复变函数与积分变换试题及答案
复变函数积分变换复习卷及答案

复变函数复习卷及参考答案一、填空题1、复数1z i =+的三角表示式=2(cossin )44i pp+;复指数表示式=42ie p 。
2、复数()13z i =+的z =2;23Argz k pp =+;arg 3z p=;13z i =-。
3、62111i i i -æö==-ç÷+èø。
10125212131i i i i i +-=+-=-。
4、()()31123513253x y i x i y i x y +=ì++-=-Þí-=-î,求解方程组可得,45,1111x y -==。
5、()()231,f z z z =-+则()61f i i ¢-=--。
6、()n3L i -ln 226i k i pp =-+;ln()ie 12i p=+。
7、()(2)1321,(13)2ik i iiee i p p p -++==+。
8、32282(cossin)33k k i p pp p++-=+;0,1,2k =。
1224(4)2i i -==±。
9、1sin 2e e i i --=;221cos ()22i e e pp p -=+;10 、21024z dzz z ==++ò ;1212z dz i z p ==-ò 。
11、设31cos ()zf z z -=,则0z =是(一级极点);31cos 1Re [,0]2z s z -=。
1()s i n f z z=,0z =是本性奇点。
二、判断下列函数在何处可导?何处解析?在可导处求出导数。
(1)()22f z x iy=+;解:22,,2,0,0,2u u v v u x v y x y xyxy¶¶¶¶======¶¶¶¶,一阶偏导连续,因此当,x y y x u v u v ==-时,即x y =时可导,在z 平面处处不解析。
(完整版),复变函数与积分变换期末考试题及答案,推荐文档

1. z0 为函数 f z 的 m 阶零点;
2. z0 为函数 f z 的 m 阶极点;
求
Res
z
f f
z z
,
z0
。
ez2
六.(15 分)写出函数
的幂级数展开式至含项为止,并指出其收敛范围。
cos z
七.(10 分)求函数 f t 1 tu t 3 t sin 2t 傅氏变换。
四、填空题(15 分,每空 3 分)
1. ln 2 i 。2. i 。3. 2 z 3 3 。4. 半平面 Re w 1 R。5.0。
4
2
三.(10 分)解:容易验证 u 是全平面的调和函数。利用 C-R 条件,先求出 v 的两个偏导数。
v u 2 y x, v u 2x y
江西科技师范学院卷(B)
2007--2008 学年第二学期
时间 110 分钟
复变函数与积分变换 课程 40 学时 2.5 学分 考试形式:闭卷
专业年级:电子科学与技术 总分 100 分,占总评成绩 70 %
注:此页不作答题纸,请将答案写在答题纸上
三、单项选择题(15 分,每小题 3 分)
1.A。2. B 。3. A。4. C。5.C。
z
z
z0
z
z0
n z0
n!
z
z0
n
(1)z0为f的阶z 零m点等价于在的一个z0邻域内
f z z z0 m z
其中在点z 解析, z0
于z是在0,的去心领z0 域
z
f f
z z
m z
z z0
z
z z
m z0
z z0
m
n1
m zz
复变函数与积分变换试卷(答案)

一、填空题(每题3分,共30分)1. 设i z -=,则=)arg(z 2π-;2.i z -=1的指数式为i e 42π-;3. 设c 为沿原点0=z 到点i z +=1的直线段,则=⎰c zdz i__ ; 4.函数iay x z f +=2)(在复平面内处处解析,那么实常=a ___2__;5. 幂级数∑∞=02n n n z 的收敛半径=R 21;6. 函数)1(1)(z z z f -=在圆环10<<z 内的洛朗展开式为...1132+++++z z z z ; 7. 积分=⎰=dz z z 1||tan __0______;8. i z -=是函数222)1()(+=z z z f 2 级极点; 9、221)(2++=s s s F 的拉普拉斯逆变换是t e e e t t i t i cos 2)1()1(---+-+或 ; 10.单位脉冲函数)3(-t δ的傅氏变换=-⎰+∞∞--dt e t t j ωδ)3(jw e 3-; 二、(本题12分)1、求21的所有值 解:1221Ln e =……………………………………………………………………..2分=)]21(arg 1[ln 2πk i e ++ (2,1,0±±=k )…………………………… .…….2分 =)22sin()22cos(ππk i k + (2,1,0±±=k )……………………2分2、解方程0cos =z 解:02cos =+=-iziz e e z …………………………………………………1分 即0=+-iz iz e e ,即12-=iz e设iy x z +=,则有)1(1122-⨯=-=+-xi y e所以 ππn x e y 22,12+==- (...2,1,0±±=n ) ……………….. 3分 所以有:ππn x y +==2,0 (...2,1,0±±=n ) 即ππn z +=2 (...2,1,0±±=n ) …………………2分三、. 将函数22)(ze zf z-=在圆环10<<z 内展开为洛朗级数。
复变函数与积分变换(第三版)答案

A.可去奇点B本性奇点
C.极点D奇点但非孤立奇点
二、填空题(4×5ቤተ መጻሕፍቲ ባይዱ20)
1. 的解析区域是_____.
2.若 ,则
3.函数 的傅立叶变换是_____.
4.调和函数 的共轭调和函数是_________.
5.设 ,则
三.计算题(12×4=48)
1.计算 。
2.求函数 在 的泰勒展式,并表明泰勒级数的收敛圆盘。
复变函数
习题1
习题二
习题三
习题四
习题五
习题八
习题九
2.
3.
8.
常考习题附录
一.选择题(4×5=20)
1.下列点集是复平面单连通区域的是:
A. B. C. D.
2.下列函数在整个z平面解析的是:
A. B. C. D.
3..函数项级数 收敛半径是:
A.0 B. 1 C. D.
4.已知函数 的Laplace变换是 ,那么 的Laplace逆变换是
3.计算积分 ,其中C: 。
4.求积分 。
四.证明题(12分)
1.设幂级数 在 条件收敛,则级数的收敛半径为
复变函数与积分变换试题和答案

复变函数与积分变换试题(一)一、填空(3分×10)1.得模ﻩﻩ、幅角ﻩ。
2.-8i得三个单根分别为:、、。
3.Lnz在得区域内连续。
4.得解极域为:ﻩﻩﻩﻩﻩ。
5.得导数ﻩﻩﻩﻩﻩ。
6. ﻩﻩ。
7.指数函数得映照特点就是:ﻩﻩﻩﻩﻩﻩﻩﻩﻩ。
8.幂函数得映照特点就是: ﻩﻩﻩﻩﻩﻩﻩ。
9.若=F [f(t)]、则= F ﻩﻩﻩﻩ。
10.若f(t)满足拉氏积分存在条件、则L [f(t)]= ﻩﻩﻩ。
二、(10分)已知、求函数使函数为解析函数、且f(0)=0。
三、(10分)应用留数得相关定理计算四、计算积分(5分×2)1.2.C:绕点i一周正向任意简单闭曲线。
五、(10分)求函数在以下各圆环内得罗朗展式。
1.2.六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。
(2)七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0得解y (t )。
八、(10分)就书中内容、函数在某区域内解析得具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1.ﻩﻩ、ﻩ ﻩ2、ﻩ-i ﻩﻩ2iﻩ-i ﻩ3、ﻩZ 不取原点与负实轴 4、 空集5、ﻩ2z ﻩ6.0 7、将常形域映为角形域ﻩ8、 角形域映为角形域 9、ﻩ ﻩ10、 二、解:∵ﻩ ∴ ﻩ(5分)∵f (0)=0ﻩﻩﻩﻩc =0(3分)∴ﻩﻩ(2分)三、解:原式=(2分)ﻩ(2分)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) =四、1.解:原式ﻩ(3分) z 1=0 ﻩz2=1ﻩ=0ﻩﻩ(2分)2.解:原式=五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)( ﻩﻩ(2分) ﻩ2.解: (1分)ﻩ(2分)六、1.解:∵ﻩ(3分)ﻩ∴结论成立 (2)解:∵ﻩ(2分)ﻩ ∴与1构成傅氏对∴(2分)七、解:∵ﻩﻩ(3分)S (2)-(1):∴ (3分)∴八、解:①定义;②C-R 充要条件Th ; ③v 为u 得共扼函数ﻩ10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导就是f(z)在D 内解析得(ﻩ ﻩ)条件。
复变函数与积分变换五套试题及答案

复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。
)31ln(i --2.-8i 的三个单根分别为: ,,。
3.Ln z 在 的区域内连续。
4.的解极域为:。
z z f =)(5.的导数。
xyi y x z f 2)(22+-==')(z f 6.。
=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。
8.幂函数的映照特点是:。
9.若=F [f (t )],则= F 。
)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。
二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。
三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。
⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。
)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。
)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。
⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。
复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。
2、k 为任意整数,则34+k 的值为 。
3、复数i i (1)-的指数形式为 。
4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。
(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。
复变函数与积分变换试题及解答

复变函数与积分变换试题系别班级学号姓名得分评卷人-------------- 一、填空(每题3分,共24分)1.(上£1严的实部是 _______ ,虚部是________ ,辐角主值是______1-V3/2.满足lz + 21 + lz-2K5的点集所形成的平面图形为,该图形是否为区域—.3. 7(z)在福处可展成Taylor级数与/(%)在处解析是否等价? .4. (l + i)i的值为______________________________________________主值为.5.积分,的值为 _____________ ,f '—dz. = ________ .Juw z J izi=2 4)a--)"1 -L6.函数J (z)=——7"-3在Z =。
处Taylor展开式的收敛半径是 ______ .z-l7.设F [<(。
]=Z3), F 则F [/1(0*/2(r)]=,其中力⑺* /2(0定义为.8.函数/(外=任的有限孤立奇点z°=_,Z。
是何种类型的奇点? .Z得分评卷人二、(6分)设/仁)=/一丫3+2//〃问/仁)在何处可导?何处解析?并在可导处求出导数值.三、(8分)设i ,= eXsiny,求p 的值使P 为调和函数,并求出解析函数 f(z) = u + iv.四、(10分)将函数〃z) = "—在有限孤立奇点处展开为 2z~ — 3z+1Laurent 级数.得分评卷人 -------------- 五、计算下列各题(每小题6分,共24分)1. /(z) = f求/(1 + )J 图7 4-z2. 求出/(z) = eV 在所有孤立奇点处的留数3. L(f 32产(”。
)4. 尸——二~<公J 。
1 + sin- x六、(6分)求上半单位圆域{2:1[1<1,11]12>0}在映射卬=22下的象.七、(8分)求一映射’将半带形域-恭,<”,>。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复变函数与积分变换试题(一)一、填空(3分×10)1.)31ln(i --的模 ﻩﻩ ,幅角 ﻩﻩ 。
2.-8i的三个单根分别为: , , 。
3.Ln z在 的区域内连续。
4.z z f =)(的解极域为:ﻩ ﻩﻩ ﻩ。
5.xyi y x z f 2)(22+-=的导数=')(z f ﻩﻩﻩ。
6.=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s ﻩﻩﻩ。
7.指数函数的映照特点是:ﻩﻩﻩ ﻩ ﻩﻩ ﻩﻩ。
8.幂函数的映照特点是:ﻩﻩﻩ ﻩﻩ。
9.若)(ωF =F [f (t)],则)(t f = F )][(1ω-fﻩﻩ ﻩﻩ。
10.若f (t )满足拉氏积分存在条件,则L [f (t )]= ﻩﻩ。
二、(10分)已知222121),(y x y x v +-=,求函数),(y x u 使函数),(),()(y x iv y x u z f +=为解析函数,且f(0)=0。
三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2) 1.⎰=-2||)1(z z z dz2.⎰-c i z z3)(cos C :绕点i 一周正向任意简单闭曲线。
五、(10分)求函数)(1)(i z z z f -=在以下各圆环内的罗朗展式。
1.1||0<-<i z 2.+∞<-<||1i z六、证明以下命题:(5分×2)(1))(0t t -δ与o iwt e -构成一对傅氏变换对。
(2))(2ωπδ=⎰∞+∞-ω-dt e t i七、(10分)应用拉氏变换求方程组⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 满足x(0)=y (0)=z (0)=0的解y (t )。
八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1.22942ln π+ﻩ ,ππk arctg 22ln 32+- ﻩﻩ2.3-i ﻩﻩ2i 3-iﻩ3. Z不取原点和负实轴ﻩ4. 空集ﻩ 5.ﻩ2z ﻩ6. 0ﻩ7.将常形域映为角形域ﻩ8.ﻩ角形域映为角形域 9.⎰∞+∞-ωωπωωd e F i )(21ﻩﻩﻩ10.⎰∞+-0)(dt e t f st ﻩ二、解:∵y u x x v ∂∂-=-=∂∂ﻩ x u y y v ∂∂==∂∂∴c xy u +=ﻩ (5分)c xy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0ﻩﻩﻩﻩc =0 (3分)∴222222)2(2)(2)(z i xyi y x i y x i xy z f -=+--=--=(2分)三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621πﻩﻩ01=z ﻩ12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π ﻩ33=z ∞=4z2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) 23126⨯⨯i π=i 63π-四、1.解:原式⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221ﻩ(3分)ﻩz 1=0 z 2=1ﻩﻩ]11[2+-=i π=0 ﻩ (2分)ﻩ2.解:原式iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-==1ich π-五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)(11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=(2分)ﻩ2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i ﻩ(2分) 六、1.解:∵0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰ﻩ(3分)ﻩ∴结论成立(2)解:∵1)(2210==ωπδπ=ωω-ω-∞+∞-⎰ti t i e dw e ﻩﻩ(2分)ﻩ∴)(2w πδ与1构成傅氏对 ﻩ∴)(2ωπδω=-∞+∞-⎰dt e t i ﻩ(2分)七、解:∵⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX ﻩﻩ(3分) S (2)-(1): ∴⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ﻩﻩ(3分) ∴cht e e t Y tt -=--=-121211)(八、解:①定义;ﻩ ②C-R充要条件T h; ③v 为u 的共扼函数 10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f(z )在区域D内可导是f (z )在D内解析的( ﻩﻩ)条件。
2.w =z 2在z=-i 处的伸缩率为( ﻩﻩ)。
3.i z 212--=的指数表示式为(ﻩ ﻩ ﻩ )。
4.Ln (-1)的主值等于( ﻩﻩ)。
5.函数e z 以(ﻩﻩﻩ)为周期。
6.设C 为简单闭曲线,则⎰-cz z dz=( )。
7.若z 0为f (z )的m 级极点,则=]),([Re 0z z f s ( ﻩ ﻩﻩ)。
8.若=ω)(F F f (t )(ﻩ ﻩ)。
9.)(20t t -πδ与( ﻩ)构成一个付立叶变换对。
10.已知L 11][sin 2+=s t ,则L =]sin [t t(ﻩ ﻩﻩ)。
二、计算题(7分×7)1.求p ,m ,n 的值使得函数)()(2323pxy x i y nx my z f +++=为解析函数。
2.计算⎰=⎪⎭⎫ ⎝⎛++-3||2311z dz z z 3.已知调和函数y x u )1(2-=,求解析函数iv u z f +=)(使得i f =)2(。
4.把函数)2)(1(12-+z z 在2||1<<z 内展开成罗朗级数。
5.指出函数zz z z f 21)(2--=在扩充复平面上所有孤立奇点并求孤立奇点处的留数。
6.计算dz z ze z z⎰=-2||217.利用留数计算积份θθ+⎰πd 20cos 21三、积分变换(7分×3)1.设t t t f 00cos sin )(ωω=(0ω为常数),求F [f(t)]。
2.设f (t )以π2为周期,且在一个周期内的表达式为⎩⎨⎧≤<≤<=πππ2020cos )(t t t t f 求L [f (t)]。
ﻩ3.求方程t e y y y -=-'+''32满足条件1)0(,0)0(='=y y 的解。
(L [e -t ]=11+s )。
复变函数与积分变换试题答案(二)一、1. 充要条件ﻩ2. 23.ﻩi eπ654-4.i πﻩﻩ5. i π2ﻩ6.ﻩ原式=⎩⎨⎧内不在内在C z C z i 0002π7.)()()!1(10110z f z z dz d im l m m m z z ----→ ﻩ8. ⎰∞+∞-ωωωπd e F i t j )(21 ﻩ9. 02t j e ω-πﻩ ﻩﻩ10.⎰∞-π=+sarcctgs ds s 2112 二、1. 解:P n nyp yvnxy x u -=⇒∂∂==∂∂22ﻩ (3分)3332222-=⇒--=∂∂-=+=∂∂n py x xv nx my y u3m =p∴3,1,3-==-=n m p ﻩ(1分)2.原式=(25分)i i i dz z z z z π=π+π=++-⎰⎰==81624(23113||3||分)(分)3.原式=)(22x g y v yvy x u +=⇒∂∂==∂∂ﻩ (2分) )()1(2x g xv x x u '-=∂∂-=-=∂∂ ﻩﻩc x x x g ++-=2)(2ﻩ (2分)∴)1()1(2)(22+-+-=x y i y x z f1)2)2(200=⇒++=⇒===c c y i y i i f y y(2分)∴)12()1(2)(22++-+-=x x y i y x z fﻩ(1分)4.解:∑∞⋅⎪⎭⎫ ⎝⎛+=++=-)(-=0222221111111n n n z z z z z ﻩ (2分)∑∞⎪⎭⎫⎝⎛⋅=02212112121==----n nz z z ﻩﻩ(2分)∴∑∑∑∞∞=⋅+4010122212111-=+=)+(-=-)(--n k k n n n n n n n b a C z z z z (3分)5.解:∞=,=,=z z z 20(2分)21221lim]0),([Re 0=--=→z z z f s z ﻩﻩ(2分)21221lim ]2),([Re 2=--=→z z z f s z ﻩﻩﻩ(2分)1]),([Re -=∞z f s ﻩ(1分)6.解:原式(3分)⎪⎪⎭⎫⎝⎛+π=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛-π=-22231,1Re 1,1Re 2122e e i z ze s z ze s i z z 分)(12ch i ⋅=π(1分)7.解: 原式=(2分)iz dz zz z ⋅++⎰=1||22121=(1分)dz z z iz ⎰=++-1||2142=(1分)dz z z iz ⎰=++-+-1||)32)(32(2=(2分)⎥⎦⎤⎢⎣⎡+-++-π32,142Re 22z z i s i =(1分)32323222ππ=+++--i i三、1.解: F [f (t )]⎰⎰∞+∞--∞+∞--==dt te dt et f t j tj ωωω02sin 21)(ﻩ (3分) )]2()2([[2100ωωδωδπ--+=w i ﻩﻩﻩ(4分)2.解:L [f (t )]=(2分)⎰---ππ202)(11dt e t f e st s ﻩﻩﻩ(2分)=⎰---ππ02cos 11dt te e sts=(2分)22111s se s e s s ++⋅---ππ (1分)=22111sse s +⋅--π ﻩﻩ3.解:F )32(y y y -'+''=F [e -t ]ﻩﻩﻩ(1分)11)(3))0()((2)0()()(2+=--+--s s Y Y s sY Y s sY s Y s ﻩﻩ (2分) 32111)(2-+++=s s s s Y =)1)(3)(1(2-+++s s s s (2分)]3,1,1,])([Re )(--==∑k st z e s Y s t Y =t t t e e e 3818341---+-ﻩ (2分)复变函数与积分变换试题(三)1.(5)复数z 与点(,)x y 对应,请依次写出z 的代数、几何、三角、指数表达式和z 的3次方根。