复数与复变函数1. 求下列复数的实部、虚部、共轭复数、模与幅角.(1) 72)52)(43(ii i −+;(2) .4218i i i +−2. 当x ,y 等于什么实数时,等式i iiy x +=+−++135)3(1 成立?3.证明:(1);2z z z = (2)1122,z z z z = .02≠z4.求下列各式的值: (1)();35i −(2)().131i +−5.求方程083=+z 的所有根.6.设1z ,2z ,3z 三点适合条件0321=++z z z ,证明1z ,2z ,3z 是内接于单位圆1=z 的一个正三角形的顶点.7.指出下列各题中点z 的轨迹或所在的范围:(1);65=−z(2);12≥+i z(3).i z i z −=+8.描述下列不等式所确定的区域,并指出它是有界的还是无界的: (1);32≤≤z(2).141+<−z z9.将方程tt z 1+=(t 为实参数)给出的曲线用一个实直角坐标方程表出.第一章 复习题1.单项选择题(1)设iy x z +=,y x ≠||,4z 为实数,则( ).A .0=xy B.0=+y x C .0=−y x D.022=−y x(2)关于复数幅角的运算,下列等式中正确的是( ). A .Argz Argz 22= B.z z arg 2arg 2=C .2121arg arg )arg(z z z z += D.2121)(Argz Argz z z Arg += (3)=+31i ( ).A .ie 62πB.ie 62π−C .ie 62π± D.i e62π±(4)2210<++<i z 表示( ). A .开集、非区域 B.单连通区域 C .多连通区域 D.闭区域(5)z i z f =−1,则()=+i f 1( ).A .1 B.21i+ C .21i− D.i −1 (6)若方程1−=z e ,则此方程的解集为( ).A .空集 B.π)12(−=k z ,(k 为整数) C .i k z π)12(−= D. πi z =2.对任何复数22,z z z =是否一定成立?3. 解方程.0)1(22=−++i z z4. 求)(i Ln −,)43(i Ln +−和它们的主值.5. 求i e 21π−,i i e41π+,i 3和ii )1(+值.第二章 导数1.下列函数何处可导?何处解析? (1) ();2iy x z f −=(2) ().22y ix xy z f +=2.指出下列函数()z f 的解析性区域,并指出其导数.(1) ();22iz z z f +=(2) ();112−=z z f(3)(),dcz baz z f ++=(d c ,中至少有一个不为0).3.设()2323lxy x i y nx my +++为解析函数,试确定l 、m 、n 的值.4.证明:如果()z f 在区域D 内解析,并满足下列条件之一,那么是常数. (1)()z f 恒取实值. (2))(z f 在区域D 内解析. (3)()z f 在区域D 内是一个常数.5.应用导数的定义讨论下列函数的是否存在?(1)())Re(z z f =;(2)())Im(z z f =.6.证明;,sin z e z 在复平面上任一点都不解析.第二章 复习题1.单项选择题(1)函数()z f w =在点0z 可导是可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(2)函数()z f w =在点0z 可导是连续的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(3)函数()),(),(y x iv y x u z f +=,则在()00,y x 点,v u ,均可微是函数()z f 在点0z 可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(4)函数()22ix xy z f −=,那么( ). A .()z f 处处可微 B. ()z f 处处不可导 C .()z f 仅在原点可导 D. ()z f 仅在x 轴上可导(5)若,0,,00,),(222222=+≠++=y x y x y x xy y x u ,,),(xy y x v =()iv u z f +=,则()z f ( ).A .()z f 仅在原点可导 B. ()z f 处处不可导C .()z f 除原点外处处可导 D. ()z f 处处可微(6)若()()y x y i xy x z f 233333+−+−=, 那么()z f ( ).A .()z f 仅在原点可导且()00=′f B. ()z f 处处解析且()xy i y x z f 63322+−=′ C .()z f 处处解析且()xy i y x z f 63322−−=′ D. ()z f 处处解析且()xy i x y z f 63322+−=′ (7)函数()z z z f = ,则( ). A .()z f 在全平面解析 B. ()z f 仅在原点解析C .()z f 仅在原点可导但不解析 D. ()z f 处处不可导(8)设()34−=′z z f ,且()i i f 31−=+,则()=z f ( ).A . i z z −−322 B. i z z 3322+− C .i z z 43322+−+ D. i z z 43322−+− 2.指出函数112+z 的解析性区域,并求导数.3.如果0z 是()z f 的奇点,而()z g 在0z 解析,那么0z 是否是())(z g z f +和())(z g z f 的奇点.4.若()iv u z f +=是区域D 内的解析函数,那么在D 内v +iu 是否也是解析函数.第三章 积分1.沿下列路径计算积分∫Czdz Re .(1)自原点至1+i 的直线段;(2)自原点沿实轴至1,再由1铅直向上至1+i ;(3)自原点沿虚轴至i ,再由i 沿水平向右至1+i .2.分别沿y =x 与2x y =计算积分()∫++i dz iy x102的值.3计算积分dz zzC∫,其中C 为正向圆周,2=z .4.计算下列积分 ,其中C 为正向圆周,1=z . (1);21dz z C ∫− (2);4212dz z z C ∫++(3);cos 1dz zC ∫ (4);211dz z C∫−(5);dz ze Cz ∫(6)().)2(21dz i z z C∫−+5.沿指定曲线正向计算下列积分:(1)dz z C ∫−21,C :12=−z ;(2)dz a z C ∫−221,C: a a z =−;(3),3dz z zC ∫− C :2=z ;(4)()()dz z z C∫++41122,C :23=z ;(5)dz zzC ∫sin ,C :1=z ; (6)dz z zC∫−22sin π,C :2=z .6.计算下列各题: (1)∫−ii z dz e ππ32;(2)∫−iizdz ππ2sin ;(3).)(0∫−−iz dz e i z7.计算下列积分:(1)dz i z z C ∫+++2314,C :4=z ,正向; (2)dz z iC ∫+122,C :61=−z ,正向; (3),cos 213dz z zC C C ∫+= 1C :2=z ,正向,2C :3=z ,负向;(4)dz i z C ∫−1,C 为以i 56,21±±为顶点的正向菱形; (5)()dz a z eC z∫−3;其中a 为1≠a 的任何复数,C :1=z ,正向.9. 设C 为不经过a 与a −的简单正向闭曲线,a 为不等于0的任何复数,试就a 与a −跟C 的各种不同位置,计算积分dz a z zC ∫−22的值.第三章 复习题1.单项选择题.(1)设C 为θi e z =,θ从2π−到2π的一段,则=∫Cdz z ( ).A .i B.2i C .-2i D.- i(2)设C 是从0=z 到i z +=1的直线段,则=∫Cdz z ( ).A .1+i B.21i+ C .i e4π− D. ie 4π(3)设C 为θi e z =,θ从0到π的一段,则=∫Czdz arg ( ).A .i 2−−π B. π− C .i 2+π D. i 2−π(4)设C 为t i z )1(−=,t 从1到0的一段,则=∫Cdz z ( ).A .1 B.-1 C .i D.- i(5)设C 为1=z 的上半部分逆时针方向,则=−∫Cdz z )1(( ).A .2i B.2 C .-2i D.- 2(6)设C 为θi e z 21=,正向,则=−∫C z dz e e zsin ( ).A .sin1 B.e i 1sin 2π C .e i 1sin 2π− D.0(7)=++∫=dz z z z 12221( ).A .i π2 B.i π2− C .0 D.π2 (8)设C 为沿抛物线12−=x y 从()0,1−到()0,1的弧度,则=+∫C dz z )1sin(( ).A .0 B.2cos − C .12cos − D. 12cos − (9)=++∫=+dz z z e z z 232)1(232( ). A .0 B.i π32C .i π2 D. i π2−(10)=++∫=dz z z zz 121682cos π( )A .0 B.i π C .i π− D. i π2.(11)=+∫=dz z zz 221( ).A .0 B.i π2 C .i π2− D. i π(12)=∫=dz z e z z12( ).A .i π2 B. i π C .0 D. π (13)1322z z z e dz ==∫( ).A .i π2 B. i π16 C .i π8 D. i π4 2.计算()∫Γ−=dz z z e I z12,其中Γ是圆环域:221≤≤z 的边界.3.(1)证明:当C 为任何不经过原点的闭曲线时,则;012=∫dz zC(2)沿怎样的简单闭曲线有;012=∫dz z C(3)沿怎样的简单闭曲线有.0112=++∫dz z z C4.设(),4ζζζπd ze zf C ∫−=其中C :2=z ,试求()i f ,()i f −及()i f 43−的值.5.计算()22,2z Ce z I dz z =+∫其中C :.1=z6.()()∫=−=12,ζζζdz z e z f z()1≠z ,求().z f ′第四章 级数1.判别下列级数的绝对收敛性与收敛性:();11∑∞=n nni()∑∞=2;ln 2n nni();8)56(30∑∞=+n n ni().2cos 40∑∞=n n in2.求下列幂级数的收敛半径:()为正整数);p nz n p n(,11∑∞=()∑∞=12;)!(2n nn z nn()∑∞=+0;)1(3n nnz i().41∑∞=n n n iz e π3.把下列各函数展开成z 的幂级数,并指出它们的收敛半径: ();1113z +();)1(1223z +();cos 32z();4shz();5chz().sin 622z e z4.求下列各函数在指定点0z 处的泰勒展开式,并指出它们的收敛半径: ();1,1110=+−z z z()();110,10,1122<−<<<−z z z z()()(),2113−−z z;21,110+∞<−<<−<z z()()为中心的圆环域内;在以i z i z z =−,142第四章 复习题1.单项选择题:()().112的收敛半径为幂级数∑∞=n nin z e0.A 1.B 2.C ∞.D()()∑∞=1.1sin 2n nnz n 的收敛半径为幂级数0.A 1.B e C . ∞.D()()()∑∞=−1.13n n n z i 的收敛半径为幂级数1.A 21.B 2.C 21.D()()()∑∞=+12.434n n n z i 的收敛半径为幂级数5.A 51.B 5.C 51.D ()()∑∞=1.!5n nn z n 的收敛半径为幂级数1.A ∞.B 0.C e D .()()∑∞−∞=−=>=n nne a z za z z.,0,6721则设!71.A !71.−B !91.C !91.−D()∑∞==−10,2.2n nn z z a 收敛,能否在幂级数 .3发散而在=z().1.32的和函数求n n z n n ∑∞=−.0cos 1.40处的泰勒展开式在求=−∫z d zζζζ上的罗朗展开在求函数11sin .512>−∫=ζζζζz d z .式第五章 留数1.判断下列函数奇点的类型,如果是极点,指出它的阶数:()();11122+z z();sin 23z z();11323+−−z z z()();1ln 4zz +();511−z e()().1162−z e z()..2在有限奇点处的留数求下列各函数z f();2112zz z −+();1242z e z −()();113224++zz();cos 4zz();11cos5z−().1sin 62zz3.计算下列各积分(利用留数,圆周均取正向).();sin 123∫=z dz z z()();12222dz z e z z∫=−()();,cos 1323为整数m dz z zz m∫=−();tan 43∫=z zdz π().521111∫=−−z z dz ze点?并是下列各函数的什么奇判断∞=z .4.的留数求出在∞();121z e();sin cos 2z z −().3232zz+()[]的值,如果:求∞,Re 5.z f s()();112−=z ez f z()()()().41124−+=z z z z f6.计算下列各积分,C 为正向圆周:()()()∫=++Cz C dz zzz ;3:,211342215().2:,1213=+∫z C dz e z z zC7.计算下列积分:();sin 351120θθπd ∫+()();0,cos sin 2202>>+∫b a d b a θθθπ()()∫+∞∞−+;11322dx x()∫+∞∞−++.54cos 42dx x x x第五章 复习题1.单项选择题:()().1sin101的是函数zz = 本性奇点.A 可去奇点.B 一级奇点.C 非孤立奇点.D()().0,1cos Re 2=z z s0.A 1.B 21.C 21.−D()()()().,11Re 32=+−i z i z s 4.i A 4.i B − 41.C 41.−D()().0,1Re 44=−−z e s z !31.A !31.−B !41.C !41.−D()()()∫=−=+21.,15z n n n dz z z 为正整数0.A i B π2. i n C π2. niD π2.()()∫=−=11.6z zz dz zei e A 1.−π i B π2. i e C 12.−π i D π2.−()()∫==−25.117z dz z 0.A i B π2. i C π25. i D π52.2.判断zz e 1+的孤立奇点的类型,并求其留数.3.计算n dz z z z n,1cos 1∫=是正整数.4.计算积分∫=−+114.1z z dz5.计算积分∫+πθθ20.cos 2d6.计算∫+∞+04.11dx x7.计算∫+∞+02.42cos dx x x复变函数总复习题一、单项选择题:(1) 函数z w ln =在i e z =处的值为(). (k 为整数)A. ()i k 12+πB. ()i k π12+C. i k π2D. i k π+212(2) 设积分路径C 为从原点到i +2的直线段, 则积分()=∫Cydz .A. 21i− B. 21i +C. i +1D. i −1(3) 1=z 是函数1ln 2−z z的( ).A. 可去奇点B. 极点C. 本性奇点D. 非孤立奇点 (4) 设()33iy x z f −=, 则()z f 在复平面上( ).A. 处处可导 B. 仅在0=z 处解析 C. 处处不可导 D. 仅在0=z 处可导(5) ()()=−∫=−dz z e z iz211221. A.21i+ B. i +1 C. ()i e i +−12π D. 2π−(6) 函数21z e z+以∞=z 为( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(7) 0=z 是ze z 111−−的( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(8) 由2121>−z 与2123>−i z 所确定的点集是( ).A. 开集、非区域 B. 单连通区域 C. 多连通区域 D. 闭区域(9) ()=+−∫=dz z z z z z 122sin cos 1. A. 0 B. i π2 C. i π D. i π3二、填空题:1. =i e π9 .2.=+∫=dz z z 12121. 3. 设()()z z z f Im =, 则()=′0f .4. 级数()()()∑∞=+−+−0124121n n nz n 的收敛范围为 .5. 函数z 211−在+∞<<z 21内的罗朗展式为 . 6.()=−∫=dz z z 12 .7. 级数()∑∑∞=∞=+−12121n n n n n nn z z 的收敛范围是 .8. ()2236z z z z z f ++−=, ()()=∞,Re z f s .9. =−1,1sin Re z z s ;=−1,11sin Re z z s .三、解答下列各题:1. 已知()(),21i i z −+= 求()Re z .2. 求2122lim 1z zz z z z →+−−−.3. 讨论()2z z f =在0=z 处的可导性及解析性.4. 讨论()()yx i x y x z f 322322−++−−=的解析性, 并求出在解析点处的导数.5. 计算()12CIi z dz =+−∫, 其中C 为连接01=z , 12=z 和i z +=13, 从1z 至2z 至3z 的折线段.6. 将z 2sin 展开为z 的幂级数.7. 求级数()n n nn z n 214302+++∑∞=的收敛圆, 并讨论在47−=z 和49−=z 处的收敛性.8. 求()242−=z z z f 在3<z 内所有留数之和.9. 求函数z cot 在它所有有限孤立奇点处的留数.10. 求()()222aze zf ibz+=在ai −处的留数,(a , b 为实数).11. 计算积分()()dz z e z zI z z∫=−+−=232189.12. 计算积分dz z z I z ∫=++=2365112.13. 计算积分dz z z I z ∫=+−=22211.14. 计算积分dz z z e i I z z∫=++=2241221π.15. 计算积分()dx axx I ∫∞++=02222, ()0>a .四、证明题:1. 证明()=≠+=0,00,22z z yx xyz f 在0=z 处不连续.2. 证明0→z 时, 函数()()22Re zz z f =的极限不存在.第二篇 积分变换1. 设() >≤=1,01,1t t t f , 试算出()ωF , 并推证:>=<=∫∞+1,01,41,2cos sin 0t t t d t ππωωωω. (提示()t f 为偶函数)2. 求矩形脉冲函数()≤≤=其它,00,τt A t f 的傅氏变换.3. 求()><−=1,01,1222t t t t f 的傅氏积分. 4. 求()2sin tt f = 的拉氏变换.5. 求()≥<≤−<≤=4,042,120,3t t t t f 的拉氏变换.6. 求下列函数的拉氏逆变换:(1) ()221as s F +=;(2) ()441a s s F −=答案第一章:,2295,135.3,13Im ,5.3Re )1.(1=+−=−=−=z i z z z ).(,23arctan ,10||,31,3Im ,1Re )2();(,)12()726arctan(arg Z k k Argz z i z z z Z k k z ∈+−==+=−==∈++=ππ.11,1.2==y x().2,1,0,2)2(;16316)1.(43275.06=−−+k ei k iπ5..31,2,31i i −−+7.(1)以z =5为圆心,6为半径的圆;(2)以z =-2i 为圆心,1为半径的圆周及圆周的外部;(3)i 和i 两点的连线的中垂线. 8.(1)圆环形闭区域,有界; (2)中心在,1517−=z 半径为158的圆周的外部区域,无界. 9.xy =1。
复变函数-公式集合-完美版

加法原理(两种方法均能完成此事):m+n
某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n
某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n种方法来完成,则这件事可由m×n种方法来完成。
(5)八大分布
0-1分布
P(X=1)=p, P(X=0)=q
二项分布
在重贝努里试验中,设事件发生的概率为。事件发生的次数是随机变量,设为,则可能取值为。
,其中,
则称随机变量服从参数为,的二项分布。记为。
当时,,,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。
泊松分布
设随机变量的分布律为
,,,
那么A、B、C相互独立。
对于n个事件类似。
(15)全概公式
设事件满足
1°两两互不相容,,
2°,
则有
。
(16)贝叶斯公式
设事件,,…,及满足
1°,,…,两两互不相容,>0,1,2,…,,
2°,,
则
,i=1,2,…n。
此公式即为贝叶斯公式。
,(,,…,),通常叫先验概率。,(,,…,),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者,它表示A发生而B不发生的事件。
A、B同时发生:AB,或者AB。AB=Ø,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。
-A称为事件A的逆事件,或称A的对立事件,记为。它表示A不发生的事件。互斥未必对立。
复变函数(第四版)课后习题答案

(3 + 4i )(2 − 5i ) = 5
2i
29 , 2
26 ⎡ (3 + 4 i )(2 − 5 i ) ⎤ ⎡ (3 + 4 i )(2 − 5 i ) ⎤ = arg ⎢ Arg ⎢ + 2kπ = 2 arctan − π + 2kπ ⎥ ⎥ 2i 2i 7 ⎣ ⎦ ⎣ ⎦ = arctan 26 + (2k − 1)π , 7 k = 0,±1,±2, " .
{
}
{
}
Arg i8 − 4i 21 + i = arg i8 − 4i 21 + i + 2kπ = arg(1 − 3i ) + 2kπ
(
)
(
)
= −arctan3 + 2kπ 2.如果等式 解:由于
k = 0,±1,±2, ".
x + 1 + i(y − 3) = 1 + i 成立,试求实数 x, y 为何值。 5 + 3i x + 1 + i(y − 3) [x + 1 + i(y − 3)](5 − 3i ) = 5 + 3i (5 + 3i )(5 − 3i ) =
2 2
= ( z1 + z2 )( z1 + z2 ) + ( z1 − z2 )( z1 − z2 ) = 2( z1 z1 + z2 z2 )几何意义平行四边形的对角线长度平方的和等于四个边的平方的和。 12.证明下列各题: 1)任何有理分式函数 R ( z ) =
2 2
1 ; 3 + 2i
1 3i (2) − ; i 1− i
复变函数总复习资料

总结词
导数与微分在解决实际问题中具有广泛的应 用。
详细描述
导数与微分的应用包括求函数的极值、判断 函数的单调性、求函数的拐点、近似计算等 。这些应用在物理学、工程学、经济学等领 域都有广泛的应用,如波动方程、热传导方 程、弹性力学等领域的研究都需要用到复变
函数的导数与微分。
04
复变函数的积分
积分的定义与性质
解析性是实变函数的导数的定义基础,因此解析性在实变函数中有 着广泛的应用。
在复变函数中的应用
解析性是复变函数的导数的定义基础,因此解析性在复变函数中有 着广泛的应用。
在物理中的应用
解析性在物理中也有着广泛的应用,例如在电磁学、光学等领域中, 解析性可以帮助我们更好地理解物理现象。
THANKS
感谢观看
总结词
复数与复变函数在物理、工程等领域有广泛应用。
详细描述
复数与复变函数在物理、工程等领域有广泛的应用。例如,在电路分析中,电压和电流可以用复数表示,方便计 算;在信号处理中,复数可以用于表示和处理信号;在量子力学中,波函数通常用复数表示。此外,许多数学问 题也可以通过复数和复变函数得
总结词
复变函数是定义在复数域上的函数,具有连续性、可微性等 性质。
详细描述
复变函数是定义在复数域上的函数,其定义与实数域上的函 数类似,但具有更丰富的性质。复变函数可以具有连续性、 可微性、解析性等性质,这些性质在研究复变函数的积分、 微分、级数等数学问题中具有重要作用。
复数与复变函数的应用
幂级数的概念与性质
定义
幂级数是无穷多个形如$a_n x^n$的项按照一定的顺 序排列的数列,其中$a_n$是常数,$x$是变量。
性质
收敛半径,幂级数的展开式,幂级数的加减乘除等。
复变函数第四版答案详解

复变函数第四版答案详解调和变换的第四版:1. 概念:调和变换的第四版是研究统计学家Stephen M. Stigler提出的一种更加复杂的变换法。
它最大的特点是可以有效地处理大数据集中固定和变动变量之间的关系,而且有助于更好地可视化信息。
2. 原理:这种变换主要是利用了调和技巧,通过舍弃最小和最大值来使变量在定义域上更具对称性。
使用调和变换的第四版,可以根据数据集中的最大值、最小值和其他值的累计概率直方图进行变换,这样就可以更准确地绘制变量间的关系。
3. 公式:基本的形式为T(x) = Log2(x/xmin)。
其中x为变量的原始值,xmin为该变量的最小值,T表示变换后的值。
4. 优势:• 可以对大范围的数据集进行标准化,减轻可视化时数据的拉伸或压缩;• 加强小数据组之间的可视化差别;• 能够有效处理变量之间的关系,更加详细;• 有助于体现更完整的数据,同时保留数据的细节。
5. 应用:• 生物学:调和变换的第四版可以帮助研究人员分析有关基因表达或特定生物标记(如药物效应)的数据;• 地理信息系统:地理信息系统的地图可以更准确地反映由于植被或气候变化而引起的空间变化;• 金融:调和变换的第四版可以用来分析大型财务数据集,并发现有关投资可能波动的信息。
6. 缺点:由于技术复杂,计算成本可能较高,特别是在大数据集合上,同时,由于它的强依赖变量的范围,所以由于变量的范围而出现的误差。
总结:调和变换的第四版是研究统计学家Stephen M. Stigler提出的一种复杂的变换法,它的核心是利用调和技巧,通过舍弃最小和最大值来使变量在定义域上更具对称性,它有助于更准确可视化变量之间的关系,并能够有效处理大数据集中固定和变动变量之间的关系。
但它也有计算成本高、与变量范围相关的误差等缺点。
复变函数 全套课件

证 (一) 令zxiy, 则f(z) x , x2y2
u(x,y) x , v(x,y)0, x2y2
当 z沿直 y线 kx 趋于, 零时
lim u(x,y)lim x lim x
x0 ykx
x0 ykx
x2y2
x0 x2 (kx)2
29
lim x
1 ,
x0 x2(1k2)
1 k2
随k值的变化而变, 化
2
s i n 2 z c o s 2 z 1 ,但 s i n z ,c o s z 不 是 有 界 函 数 .
n
n
(k 0 ,1 ,2 , ,n 1 ) 在几何 ,n z的 上 n个值就是以原 ,n r点 为为 半中 径 的圆的内 n边 接形 正 n个 的顶. 点
单连通域与多连通域
从几何上看,单连通域就是无洞、无割痕 的域.
5
复变函数的概念
复变w与 函 自数 变 z之 量 间的 wf(关 z) 系 相当于两 : 个关系式
《复变函数》
第一讲 复数及其代数运算
两复数相等当且仅当它们的实部和虚 部分别相等.
复数 z 等于0当且仅当它的实部和虚部 同时等于0. 说明 两个数如果都是实数,可以比较它们的 大小, 如果不全是实数, 就不能比较大小, 也就 是说, 复数不能比较大小.
2
辐角的主值
在 z ( 0 )的,辐 把 角 π 满 0 π 中 的 足 0 称 A z 为 的 r,g 记 主 0 作 a 值 z .rg
设 zxiy,
x y 2 ii x y 2 i,化简后得 yx.
(2)Im(iz)4
设 zxiy,
i z x ( 1 y )i,Ii m z ) 1 ( y 4 ,
复变函数课后习题答案(全)(2020年7月整理).pdf

为复数。
解:首先,由复数的三角不等式有 zn + a zn + a 1+ a ,
在上面两个不等式都取等号时 zn + a 达到最大,为此,需要取 z n
与 a 同向且 zn = 1,即 z n 应为 a 的单位化向量,由此, zn = a , a
z=n a a
8.试用 z1, z2 , z3 来表述使这三个点共线的条件。
解:要使三点共线,那么用向量表示时, z2 − z1 与 z3 − z1应平行,因而二
者应同向或反向,即幅角应相差 0 或 的整数倍,再由复数的除法运算规
则知 Arg z2 − z1 应为 0 或 的整数倍,至此得到: z3 − z1
z1,
z2 ,
z3
三个点共线的条件是
z2 z3
− −
z1 z1
为实数。
(1) z = (1+ i)t
(2) z = acost + ibsint
解:只需化为实参数方程即可。
(3) z = t + i t
(1) x = t, y = t ,因而表示直线 y = x
(2) x = a cos t, y
=
b
sin
t
,因而表示椭圆
x a
2 2
+
y2 b2
=1
(3) x = t, y = 1 ,因而表示双曲线 xy = 1 t
结论得证。
13.函数 w = 1 把 z 平面上的曲线 x = 1和 x2 + y2 = 4 分别映成 w 平面中 z
的什么曲线?
解:对于 x = 1,其方程可表示为 z = 1 + yi ,代入映射函数中,得
《复变函数与积分变换复旦大学修订版》全部_习题答案

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭②解: ()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 33311;;;.22n z i ⎛⎛-+-- ⎝⎭⎝⎭①: ∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xyz a x a y-⎛⎫=⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1kn=-,()Im i 0n=;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w ++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-.②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π116ππ3θ-+==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcosisin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z ⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z 2cos πisin π1=+=-z3551cos πisin π332=+=-z的平方根. 解:πi 4e ⎫⎪⎪⎝⎭∴)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z . 9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件. 解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,考试作弊将带来严重后果!
华南理工大学考试
《复变函数-A 》试卷
1. 考前请将密封线内填写清楚;
所有答案请直接答在试卷上(或答题纸上); .考试形式:闭卷;
本试卷共 9 大题,满分100分, 考试时间120分钟
. 填空题(每空4分,共20分) 1. 设复数21=z , 则.___________=z
2. 设函数)(z f 在单连通区域D 内解析,C 是D 内任意一条简单正向闭曲线,
则积分()__________.C
f z dz =⎰
3. 设C 为沿原点0=z 到点i z +=1的直线段, 则2______________.C
zdz =⎰
4. 幂级数∑∞
=+0
12)2(n n n z i 的收敛半径为__________.R =
5.函数z
z f 1cos
1)(=在孤立奇点2
211π
π+
=
z 处的留数Res 1[(),]_______.f z z =
二. 选择题(每题4分,共20分)
1. 设y x ,为实数,yi x z yi x z +-=++=11,1121且有,12||||21=+z z 则动点),(y x 的轨迹是 ( ).
(A) 圆 (B) 椭圆 (C) 双曲线 (D) 抛物线
2.若曲线2008
2007:=
Z C ,则积分3
4
(1)(1)
C
dz z z -+⎰
的值是( ).
(A) 2007 (B) 2008 (C) 0 (D) 1
3. 设),(),()(y x iv y x u z f +=在区域D 内解析,下列函数为D 内解析函数的是
( ).
(A) ),(),(y x iu y x v + (B) ),(),(y x iu y x v -
(C) ),(),(y x iv y x u - (D)
x
v i x
u ∂∂-∂∂
4. 设函数)
4)(1(1)(++=z z z z f 在以原点为中心的圆环内的罗朗展开式有m 个,
那么 )(
=m .
(A) 1 (B) 2 (C) 3 (D) 4
5.设)(z f w =在0z 解析,且0)(0≠'z f ,则映射)(z f w =具有( ). (A) 只把0z 的一个邻域内某一小三角形映成含)(00z f w =的一个三角形; (B) 把0z 的一个邻域内任一小三角形映成含)(00z f w =的一个曲边三角形,
二者近似相似;
(C) 把充分小的圆周r z z =-0映成三角形;
(D) 把含0z 的充分小的三角形映成圆周.
三. (10分) 求解方程083=+z .
四. (10分) 计算复数 Ln (34)i -+.
五.(10分) 计算积分2
2
1
(1)(4)
C
dz z z ++⎰
, 3:2
C z =
,C 为正向曲线.
六.(10分) 将函数)
1()2ln(--z z z 在110<-<z 内展开成罗朗级数.
七. (10分) 计算积分⎰+π
θ
θ20
cos 35d .
八. (5分) 计算2
()1
z
e
f z z =-在∞处的留数.
九. (5分) 计算积分15
2
2
4
3
(1)(2)
C
z
dz z z ++⎰
,:3C z =,C 为正向曲线.
复习指导:
考试范围:第一章到第六章第一节,即$1.1-$6.1,有星号内容不考。
参考答案: 一.(20分) (1)1 (2)0 (3)2 (4)2 (5)
2
2
14125(2)
2
π
ππ=
+
二.(10分)
(1)B (2)C (3)B (4)C (5)B 三(10分)
解:因为3
88(cos sin ),z i ππ=-=+所以,
222(cos
sin
),0,1,2.
3
3
k k z i k ππ
ππ
++=+=(6分)
即方程有三个解:
1
1z =+,2
2z =-
,3
1z =-10分) 四.(10分)
解:根据对函数的定义有
(34)ln 34(34)Ln i i iArg i -+=-++-+ (6分)
4
l n 5
(a r c t a n 2)
3
i k ππ=+-+
0,1,
2
k =±± (10分)
五.(10分)
解:令2
2
1
()(1)(4)
f z z
z =++ ,
则
()f z 在C内有两个
一阶极点,i i -,由留数定理得
()2(Re [(),]Re [(),])
c
f z dz i s f z i s f z i π==-⎰
(6分)
2(()()()())lim lim z i
z i
i z i f z z i f z π→→-=-++
=0 (10分)
六.(10分) 解:
七.(10分)
解:
令
1
2
1
1
,,cos 0.5(),21053cos [5 1.5()]
231032(31)(3)
i i i i z z z z e dz e id e
e d dz
iz z z
i
dz
z z i
dz
z z θ
θ
θ
θ
θθπ
θ
θ
-======+=
+++-=
++-++⎰
⎰
⎰
⎰
则从而有
在1z =内被积函数只有一个奇点13-,且为一阶级点,所以
2
3
23
2
2
21
ln(2)ln[1(1)][(1)0.5(1)(1)...]3
111(1)(1)(1)...
1(1)
(2)ln(2)1
.
(1)
11[10.5(1)(1)...][1(1)(1)...]3510.5(1)(1)...
6
z z z z z z z z z
z ln z z z z z z
z z z z z z -=--=--+-+-+=
=--+---++---=
--=-+-+-+--+--=-+--
-+所以
13
2212R e [
,]
053cos (31)(3)3
223(3)
2
z d i
i s z z i i
z π
θ
πθ
ππ=-
-=-+++-=+=
⎰
八.(10)分
解:()f z 在复平面内有两个奇点1,-1,根据留数定理有
1
1
R e [(),](R e [(),1]R e [(),1]2212
2z
z
z z s f z s f z s f z e e
z z
e e
==-∞=-+-=--
=-
+
九.(10分) 解:设15
2
2
4
3
()(1)(2)
z f z z z
=++,则()f z 得所有有限奇点
均在3z =内部,由留数定理得:
1
()2R e [(),]
2R e [(),]
n
k
k f z i s f z z
i s f z ππ===-∞∑⎰
另一方面:
2
15223242
2
4
3
2
2
4
3
11
R e [(),]R e [
(),0]2
1()
1R e [.,0]
11(1)(2)1
R e [,0]
(1)(12)1
(1)(12)
1
z s f z s f z
z s z z z s z z z z z =-∞==++=++=
++=
所以所求积分为:2i π。