复变函数与积分变换公式
复变函数与积分变换知识点总复习

解析函数 f (z) 的导数仍为解析函数, 它的 n阶
导数为:
f
(n)
( z0
)
n! 2πi
C
(z
f
(z) z0 )n1
dz
(n 1,2,)
其中C 为在函数 f (z) 的解析区域 D内围绕 z0 的
任何一条正向简单闭曲线, 而且它的内部全含于 D.
8.调和函数与解析函数的关系
调和函数
满足 Laplace
但u iv不是解析函数。
证明:
因为 u x
2x,
2u x 2
2,
u y
2 y,
2u y 2
2,
2u 2u 2 2 0,所以,u是调和函数。 x2 y2
同理 2v 6x2 y 2y3 , 2v 6x2 y 2y3 , x2 (x2 y2 )3 y2 (x2 y2 )3
2v x 2
解:u(x, y) a ln(x2 y2 ),v(x, y) arct an y ,则 x
u 2ax , u 2ay , v y , v x , x x2 y2 y x2 y2 x x2 y2 y x2 y2 在区域x 0内连续,且 u v , v u 在区域x 0上成立时,2a 1, x y x y 即,当a 1 时,函数f (z)在区域x 0内是解析的。
Байду номын сангаас
而 u y2, u 2xy, v 2xy, v x2,在复平面上
x
y
x
y
处处连续,当x y 0时满足C R方程,
故f (z)仅在(0,0)点可导,在复平面上处处不解析。
2)因为f (z) x2 iy,则u(x, y) x2, v(x, y) y,
复变函数与积分变换公式

复变函数与积分变换公式复变函数是指定义在复数域上的函数。
复变函数与实变函数有很多相似之处,但也有着一些独特的性质和应用。
在实际问题中,经常会遇到求解复变函数的积分问题。
积分变换是一种通过对函数进行积分计算来求得更简单或者更易求解的函数的方法。
本文将介绍复变函数以及积分变换公式。
一、复变函数的定义和性质复变函数的定义:复变函数通常可以表示为 f(z) = u(x,y) +iv(x,y),其中 u(x,y) 和 v(x,y) 是实变量 x 和 y 的实函数,i 是虚数单位。
复变函数可以看作二元实函数的推广。
在复变函数的定义中,x 和 y 是自变量,而 u 和 v 是因变量。
复变函数的性质:复变函数具有以下性质:1.可微性:类似于实变函数中的导数,复变函数也有导数的概念,称为复导数。
如果复变函数f(z)在一些点z0处可导,则称f(z)在z0处可导。
2.全纯性:如果复变函数在一些区域上都可导,则称该函数在该区域上是全纯的。
3.古典解析性:如果复变函数在整个复平面上都可导,则称该函数是古典解析的。
4. 共轭性:对于复变函数 f(z) = u(x,y) + iv(x,y),可以定义其共轭函数 f*(z) = u(x,-y) - iv(x,-y)。
共轭函数与原函数在实部上相等,虚部上相反。
5.奇函数和偶函数:如果复变函数f(z)满足f(-z)=-f(z),则称f(z)是奇函数;如果f(-z)=f(z),则称f(z)是偶函数。
积分变换通常是求解复变函数积分的一种方法。
常见的积分变换公式有:1.单连通域中的柯西定理:设f(z)在单连通域D上是全纯的,则对于D的任意闭合曲线C,有∫[C] f(z)dz = 0这个公式是复变函数积分计算的基础。
2. 柯西-Goursat 定理:设 f(z) 在连通域 D 上是全纯的,则对于D 的任意简单闭合曲线 C,有∫[C] f(z)dz = 0这个公式是柯西定理的推广形式,适用于连通域D。
复变函数与积分变换公式

复变函数复习提纲(一)复数的概念1.复数的概念:z = X ∙ iy , X, y 是实数,x = Rez,y=lmz.r=_i.中的幅角。
3)arg Z与arctan~y之间的关系如下:Xy当X 0, arg Z= arctan 丄;Xyy -0,arg Z= arctan 二! Xyy :: O,arg Z= arctan -二J X4)三角表示:Z = Z(COS8 +isin0 ),其中日=argz;注:中间一定是“ +”号。
5)指数表示:Z = ZeF,其中V - arg z。
(二)复数的运算1.加减法:若Z I=X I iy1, z2=X2 iy2,贝廿z1二z2= x1二x2iy1- y22.乘除法:1)若z1 = x1 iy1, Z2 =X2 iy2,贝U狂h[N×2 一y$2i x2% x1y2 ;乙_ X1+ i y_ (x1 十i和X—i y_ XX y*y y x;。
XZ2 X2+ i% (对讪-X )i2y 2+2X222+ 2X222)若Z I=Iz I e i^,z2 =∣z2 e iθ ,则Z1Z2 = ZIll Z2 e i(t1也;3.乘幕与方根1)若Z= Z(COS J isin * n (CoS n i Sinn )= n e i"。
2)幅角:在Z=O时,矢量与X轴正向的夹角, 记为Arg Z (多值函数);主值arg Z 是位于(-理,二]注:两个复数不能比较大小2.复数的表示2)若 Z = IZ(COSB+isinT)=∣ze i ^,则(三)复变函数1∙复变函数: w = f z ,在几何上可以看作把 Z 平面上的一个点集 D 变到W 平面上的一个点集 G的映射. 2 •复初等函数1)指数函数:e z =e x cosy isiny ,在Z 平面处处可导,处处解析;且 注:e z 是以2二i 为周期的周期函数。
(注意与实函数不同) 3)对数函数:LnZ=In z+i (argz + 2kιι) (k=0,±1,±2八)(多值函数);主值:In Z = Inz+iargz 。
《复变函数与积分变换》 留数—计算规则

三、在 ∞ 点的留数 定义 2.2 设 ∞ 是 f ( z ) 的孤立奇点 , 则 f ( z ) 在 R < z < +∞ 内解析 ,
C 是 R < z < +∞ 内一条简单闭
y C
O
§5.2 留 数 —— 在 ∞ 点的留数
R
x
定理 2.2 若 f ( z ) 在 C U {∞} 上有有限个奇点:z1 ,L , z n , ∞ , 则
1 P ( z ) , z = 0 是 f ( z ) 的 3 级极点 . z3 1
解二:把 f ( z ) 在 z = 0 点展成洛朗级数 :
z − sin z 1 = 6 z6 z = 1 3 1 5 1 7 z − z − 3! z + 5! z − 7! z + L
O
1 = − c1 . ∫ C f ( z ) dz, 则 Res f ( z ) , ∞ 2π i Ñ
× zn
f ( z ) ,∞ . = − 2π i Res
§5.2 留 数 —— 在 ∞ 点的留数
规则 IV Res [ f ( z ), ∞ ] = − Res f ( )
(5)
假设 z0 是 f ( z ) 的 k 级极点 , k < m ,
f ( z ) = c− k ( z − z0 )
−k
+ L + c−1 ( z − z0 ) + c0 + c1 ( z − z0 ) + L
−1 m− k
( z − z0 )
0
m
f ( z ) = c− k ( z − z0 )
§5.2 留 数 —— 计算规则
复变函数与积分变换

C f ( z )dz lim 1 f ( k ) zk . n k
n
3.积分的性质
g 设 f ( z ) , ( z ) 在曲线 C 上可积,则 C 1) C f ( z )dz C f ( z )dz , 与 C 反向; 2) C Kf ( z )dz K C f ( z )dz,K 为常数;
习题:
1.设C是正向圆周z 1, 计算下列各积分的值。 dz dz dz 1 ) ; 2) ; 3) ; i z2 cos z c c c ( z )( z 2) 2 解:
dz 1) 0; z2 c dz 2) 0; cos z c 4i 3) 2i ; i i c ( z )( z 2) 2 i4 2 2 dz 1
z re i
z x iy
(5)代数表示:
5.运算 1)相等; 2)四则运算,及运算规律; 3)共轭运算,及运算规律; 4) z z r r [cos( ) i sin( )]
1 2 1 2 1 2 1 2
5)
z1 r 1 [cos(1 2 ) i sin(1 2 )] z2 r2 r i (1 2 ) 1e . r2
2i
3.沿指定曲线计算下列各积分.
ez 1 ) z 2 dz, C : z 2 1; c ez 3) C ( z 1)( z 2) dz, C : z 3; eiz 3 2) 2 dz, C : z 2i ; z 1 2 c ez 4) 3 dz, C : z 2; C z
2 2
在区域x 0内连续,且 u v v u , 在区域x 0上成立时, 1, 2a x y x y 1 即,当a 时,函数f ( z )在区域x 0内是解析的。 2
复变函数-总结

所 以 vx,y1y22xy-1x2c. 于是
2
2
27
fzx2-y2xy i 1 2y22 xy-1 2x2 c
由f00( x y 0 0) c0 从而
fz x 2- y 2 x y i 1 2 y 2 2 x y - 1 2 x 2 1 - 2 i z 2
即为所求解析函数。
等价定义:
设 f (z) = u(x,y) + iv(x,y) , A = u0+iv0 , z0 = x0+iy0 ,
那么
lim f (z)
zz0
运算性质:
limu(x, Axyxyl im xxyy0000 v(x,
y) y)
u0 v0
.
( 1 ) li (f m ( z ) g ( z ) ) lifm ( z ) lig ( m z )
例题1 一调和函数 ux,yx2-y2xy,
求一解析函数 fzuiv使 f00.
解:〔法一〕 ux2xy,uy-2yx
由 C-R 方程 v y u x 2 x y v 2 x y d y
由 v x - u y 2x2 yy 12c y2x c 2 xy - x v x c2xyc-12xx2,c,
9
对复平面内任一
x3
点z, 用直线将z
除了复数的平面表 示方法外, 还可以
与N相连, 与球面
N(0,0,2r) 用球面上的点来表
相交于P点, 那么
示复数.
球面上除N点外
x3
的所有点和复平
面上的所有点有
P(x1,x2,x3)
一一对应的关系,
而N点本身可代
表无穷远点, 记 作 .这样的球面
复变函数与积分变换公式汇总

复变函数与积分变换公式汇总一、复变函数复变函数是将复数域上的变量映射到复数域上的函数。
形式上,复变函数可以表示为f(z) = u(x,y) + iv(x,y),其中z = x + iy是自变量,u(x,y)和v(x,y)是实部和虚部函数。
复变函数的性质包括解析性、全纯性、调和以及实部虚部的关系等。
1.解析函数性质解析函数是复变函数的重要性质之一,它表示函数在其定义域内处处可导,并且其导数连续。
如果f(z)是定义在区域D上的函数,满足Cauchy-Riemann条件,则f(z)是该区域上的解析函数。
Cauchy-Riemann条件可以表示为:∂u/∂x=∂v/∂y,∂u/∂y=-∂v/∂x2.全纯函数性质全纯函数是解析函数的特殊情形,它在整个复平面上都有定义,并且是解析的。
全纯函数还有许多重要的性质,如Liouville定理、最大模原理等。
3.调和函数性质调和函数是复平面上的实函数,满足拉普拉斯方程(△u=∂²u/∂x²+∂²u/∂y²=0)。
调和函数在物理学中有广泛的应用,例如描述电势、热力学等现象。
4.实部虚部关系对于任意一个复变函数f(z),其实部u(x,y)和虚部v(x,y)之间有一些重要的关系。
例如,如果f(z)是一个解析函数,则它的实部和虚部函数满足调和方程,并且u(x,y)和v(x,y)是共轭调和函数。
二、积分变换公式积分变换是对函数进行积分操作的数学工具,常用于求解微分方程、信号处理等问题。
常见的积分变换公式包括拉普拉斯变换和傅里叶变换等。
1.拉普拉斯变换拉普拉斯变换是一种广泛应用于信号分析和控制系统的积分变换方法。
定义域为半无穷区间的函数f(t)在复平面上进行拉普拉斯变换后得到一个复变函数F(s),满足积分方程:F(s) = L[f(t)] = ∫[0,∞] f(t)e^(-st) dt2.拉普拉斯变换的性质拉普拉斯变换具有一些重要的性质,如线性性、位移性质、尺度变换、微分性质等。
复变函数与积分变换公式汇总

复变函数与积分变换公式汇总一、复变函数的基本概念和性质1. 复数集的定义:复数集是由实数和虚数构成的集合,形式为a + bi,其中a和b都是实数,i是虚数单位,满足i² = -12. 复变函数的定义:设有一个定义在平面上的函数f(z),其中z = x + yi是平面上的点,x和y是实数。
如果对任意给定的z都有唯一确定的复数w与之对应,那么称函数f(z)是复数域上的一个函数。
3.复变函数的连续性:如果在z0处存在一个复数A,使得当z趋于z0时,函数f(z)趋于复数A,则称函数f(z)在点z0处连续。
4.复变函数的可导性:如果函数f(z)在z0处连续,并且当z趋于z0时,函数f(z)的导数存在有一个有限的极限L,则称函数f(z)在z0处可导,并记为f'(z0)=L。
二、复变函数的常用公式1. 欧拉公式:e^(iθ) = cosθ + isinθ2. 增补公式:sinh(x + iy) = sinh(x)cos(y) + isin(y)cosh(x)3.多项式的根公式:设P(z)=aₙzⁿ+aₙ₋₁zⁿ⁻¹+…+a₀是一个非常数多项式,aₙ≠0,则P(z)=0在复数域存在n个根。
4.共轭根公式:如果z是复数P(z)=0的根,则z^*也是复数P(z)=0的根。
5. 辐角公式:对于复数z = x + yi,其中x和y是实数,辐角θ = arctan(y/x),其中-π < θ ≤ π。
6. 复数的模公式:对于复数z = x + yi,其中x和y是实数,模,z,= √(x² + y²)。
7. 三角和指数函数的关系:sinθ = (e^(iθ) - e^(-iθ))/(2i),cosθ = (e^(iθ) + e^(-iθ))/28. 三角函数和指数函数的关系:sin(ix) = i sinh(x),cos(ix) = cosh(x)。
三、复变函数的常用积分变换公式1.度量积分变换:对于复变函数f(z),定义如下的度量积分变换公式:∫(f(z)dz) = ∫(f(z₁)dz₁ + f(z₂)dz₂ + … + f(zₙ)dzₙ),(z₁,z₂,…,zₙ)为路径连续的点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复变函数复习提纲(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-.注:两个复数不能比较大小. 2.复数的表示 1)模:z =2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ- 中的幅角。
3)()arg z 与arctanyx之间的关系如下: 当0,x > arg arctan yz x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。
5)指数表示:i z z e θ=,其中arg z θ=。
(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。
2)若121122,i i z z e z z eθθ==, 则()121212i z z z z e θθ+=;()121122i z z e z z θθ-= 3.乘幂与方根1) 若(cos sin )i z z i z e θθθ=+=,则(cos sin )n nn in z z n i n z e θθθ=+=。
2) 若(cos sin )i z z i z e θθθ=+=,则122cos sin (0,1,21)nk k z i k n n n θπθπ++⎛⎫=+=- ⎪⎝⎭(有n 个相异的值)(三)复变函数1.复变函数:()w f z =,在几何上可以看作把z 平面上的一个点集D 变到w 平面上的一个点集G 的映射.2.复初等函数 1)指数函数:()cos sin z xe ey i y =+,在z 平面处处可导,处处解析;且()z z e e '=。
注:ze 是以2i π为周期的周期函数。
(注意与实函数不同) 3) 对数函数: ln (arg 2)Lnz z i z k π=++(0,1,2)k =±±(多值函数); 主值:ln ln arg z z i z =+。
(单值函数)Lnz 的每一个主值分支ln z 在除去原点及负实轴的z 平面内处处解析,且()1lnz z'=;注:负复数也有对数存在。
(与实函数不同) 3)乘幂与幂函数:(0)bbLnaa ea =≠;(0)b bLnzz e z =≠注:在除去原点及负实轴的z 平面内处处解析,且()1b b zbz-'=。
4)三角函数:sin cos sin ,cos ,t ,22cos sin iz iz iz iz e e e e z zz z gz ctgz i z z---+==== sin ,cos z z 在z 平面内解析,且()()sin cos ,cos sin z z z z ''==-注:有界性sin 1,cos 1z z ≤≤不再成立;(与实函数不同)4) 双曲函数 ,22z z z ze e e e shz chz ---+==; shz 奇函数,chz 是偶函数。
,shz chz 在z 平面内解析,且()(),shz chz chz shz ''==。
(四)解析函数的概念1.复变函数的导数 1)点可导:()0f z '=()()000limz f z z f z z∆→+∆-∆;2)区域可导: ()f z 在区域内点点可导。
2.解析函数的概念1)点解析: ()f z 在0z 及其0z 的邻域内可导,称()f z 在0z 点解析; 2)区域解析: ()f z 在区域内每一点解析,称()f z 在区域内解析; 3)若()f z 在0z 点不解析,称0z 为()f z 的奇点;3.解析函数的运算法则:解析函数的和、差、积、商(除分母为零的点)仍为解析函数;解析函数的复合函数仍为解析函数;(五)函数可导与解析的充要条件1.函数可导的充要条件:()()(),,f z u x y iv x y =+在z x iy =+可导⇔(),u x y 和(),v x y 在(),x y 可微,且在(),x y 处满足C D -条件:,u v u v x y y x∂∂∂∂==-∂∂∂∂ 此时, 有()u vf z i x x∂∂'=+∂∂。
2.函数解析的充要条件:()()(),,f z u x y iv x y =+在区域内解析⇔(),u x y 和(),v x y 在(),x y 在D 内可微,且满足C D -条件:,u v u v x y y x∂∂∂∂==-∂∂∂∂; 此时()u vf z i x x∂∂'=+∂∂。
注: 若()(),,,u x y v x y 在区域D 具有一阶连续偏导数,则()(),,,u x y v x y 在区域D 内是可微的。
因此在使用充要条件证明时,只要能说明,u v 具有一阶连续偏导且满足C R -条件时,函数()f z u iv =+一定是可导或解析的。
3.函数可导与解析的判别方法1)利用定义 (题目要求用定义,如第二章习题1)2)利用充要条件 (函数以()()(),,f z u x y iv x y =+形式给出,如第二章习题2) 3)利用可导或解析函数的四则运算定理。
(函数()f z 是以z 的形式给出,如第二章习题3)(六)复变函数积分的概念与性质1. 复变函数积分的概念:()()1lim nkkcn k f z dz f zξ→∞==∆∑⎰,c 是光滑曲线。
注:复变函数的积分实际是复平面上的线积分。
2. 复变函数积分的性质1)()()1ccf z dz f z dz -=-⎰⎰ (1c -与c 的方向相反); 2) ()()()()[],,cccf zg z dz f z dz g z dz αβαβαβ+=+⎰⎰⎰是常数;3) 若曲线c 由1c 与2c 连接而成,则()()()12cc c f z dz f z dz f z dz =+⎰⎰⎰。
3.复变函数积分的一般计算法 1)化为线积分:()cccf z dz udx vdy i vdx udy =-++⎰⎰⎰;(常用于理论证明) 2)参数方法:设曲线c : ()()z z t t αβ=≤≤,其中α对应曲线c 的起点,β对应曲线c 的终点,则()()[]()cf z dz f z t z t dt βα'=⎰⎰。
(七)关于复变函数积分的重要定理与结论1.柯西—古萨基本定理:设()f z 在单连域B 内解析,c 为B 内任一闭曲线,则()0cf z dz =⎰2.复合闭路定理: 设()f z 在多连域D 内解析,c 为D 内任意一条简单闭曲线,12,,n c c c 是c内的简单闭曲线,它们互不包含互不相交,并且以12,,n c c c 为边界的区域全含于D 内,则①()cf z dz ⎰()1,knk c f z dz ==∑⎰ 其中c 与kc均取正向;②()0f z dz Γ=⎰,其中Γ由c 及1(1,2,)c k n -=所组成的复合闭路。
3.闭路变形原理 : 一个在区域D 内的解析函数()f z 沿闭曲线c 的积分,不因c 在D 内作连续变形而改变它的值,只要在变形过程中c 不经过使()f z 不解析的奇点。
4.解析函数沿非闭曲线的积分: 设()f z 在单连域B 内解析,()G z 为()f z 在B 内的一个原函数,则()()()212112(,)z z f z dz G z G z z z B =-∈⎰说明:解析函数()f z 沿非闭曲线的积分与积分路径无关,计算时只要求出原函数即可。
5。
柯西积分公式:设()f z 在区域D 内解析,c 为D 内任一正向简单闭曲线,c 的内部完全属于D ,0z 为c 内任意一点,则()()002c f z dz if z z z π=-⎰6.高阶导数公式:解析函数()f z 的导数仍为解析函数,它的n 阶导数为()()()0102(1,2)()!n n c f z i dz f z n z z n π+==-⎰其中c 为()f z 的解析区域D 内围绕0z 的任何一条正向简单闭曲线,而且它的内部完全属于D 。
7.重要结论:12,010,()n ci n dz n z a π+=⎧=⎨≠-⎩⎰。
(c 是包含a 的任意正向简单闭曲线) 8.复变函数积分的计算方法1)若()f z 在区域D 内处处不解析,用一般积分法()()()[]cf z dz f z t z t dt βα'=⎰⎰2)设()f z 在区域D 内解析, ● c 是D 内一条正向简单闭曲线,则由柯西—古萨定理,()0cf z dz =⎰●c 是D 内的一条非闭曲线,12,z z 对应曲线c 的起点和终点,则有()()()()2121z cz f z dz f z dz F z F z ==-⎰⎰3)设()f z 在区域D 内不解析● 曲线c 内仅有一个奇点:()()()()()0001022()!cn n c f z dz i f z z z f z i dz f z z z n ππ+⎧=⎪-⎪⎨⎪=⎪-⎩⎰⎰(()f z 在c 内解析)● 曲线c 内有多于一个奇点:()cf z dz ⎰()1knk c f z dz ==∑⎰(ic 内只有一个奇点kz)或:()12Re [(),]nkk cf z dz i s f z z π==∑⎰(留数基本定理)● 若被积函数不能表示成()1()n o f z z z +-,则须改用第五章留数定理来计算。
(八)解析函数与调和函数的关系1.调和函数的概念:若二元实函数(,)x y ϕ在D 内有二阶连续偏导数且满足22220x yϕϕ∂∂+=∂∂,(,)x y ϕ为D 内的调和函数。
2.解析函数与调和函数的关系● 解析函数()f z u iv =+的实部u 与虚部v 都是调和函数,并称虚部v 为实部u 的共轭调和函数。