Chapter 1 复变函数与积分变换(英文版)

合集下载

复变函数第1节 傅氏积分,傅氏变换

复变函数第1节 傅氏积分,傅氏变换

解. 由Fourier变换的定义
F (w) F [ f (t)] f (t) e-iw td t -
1 e-iw t d t e-iwt 1 2sinw
-1
-iw -1
w
再求F(w)的Fourier逆变换即得 f(t)的积分表达式,
f (t) F -1[F (w)] 1 F (w) eiwtd w
1
1/2
t
二、单位脉冲函数及其傅氏变换
在物理学和工程技术中,除了连续分布量之外, 还有集中作用在一点的量. 例如,点电荷、点热源、 质点、单位脉冲等. 下面分析在原点处的单位脉冲.
设矩形电流脉冲:
(t
)
1
/
0
0t
其它
- (t)dt 1
(t)
1/
O
t
lim
0
(
t
)
0
t 0 t 0
引进狄拉克(Dirac)的函数,
i
-
f
( ) sin w(t
-
)d
dw
1
2p
-
-
f
(
)
cos w (t
-
)
d
d
w
(1.5)

f (t) 1
2p
-
-
f
(
)
cos w (t
-
)
d
d
w
(1.5)
可得
f (t) 1
p
0
-
f ( ) cosw(t
-
)
d
d
w
(1.6)
傅氏积分公式的三角形式
-
)
d
d

8复变函数与积分变换中英文简介

8复变函数与积分变换中英文简介

复变函数与积分变换课程编码:08N1120310课程中文名称:复变函数与积分变换课程英文名称:Complex Functions and Integral Transformation总学时:46学分:3.0先修课程:工科数学分析课程简介:主要讲述复变函数与积分变换的基本理论、基本方法及其应用。

复变函数部分包括:1.复数与复变函数;2.解析函数;3.复变函数的积分:包括复变函数的积分、柯西积分定理和柯西积分公式;4.级数:包括幂级数、泰勒级数和罗伦级数;5.留数及其应用;6.保形映射。

积分变换包括:1.傅里叶积分变换;2.拉普拉斯积分变换。

Course Description:There are two parts in this course.The first part is on complex functions:1. Complex Numbers and Complex Functions;2. Analytic Functions;3. Complex Integral: The Integral of complex functions ,Cauchy Integral Theorem and Cauchy Integral Formula;4. Series: Power series Taylor series and Laurent series;5. Residues and application of residues;6. Conformal mappings.The second part is on integral transforms:1. Fourier transforms;2. Laplace transforms.。

复变函数与积分变换第1章

复变函数与积分变换第1章

*
复数 复平面点集 扩充复平面及其球面表示
第一章 复数和复平面
*
§1.1 复数
1.复数的概念
在实数范围, 方程 x2=-1是无解的. 引进一个新数i, 称为虚数单位, 并规定 i2 =-1 从而i是方程x2=-1的一个根. 对于任意二实数x,y, 称z=x+iy或z=x+yi为复数, x,y分别称为z的实部和虚部, 记作 x=Re(z), y=Im(z)
汇报人姓名
*
在复平面上, 复数z还与从原点指向点z=x+iy的平面向量一一对应, 因此复数z也能用向量OP来表示. 向量的长度称为z的模或绝对值, 记作
O
x
y
x
y
q
P
z=x+iy
|z|=r
*显然, 下列各式成立来自Oxy
x
y
q
P
z=x+iy
|z|=r
*
在z0的情况, 以正实轴为始边, 以表示z的向量OP为终边的角的弧度q称为z的幅角, 记作 Arg z=q 这时, 有
上述结论可简明地表示为
*
乘幂 n个相同复数z的乘积称为z的n次幂,记作zn
zn=rn(cos nq+isin nq). (1.14)
如|z|=1,则(棣莫弗(De Moivre)公式).
(cos q+isin q)n = cos nq+isin nq. (1.15)
则对任意正整数n, 我们有
如果E内的每个点都是它的内点, 则称E为
开集。
01
03
02
平面点集D称为一个区域, 如果它满足下列 两个条件: 1) D是一个开集; 2) D是连通的, 就是说D中任何两点都可以用完全属于D的一条折线连接起来.

复变函数论(英文版)

复变函数论(英文版)

z zz¯ |z|2
We also have the following important relationships between a complex number and its conjugate:
1. A REVIEW OF COMPLEX NUMBERS
3
Proposition 1.5. Suppose that z = x + iy is a complex number.
2101 Complex Analysis Autumn 2010
Alexander V. Sobolev
Department of Mathematics, University College London, Gower Street, London, WC1E 6BT
E-mail address: A.Sobolev@
Proof. (1) Write |z|2 = x2 + y2, z = x + iy. (2) Let us prove the triangle inequality:
|z + w|2 = (z + w)(z¯ + w¯) = zz¯ + ww¯ + (wz¯ + zw¯)
= |z|2 + |w|2 + 2 Re(wz¯)
Definition 1.3. The complex conjugate of a complex number z = x + iy is defined to be the complex number z = x − iy.
Graphically, (meaning represented on the Argand plane) z is the reflection of z in the real axis.

复变函数与积分变换中的英文单词和短语解读

复变函数与积分变换中的英文单词和短语解读

复变函数与积分变换Functions of ComplexVariable and IntegralTransforms第一章复数与复变函数Chapter 1 Complex Numbers and Functions of Complex Varialble 复数complex number实部real number虚部imaginary unit纯虚数pure imaginary number共轭复数complex conjugate number运算operation减法subtraction乘法multiplication除法division复平面complex plane分派律distribute rule互换律exchange rule复合函数complex function复数的三角形式trigonometrical form of complexnumber模modulus辐角argument乘方power开方extraction开集open set闭集closed set邻域neighborhood充分必要条件sufficient and necessary condition 边界点boundary point 有界集bounded set区域domain简单闭曲线simple closed curve连通区域connected region分段滑腻piecewise smooth无穷远点point at infinity复变函数function of complex variable 单值函数single-valued function 多值函数multi-valued function持续continuity不等式inequality第二章解析函数Chapter 2 Analytic Functions微分differential奇点singularity解析函数analytic function导数derivative柯西-黎曼方程Cauchy-Riemann equation 调和函数harmonic function 指数函数exponential function对数函数logarithm function三角函数trigonometric function双曲函数hyperbolic function幂函数power function高阶导数higher order derivative求导法那么derivation rule链式法那么chain rule概念域domain导函数derivative function反函数inverse function复变函数与积分变换中的英文单词和短语第三章复变函数的积分Chapter 3 Integrals of functions of complex variable 柯西积分公式Cauchy integral formula柯西不等式Cauchy inequality第四章解析函数的级数表示Chapter 4 Series Expressions of Analytic Functions 复函数序列sequences of complex function级数series幂级数power series函数项级数series of functions收敛性convergence收敛半径radius of convergence泰勒级数Taylor series洛朗级数Laurent series发散divergence麦克劳林级数Maclaurin series泰勒级数展开Taylor series expansion绝对收敛absolutely convergent一致收敛uniform convergence部份和partial sum第五章留数及其应用Chapter 5 Residues and their Applications 留数residue 孤立奇点isolated singularity可去奇点removable singularity本性奇点essential singularity极点polem阶极点pole of order m当且仅当if and only if亚纯函数meromorphic function第六章共形映射Chapter 6Conformal Mappings从A到B的转角oriented angle from a to b保角映射angle-preserving mapping自映射self-mapping不动点fixed point分式线性变换linear fractional transformation 多边形polygon 第七章傅里叶变换Chapter 7Fourier Transforms傅里叶变换Fourier transform傅里叶积分Fourier integral卷积convolution线性性linearity对称性symmetry延迟性time shifting积分变换integral transform反演公式inversion formula共轭傅里叶积分conjugate Fourier integral广义傅里叶积分generalized Fourier integral傅里叶逆变换inverse Fourier transform傅里叶反演公式Fourier inversion formula傅里叶正弦变换Fourier sine transform傅里叶余弦变换Fourier cosine transform第八章拉普拉斯变换Chapter 8Laplace Transforms 拉普拉斯变换Laplace transform像image。

复变函数与积分变换精品PPT课件

复变函数与积分变换精品PPT课件
间的关系。然而一直到C.Wessel (挪威.1745-1818)和R.Argand (法国.1768-1822)将复数用平面向量或点来表示,以及 K.F.Gauss (德国1777-1855)与W.R.Hamilton (爱尔兰1805-1865)
定义复数 a ib 为一对有序实数后,才消除人们对复数真实性
的长久疑虑,“复变函数”这一数学分支到此才顺利地得到建立 和发展。
复变函数的 理论和方法在数学,自然科学和工程技术中有 着广泛的应用,是解决诸如流体力学,电磁学,热学弹性理论中 平面问题的有力工具。
复复变变函函数数中的的许理多论概和念方,法理在论数和学方,法自是然实科变学函和数工在程复技数术领中域的 推有广着和广发泛展的。应用,是解决诸如流体力学,电磁学,热学弹性理
当 z = 0 时, | z | = 0, 而幅角不确定. arg z可由下列关系确定:
arctan
y x
,
z在第一、四象限
arg
z
p
arctan
y x
,
z在第二象限
其中 p arctaarctan
y x
,
z在第三象限
说明:当 z 在第二象限时,p arg z p p p 0
论中平面问题的有力工具。 复变函数中的许多概念,理论和方法是实变函数在复数领
域的推广和发展 。
复变函数与积分变换
Complex Functions and Integral Transformation
课程性质: 必修
选课对象: 电子类各专业。
内容概要:介绍复变函数的基本理 论和方
法。为学生学习有关专业课和 扩大数学知识面提供必要的数 学基础。
| z || x | | y |,

复变函数与积分变换(第一章)

复变函数与积分变换(第一章)

z1z2 r1ei1 r2ei2 r1r2ei (1 2 ) .
z1z2 rr 1 2 z1 z2
Arg( z1 z2 ) Argz1 Argz2 .
两个复数相乘,积的模等于各复 数的模的积,积的幅角等于这两 个复数的幅角的和.
z1z2 rr 1 2 z1 z2
(6)简单曲线、光滑曲线
设x(t)和y(t)是实变量t的两个实函数,它们在闭区 间[,]上连续,则由方程组 x x(t ) y y(t ) 或由复值函数 z (t ) x(t ) iy(t ) 定义的集合称为复平面上的一条曲线,上述方程称为 曲线的参数方程.点A=z() 和B=z()分别称为曲线的 起点和终点.如果当 t1 , t2 [ , ], t1 t2 时,有 z(t1 ) z(t2 ) , 称曲线为简单曲线,也称为约当(Jordan)曲线. z ( ) z ( ) 的简单曲线称为简单闭曲线.
3 i 2eiπ / 6
复数乘法的几何意义
z1 r1 (cos1 i sin 1 ), z2 r2 (cos2 i sin 2 ).
z1 z2 r1 (cos 1 i sin 1 ) r2 (cos 2 i sin 2 ) r1 r2 ((cos 1 cos 2 sin 1 sin 2 ) i(sin 1 cos 2 cos 1 sin 2 )) r1r2 (cos(1 2 ) i sin(2 2 ))
a 0, ; (3) a ,则 a
a (4) a 0 ,则 ; 0
(5) , 的实部、虚部、幅角都无意义; (6)为了避免和算术定律相矛盾,对
0 , 0 , , 0

复变函数

复变函数
例1、求 z 平面上的下列图形在映射 w z2下的象。
1 0 r z , ; 4
2 0 , 0 r 2
4
3 x2 y2 C1 , 2xy C2; 4 x , y .
张 长 华
复变函数与积分变换
Complex Analysis and Integral Transform
解 (1) w z2 u x2 y2, v 2xy | w || z |2, arg( w) 2arg( z)
乘法的模与辐角定理
How complex the expression are!
张 长 华
复变函数与积分变换
(1)记
w
Complex Analysis and
ei (z rei ),则
注:①闭区域 D 区域D D的边界,它不是区域。
②任意一条简单闭曲线 C把复平面分为三个不相 交的点集:有界区域称为 C的内部;无界区域, 称为 C的外部; C,称为内部与外部的边界。
张 长 华
复变函数与积分变换
Complex Analysis and Integral Transform
四、复变函数的概念
(值域)的一个映射(或映照)。
G — 原象 G* — 象映象;
w叫z的象 G*叫G的象
注:单值函数w f (z)的反函数存在且为单值函数。
G*与 G 中的点为一一对应
映射为双射
张 长 华
复变函数与积分变换
Complex Analysis and Integral Transform
五、典 型 例 题
由 x z z , y z z 代入 F(x, y) 0知
2
2i
曲线C的方程可改写成复数形式 F( z z , z z ) 0 2 2i
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Polar
representation
of
complex
numbers
simplifies the task of describing geometrically the
product of two complex numbers. Let z1 r1 (cos1 isin 1 ) and z2 r2 (cos 2 isin 2 ) .
As a result of the preceding discussion, the second equality in Th3 should be written as arg z1z2 arg z1 arg z2 (mod 2 ) . “ mod 2 ” meaning that the left and right sides of the equation agree after addition of a multiple of 2 to the right side. Theorem 4. (de Moivre’s Formula). If z r (cos isin ) and n is a positive integer, then z n r n (cos n isin n ) . Theorem 5. Let w be a given (nonzero) complex number with polar representation w r (cos isin ), Then the n th roots of w are given by the n complex numbers
a 0i
to stand for a
. In other words, we are this
regarding the real numbers as those complex
numbers a bi , where b 0.
If, in the expression a bi the term a 0 . We call a pure imaginary number.
1 is now given the widely accepted designation i 1 .
The important expression It is customary to denote a complex number:
z x iy
The real numbers x and y are known as the real and
a bi r cos (r sin )i
This way is writing the complex number is called the polar coordinate( triangle ) representation.
Functions of Complex Variable and Integral Transforms
Department of Mathematics Harbin Institutes of Technology Gai Yunying
Preface
There are two parts in this course. The first part is Functions of complex variable(the complex analysis). In this part, the theory of analytic functions of complex variable will be introduced. The complex analysis that is the subject of this course was developed in the nineteenth century, mainly by Augustion Cauchy (1789-1857), later his theory was made more rigorous and extended by such mathematicians as Peter Dirichlet (1805-1859), Karl Weierstrass (1815-1897), and Georg Friedrich Riemann (1826-1866).
1.2 Four fundamental operations
The addition and multiplication of complex numbers are the same as for real numbers.
( x1 iy1 ) ( x2 iy2 ) ( x1 x1 ) i( y1 y2 ) ( x1 iy1 )( x2 iy2 ) ( x1x2 y1 y2 ) i( x1 y2 x2 y1 )
geometrically as a (two-dimensional) vector and
pictured as an arrow from the origin to the point in 2 given by the complex number.
Because the points ( x,0) 2 correspond to real numbers, the horizontal or x axis is called the real axis the vertical axis (the y axis) is called the imaginary axis.
form a
If the usual ordering properties for reals are to hold, then such an ordering is impossible.
1.3 Properties of complex numbers
A complex number may be thought of
z1 z2 x1 x2 and y1 y2 .
In what sense are these complex numbers an extension of the reals? We have already said that if a is a real we also write
Complex analysis has become an indispensable and
standard tool of the working mathematician, physicist,
and engineer. Neglect of it can prove to be a severe
Then
z1 z2 r1r2 ([cos1 cos2 sin 1 sin 2 ]
i[cos1 sin 2 cos 2 sin 1 ])
r1r2 [cos(1 2 ) isin(1 2 )]
Theorem 3. | z1 z2 || z1 | | z2 | and arg( z1z2 ) arg z1 arg z2
The crucial rules for a field, stated here for reference only, are: Additively Rules: i. z w w z; ii. z ( w s ) ( z w) s ; iii. z 0 z ; iv. z ( z ) 0. Multiplication Rules:
imaginary parts of z , respectively, and we write
Re z x,
Im z y
Two complex numbers are equal whenever they have
the same real parts and the same imaginary parts, i.e.
r sin
x

0
r cos
Figure 1.2 Polar coordinate representation of complex numbers
The length of the vector z a ib is denoted | z | and is called the norm, or modulus, or absolute value of z . The angle is called the argument or amplitude of the complex numbers and is denoted arg z . Argz arg z 2k k 0, 1, 2, arg z It is called the principal value of the argument. We have y z I or IV arctan x y arg z arctan z II x y z III arctan x
i. zw wz ; ii. ( zw) s z ( ws) ; iii. 1 z z ; iv. z ( z 1 ) 1 for z 0 .
Distributive Law:
z ( w s ) zw zs
Theorem 1. The complex numbers field.
Chapter 1 Complex Numbers and Functions of Complex Variable
1. Complex numbers field, complex plane and sphere
1.1 Introduction to complex numbers As early as the sixteenth century Ceronimo Cardano considered quadratic (and cubic) equations such as x 2 2 x 2 0, which is satisfied by no real number x , for example 1 1 . Cardano noticed that if these “complex numbers” were treated as ordinary numbers with the added rule that 1 1 1 , they did indeed solve the equations.
相关文档
最新文档