Use of constructed wetland for the removal of heavy metals from industrial wastewater

合集下载

湿地的生态:水与土地的交融 英语作文

湿地的生态:水与土地的交融 英语作文

The Ecology of Wetlands:The Fusion of Water and LandWetlands,where water and land come together in a harmonious blend, are unique ecosystems teeming with diverse life.They serve as a vital link between water and land,playing an essential role in maintaining the ecological balance of our planet.This essay delves into the ecology of wetlands,exploring the interplay between water and land,and the rich biodiversity they support.The Meeting Point of Two WorldsWetlands are transitional zones,a meeting point of terrestrial and aquatic ecosystems.They are characterized by their saturated soils and the presence of water,either at or near the surface.This unique environment results in a blend of land and water-based ecosystems, creating a rich biodiversity of plants and animals adapted to the wetland conditions.A Haven for BiodiversityThe fusion of water and land in wetlands creates a unique habitat that supports a rich variety of life.From birds and fish to mammals and insects,wetlands are teeming with wildlife.Many species are specially adapted to the wetland environment,and some are found nowhere else. Wetlands also serve as critical breeding grounds and stopover sites for migratory birds,making them vital for global bird populations.The Lifeblood of the EcosystemWetlands play a crucial role in the overall health of our planet's ecosystems.They act as natural water filters,absorbing pollutants and improving water quality.They also help to regulate climate by storing carbon,reducing greenhouse gas emissions.Furthermore,wetlands provide protection against natural disasters,absorbing excess rainfall to prevent flooding and acting as buffers against storm surges.The Delicate BalanceDespite their ecological importance,wetlands are among the most threatened ecosystems on Earth.Human activities such as drainage foragriculture,pollution,and climate change are causing wetlands to disappear at an alarming rate.The loss of these ecosystems not only threatens the species that rely on them but also compromises the essential services that wetlands provide for the environment and human well-being.ConclusionThe ecology of wetlands,where water and land intermingle,is a testament to the intricate balance of nature.These unique ecosystems, with their rich biodiversity and essential ecological functions,underscore the importance of preserving and protecting our planet's wetlands.As we marvel at the fusion of water and land in these vibrant habitats,we are reminded of our responsibility to safeguard these vital ecosystems for future generations.。

DGTJ08-2100-2012 人工湿地污水处理技术规范

DGTJ08-2100-2012 人工湿地污水处理技术规范

上海市工程建设规范人工湿地污水处理技术规程T e c h n i c a l s p e c i f i c a t i o n f o rw a s t e w a t e r t r e a t m e n tw i t h c o n s t r u c t e dw e t l a n dD G/T J08-2100-2012J12086-20122012 上海上海市城乡建设和交通委员会文件沪建交[2012]358号上海市城乡建设和交通委员会关于批准‘人工湿地污水处理技术规程“为上海市工程建设规范的通知各有关单位:由上海市政工程设计研究总院(集团)有限公司主编的‘人工湿地污水处理技术规程“,经市建设交通委科技委技术审查和我委审核,现批准为上海市工程建设规范,统一编号为D G/T J08-2100-2012,自2012年6月1日起实施㊂本规范由上海市城乡建设和交通委员会负责管理㊁上海市政工程设计研究总院(集团)有限公司负责解释㊂上海市城乡建设和交通委员会二○一二年四月十日前 言根据上海市城乡建设和交通委员会‘2010年上海市工程建设规范和标准设计编制计划(第一批)“(沪建交[2010]181号)的要求,规程编制组对农村生活污水人工湿地处理技术进行广泛调查研究,认真总结实践经验,并在广泛征求意见的基础上,编制本规程㊂本规程主要内容包括:1.总则;2.术语与符号;3.工艺流程;4.设计;5.施工与验收;6.运行与管理㊂本规程由上海市政工程设计研究总院(集团)有限公司负责解释㊂执行过程中如有意见或建议,请将相关资料寄送上海市政工程设计研究总院(集团)有限公司(地址:上海市中山北二路901号,邮政编码:200092),以供今后修订时参考㊂主编单位:上海市政工程设计研究总院(集团)有限公司参编单位:上海市园林科学研究所同济大学主要起草人:张 辰 谭学军 陆松柳 崔心红 陈 嫣卢 峰 陈 芸 孙 晓 沈昌明 支霞辉马鲁铭主要审查人:周 琪 杨殿海 杨海真 杨 凯 黄民生朱广汉 傅 威上海市建筑建材业市场管理总站二○一二年四月目 次1 总 则(1)………………………………………………………2 术语与符号(2)………………………………………………… 2.1 术 语(2)………………………………………………… 2.2 符 号(3)…………………………………………………3 工艺流程(4)…………………………………………………… 3.1 一般规定(4)……………………………………………… 3.2 工艺流程的选择(4)………………………………………4 设 计(6)……………………………………………………… 4.1 一般规定(6)……………………………………………… 4.2 表面流人工湿地(6)……………………………………… 4.3 水平潜流人工湿地(11)………………………………… 4.4 垂直流人工湿地(16)…………………………………… 4.5 植 物(18)……………………………………………… 4.6 填 料(18)……………………………………………… 4.7 防 渗(18)………………………………………………5 施工与验收(20)……………………………………………… 5.1 施 工(20)……………………………………………… 5.2 调试启动(20)…………………………………………… 5.3 验 收(21)………………………………………………6 运行与管理(22)………………………………………………本规程用词说明(23)………………………………………………引用标准名录(24)…………………………………………………条文说明(25)………………………………………………………1 总 则1.0.1 为建设社会主义新农村,规范本市农村生活污水人工湿地处理工程的设计㊁施工验收及运行管理,提高工程质量,制定本规程㊂1.0.2 本规程适用于本市规划设施服务人口在3万人以下的镇(乡)(以下简称镇)和村的新建㊁扩建和改建的生活污水处理工程中人工湿地的设计㊁施工验收及运行管理㊂1.0.3 人工湿地污水处理工程,除应符合本规程外,尚应符合国家现行有关标准的规定㊂12 术语与符号2.1 术 语2.1.1 表面流人工湿地f r e ew a t e r s u r f a c e c o n s t r u c t e dw e t l a n d污水以水平流方式从首端流至末端,且内部不设置填料的人工湿地㊂2.1.2 水平潜流人工湿地h o r i z o n t a l s u b s u r f a c e f l o wc o n s t r u c-t e dw e t l a n d污水以水平流方式从首端流至末端,且内部设置填料的人工湿地㊂2.1.3 垂直流人工湿地v e r t i c a l f l o wc o n s t r u c t e dw e t l a n d污水以垂直流方式从顶部(或底部)流至底部(或顶部),且内部设置填料的人工湿地㊂2.1.4 人工湿地植物v e g e t a t i o no f c o n s t r u c t e dw e t l a n d种植在人工湿地中,具有一定的耐污能力和污染物去除功能,同时具有一定景观效果的植物㊂2.1.5 人工湿地填料s u b s t r a t e s o f c o n s t r u c t e dw e t l a n d放置于人工湿地中,为人工湿地植物提供支持载体,为微生物提供附着表面的功能性介质材料㊂2.1.6 前处理p r e p r o c e s s i n g在人工湿地前,削减进水污染负荷,去除污水中漂浮物㊁部分悬浮物或有机物及平衡水质水量的过程㊂2.1.7 配水系统d i s t r i b u t i n g s y s t e m用于人工湿地均匀进水的设施,主要包括穿孔管㊁穿孔墙等㊂22.1.8 集水系统c o l l e c t i n g s y s t e m用于人工湿地均匀出水的设施,包括穿孔管㊁穿孔墙等㊂2.1.9 水力负荷h y d r a u l i c l o a d i n g r a t e人工湿地处理区单位时间单位面积所接受的污水量㊂2.1.10 C O D C r负荷C O D C r l o a d i n g r a t e人工湿地处理区单位时间单位面积所接受的C O D C r量㊂2.1.11 空隙率i n t e r s p a c e r a t i o人工湿地处理区中水所占的有效容积与总容积之比㊂水平潜流和垂直流人工湿地的有效容积为人工湿地处理区填料堆积体积与填料净体积之差㊂2.1.12 填料有效粒径比例e f f e c t i v e s i z e r a t i oo f s u b s t r a t e s填料经筛分后,处于要求粒径范围内的填料重量与总重量之比㊂2.1.13 水力停留时间h y d r a u l i c r e t e n t i o n t i m e污水在人工湿地处理区总容积中的计算平均停留时间㊂2.2 符 号W 人工湿地宽度;Q 进水流量;n 水力坡度;K y 填料渗透系数;H s 处理区的填料厚度;L 人工湿地长度;A 人工湿地面积㊂33 工艺流程3.1 一般规定3.1.1 污水在进入人工湿地前应根据水质情况进行不同程度的前处理,包括一级处理㊁强化一级处理或二级处理㊂3.1.2 人工湿地的设计进水S S值不宜超过100m g/L㊂3.1.3 人工湿地污水处理系统可由单一或多个类型的人工湿地组成,根据实际情况,可采用并联式㊁串联式或组合式㊂3.1.4 人工湿地污水处理工程应根据受纳水体环境容量以及国家和本市现行的有关标准,合理确定出水水质㊂3.1.5 人工湿地出水利用前,消毒措施应符合‘污水再生利用工程设计规范“G B50335的规定㊂3.2 工艺流程的选择3.2.1 人工湿地处理工艺流程应根据进水水质条件和出水水质要求,综合考虑各类型人工湿地的特点和工程用地等环境条件,通过技术经济比较后确定㊂3.2.2 去除污水中含碳有机物时,宜根据进水水质特征㊁出水水质要求和实际用地条件,选择表面流人工湿地㊁水平潜流人工湿地或垂直流人工湿地工艺㊂3.2.3 去除氨氮时,宜采用下行垂直流人工湿地工艺㊂3.2.4 去除总氮时,宜采用下列工艺流程:1 下行-上行垂直流人工湿地:42 下行垂直流水平潜流人工湿地:3 水平潜流下行垂直流人工湿地:54 设 计4.1 一般规定4.1.1 人工湿地设计时应充分利用原有地形,高程设计宜与建造地点的地势相一致㊂4.1.2 人工湿地设计应包括池体设计㊁布水集水系统设计㊁防渗设计㊁填料类型选择和植物种类选择㊂4.1.3 人工湿地的设计进水水质宜以实测值为基础确定,在无实测资料时,可按相似工程确定㊂4.1.4 人工湿地的有效面积应分别按C O D C r负荷和水力负荷进行计算,并取两者中的大值㊂4.1.5 人工湿地应根据处理水量的大小合理确定池数,并至少由两组平行运行的系统构成㊂4.1.6 人工湿地的水位控制宜根据人工湿地植物的生长特点确定㊂4.1.7 人工湿地污水处理工程的景观建设应遵循和谐㊁自然㊁均衡的原则,综合考虑人工湿地轮廓与不同类型人工湿地搭配㊁植物配置㊁水体景观设计㊁周围辅助设施建设等㊂4.2 表面流人工湿地4.2.1 表面流人工湿地宜设置进水区㊁处理区和出水区㊂4.2.2 表面流人工湿地单池长度宜为20m~50m,单池长宽比宜为3∶1~5∶1㊂4.2.3 表面流人工湿地的水深宜取30c m~60c m㊂64.2.4 表面流人工湿地的底坡宜为0.1%~0.5%㊂4.2.5 表面流人工湿地的主要设计参数宜根据试验资料确定,无试验资料时,可采用经验数据或按表4.2.5的规定取值㊂表4.2.5 表面流人工湿地的设计参数参 数取 值C OD C r负荷[g/(m2㊃d)]≤20水力负荷[m3/(m2㊃d)]≤0.1水力停留时间(d)3~64.2.6 表面流人工湿地应确保配水均匀,配水方式可采用穿孔管㊁穿孔墙或三角堰,人工湿地内部可采用导流措施,并应符合下列规定:1 穿孔管可置于砾石之中,长度应略小于人工湿地宽度(图4.2.6-1)㊂穿孔管相邻孔距宜按人工湿地宽度的10%计,不宜大于1m,7图4.2.6-1 表面流人工湿地穿孔管配水方式1 砾石区;2 穿孔管;3 进水管2 穿孔墙宜设置于配水渠与人工湿地之间,长度应与人工湿地宽度相同㊁高度宜为50c m(图4.2.6-2)㊂穿孔墙的开孔比宜为30%㊂8图4.2.6-2 表面流人工湿地穿孔墙配水方式1 进水管;2 配水渠;3 穿孔墙3 三角堰宜设于进水区之前,长度应与人工湿地宽度相同(图4.2.6-3)㊂三角堰堰口为90°角㊁堰口高0.1m㊁堰口宽0.2m,处㊂9图4.2.6-3 表面流人工湿地三角堰配水方式1 进水管;2 配水渠;3 三角堰4.2.7 表面流人工湿地应集水均匀,集水方式宜采用穿孔管,出水渠宜设置可旋转弯头或其他水位调节装置(图)㊂01图4.2.7 表面流人工湿地穿孔管集水方式1 出水区;2 出水渠;3 出水管;4 阀门(可不设);5 可旋转弯头;6 穿孔管4.3 水平潜流人工湿地4.3.1 水平潜流人工湿地结构,应符合下列要求:1 水平潜流人工湿地应设置进水区㊁处理区和出水区,自上而下宜为覆盖层㊁填料层和防渗层㊂2 进水区和出水区宜放置粒径为40mm~80mm的卵石和砾石,长度宜为0.5m,宜分布于整个湿地床宽㊂3 处理区填料粒径宜为4mm~30mm㊂4 覆盖层厚度应大于20c m,材料宜选用土壤㊂5 填料层厚度宜为50c m~100c m㊂6 水力坡度宜为0.5%~1.0%㊂4.3.2 水平潜流人工湿地的长宽比宜为3∶1~4∶1,长度宜小于50m㊂4.3.3 水平潜流人工湿地宽度和长度,可按下列公式计算:1 人工湿地宽度:11W=Q86400×K y×n×H s(4.3.3-1)式中 W 人工湿地宽度(m);Q 进水流量(m3/d);n 水力坡度;K y 填料渗透系数(m/s);H s 处理区填料厚度(m)㊂2 人工湿地长度:L=A W(4.3.3-2)式中 L 人工湿地长度(m);A 人工湿地面积(m2)㊂4.3.4 水平潜流人工湿地的填料空隙率宜为30%~50%㊂4.3.5 水平潜流人工湿地的主要设计参数宜根据试验资料确定,无试验资料时,可采用经验数据或按表4.3.5的规定取值㊂表4.3.5 水平潜流人工湿地的设计参数参 数取 值C OD C r负荷[g/(m2㊃d)]≤40水力负荷[m3/(m2㊃d)]≤0.2水力停留时间(d)2.5~54.3.6 水平潜流人工湿地宜采用多点配水方式,可采用穿孔管或穿孔墙,并应符合下列规定:1 穿孔管可设置于床面以下,长度宜略小于人工湿地宽度(图4.3.6-1)㊂穿孔管相邻孔距宜按人工湿地宽度的10%计,不宜大于1m,孔径宜为2c m~3c m㊂21图4.3.6-1 水平潜流人工湿地穿孔管配水方式1 进水区;2 处理区;3 进水管;4 穿孔管2 穿孔墙设于进水区之前,长度宜与人工湿地宽度相同(图4.3.6-2)㊂穿孔墙的开孔率可为30%,孔径为55mm~115mm㊂31图4.3.6-2 水平潜流人工湿地穿孔墙配水方式1 进水区;2 处理区;3 进水管;4 配水渠;5 穿孔墙4.3.7 水平潜流人工湿地应集水均匀,集水方式宜采用穿孔管或穿孔墙,出水渠宜设置可旋转弯头或其他水位调节装置(图4.3.7-1和图4.3.7-2)㊂41图4.3.7-1 水平潜流人工湿地穿孔管集水方式1 处理区;2 出水区;3 出水渠;4 出水管;5 阀门(可不设);6 可旋转弯头;7 穿孔管51图4.3.7-2 水平潜流人工湿地穿孔墙集水方式1 处理区;2 出水区;3 出水渠;4 出水管;5 阀门(可不设);6 可旋转弯头;7 穿孔墙4.4 垂直流人工湿地4.4.1 垂直流人工湿地结构,应符合下列要求:1 垂直流人工湿地自上而下宜为覆盖层㊁填料层㊁过渡层㊁排水层和防渗层㊂2 垂直流人工湿地各层厚度和材料粒径可按表4.4.1的规61定取值㊂垂直流人工湿地最大深度不宜大于2m㊂表4.4.1 垂直流人工湿地各层厚度和材料粒径分区/层厚度(c m)粒径(mm)材 料覆盖层10~208~16砾石填料层60~902~6粗砂㊁砾石过渡层10~205~10砾石排水层20~3016~32砾石4.4.2 垂直流人工湿地配水和集水系统均宜采用穿孔管,并应符合下列规定:1 配水支管长不宜大于6m㊁间距不宜大于2m,孔口间距宜按人工湿地宽度的10%计,不宜大于1m㊂2 集水支管和配水支管宜间隔㊁交错布置,集水支管进水孔径宜为2c m~3c m,且不应大于排水层材料的最大粒径㊂4.4.3 垂直流人工湿地应设通气管,通气管应与集水管相连,其管口至少应高出覆盖层顶面300mm㊂4.4.4 垂直流人工湿地的主要设计参数宜根据试验资料确定,无试验资料时,可采用经验数据或按表4.4.4的规定取值㊂表4.4.4 垂直流人工湿地的主要设计参数参 数取 值C OD C r负荷[g/(m2㊃d)]≤60水力负荷[m3/(m2㊃d)]≤0.3水力停留时间(d)3~5714.5 植 物4.5.1 人工湿地植物宜选用抗逆能力强㊁根系发达㊁生物量较大㊁观赏价值高㊁适生性较强的植物,以当地物种为首选㊂4.5.2 人工湿地植物种植的时间宜选择植物地下繁殖体萌芽前,宜为3㊁4月份或越冬期㊂4.5.3 人工湿地植物栽培宜采用容器苗移栽方式,并根据植物生物学和生态学特性进行种苗规格和种植密度设计㊂4.6 填 料4.6.1 人工湿地处理区宜选用比表面积大㊁机械强度高㊁稳定性好㊁取材方便㊁价格低廉的填料㊂4.6.2 根据工程情况和处理要求,人工湿地宜选用砾石㊁沸石㊁砂等一种或多种填料的组合㊂4.6.3 人工湿地填料的清水渗透系数(K y)宜为10-2m/s~10-1 m/s,渗透系数设计值宜为清水试验测定值的10%㊂4.6.4 人工湿地填料的有效粒径比例不宜小于80%㊂4.7 防 渗4.7.1 人工湿地防渗系统应选用可靠的防渗材料和相应的保护层,应考虑当地水文地质条件对防渗系统的长期影响㊂4.7.2 人工湿地防渗宜采用聚乙烯膜㊁聚合物水泥㊁黏土等防渗材料㊂4.7.3 人工湿地防渗层应符合下列要求:1 渗透系数不得大于1×10-8m/s㊂2 具有抗化学腐蚀能力㊂813 具有抗老化能力㊂4.7.4 人工湿地内穿墙管㊁穿孔管㊁穿孔墙等处应作防渗局部处理,防止污水渗入地下㊂915 施工与验收5.1 施 工5.1.1 施工单位应严格按设计文件和施工组织设计施工㊂对工程的变更应取得设计单位的设计变更文件㊁工程联系单等文件后进行㊂施工应符合国家相关的标准和规范要求㊂5.1.2 施工单位应做好文明施工,遵守有关环境保护的法律㊁法规,采取有效措施控制施工现场的各种粉尘㊁废气㊁废弃物以及噪声㊁振动等对环境造成的污染和危害㊂5.1.3 床体高程和底坡应满足设计要求,进行高程校核后方可进行下一步施工㊂5.1.4 防渗层下方的基础层应平整㊁压实㊁无裂缝㊁无松土,表面应无积水㊁石块㊁树根和尖锐杂物㊂人工湿地开挖时应保持原土层,于原土层上采取防渗措施㊂防渗施工结束后,应进行防渗透验收,质量验收合格后方可进行下一步施工㊂5.1.5 人工湿地不同区域应投放不同填料,在垂直流人工湿地中应按填料级配投放填料㊂5.1.6 若采用穿孔管进行配水和集水,施工时不应损坏穿孔管㊂5.1.7 植物种植时,应保持覆盖层湿润,宜搭建操作架或铺设踏板,不应直接踩踏人工湿地和植物幼苗㊂5.2 调试启动5.2.1 应检查供电是否正常,水泵㊁闸阀㊁水位控制器㊁仪表和控制系统能否正常工作㊂025.2.2 应利用充水试验,检查构筑物的渗漏和耐压情况,检查水路是否畅通㊂5.2.3 在人工湿地启动期间,进水负荷应逐步提高至正常运行负荷㊂5.2.4 人工湿地水位应可调节㊂5.3 验 收5.3.1 人工湿地竣工验收前,建设单位应组织通水试运行,试运行期不应少于3个月㊂施工单位应在试运行期内对工程质量承担保修责任㊂5.3.2 试运行期结束后,建设单位应书面报请当地环保主管部门进行水质检测㊂施工单位㊁建设单位应配合环保主管部门进行出水水质验收,出水水质应符合设计要求㊂5.3.3 在依次完成工程主要部位验收㊁单项工程验收㊁设备安装工程验收和水质验收后,施工单位应预先1个月向监理和建设单位书面申请人工湿地污水处理工程竣工验收㊂5.3.4 建设单位在收到施工单位提交的竣工验收申请,并报主管部门批准后,应组织竣工验收㊂竣工验收时应提供以下材料:1 批准的设计文件和设计变更文件㊂2 完整的启动试运行和生产试运行记录㊂3 试运行期间进出水污染物连续监测报告㊂4 其他相关技术资料㊂5.3.5 竣工验收合格后,人工湿地方可投入正式使用㊂建设单位应将有关项目前期㊁勘测㊁设计㊁施工及验收的文件和技术资料归档㊂126 运行与管理6.0.1 人工湿地的运行应符合‘城市污水处理厂运行㊁维护及其安全技术规范“C J J60中的有关规定,同时还应符合国家现行有关标准的规定㊂6.0.2 应根据人工湿地的具体特点,制定运行管理指导手册㊂6.0.3 人工湿地日常运行可采用连续㊁间歇或潮汐流方式㊂6.0.4 管件不应堵塞,水泵㊁水位控制器等应正常工作㊂6.0.5 人工湿地不应出现壅水或上部床层无水状态㊂如出现壅水现象,应检查配水和集水的均匀性和填料区水流的畅通性㊂如集配水不均匀,应对集配水设施进行维护;如填料堵塞,宜按间歇方式运行人工湿地,必要时可更换部分填料㊂6.0.6 应加强对植物生长的管理,补种缺苗和死苗,勤除杂草,清除枯枝落叶,定期收割植物,及时控制病虫害㊂6.0.7 宜采取投放食蚊鱼和青蛙等灭蚊蝇措施㊂6.0.8 人工湿地不宜使用除草剂和杀虫剂㊂6.0.9 对人工湿地进出水水质进行监测,各监测项目应符合国家和地方相关标准的规定㊂22本规程用词说明1 为便于在执行本规程条文时区别对待,对要求严格程度不同的用词说明如下:1)表示很严格,非这样做不可的用词:正面词采用 必须”,反面词采用 严禁”㊂2)表示严格,在正常情况下均应这样做的用词:正面词采用 应”,反面词采用 不应”或 不得”㊂3)表示允许稍有选择,在条件许可时首先应这样做的用词:正面词采用 宜”,反面词采用 不宜”;表示有选择,在一定条件下可以这样做的用词,采用可”㊂2 本规程中指明应按其他有关标准㊁规范执行的写法为 应符合 的规定”或 应按 执行”㊂32引用标准名录1 ‘污水再生利用工程设计规范“G B503352 ‘城市污水处理厂运行㊁维护及其安全技术规范“C J J60 42上海市工程建设规范人工湿地污水处理技术规程D G/T J08-2100-2012条 文 说 明2012 上海目 次1 总 则(27)……………………………………………………2 术语与符号(28)……………………………………………… 2.1 术 语(28)………………………………………………3 工艺流程(29)………………………………………………… 3.1 一般规定(29)…………………………………………… 3.2 工艺流程的选择(30)……………………………………4 设 计(31)…………………………………………………… 4.1 一般规定(31)…………………………………………… 4.2 表面流人工湿地(32)…………………………………… 4.3 水平潜流人工湿地(33)………………………………… 4.4 垂直流人工湿地(35)…………………………………… 4.5 植 物(36)……………………………………………… 4.6 填 料(38)……………………………………………… 4.7 防 渗(40)………………………………………………5 施工与验收(42)……………………………………………… 5.1 施 工(42)……………………………………………… 5.2 调试启动(43)…………………………………………… 5.3 验 收(43)………………………………………………6 运行与管理(44)………………………………………………C o n t e n t s1 G e n e r a l p r o v i s i o n s (27)………………………………………2 T e r m s a n d s ym b o l s (28)……………………………………… 2.1 T e r m s (28)………………………………………………3 F l o wc h a r t (29)……………………………………………… 3.1 G e n e r a l r e g u l a t i o n (29)………………………………… 3.2 C h o i c e o f f l o wc h a r t (30)………………………………4 D e s i gn (31)…………………………………………………… 4.1 G e n e r a l r e g u l a t i o n (31)………………………………… 4.2 F r e ew a t e r s u r f a c e c o n s t r u c t e dw e t l a n d (32)………… 4.3 H o r i z o n t a l s u b s u r f a c e f l o wc o n s t r u c t e dw e t l a n d (33)…… 4.4 V e r t i c a l f l o wc o n s t r u c t e dw e t l a n d (35)………………… 4.5 P l a n t s (36)……………………………………………… 4.6 S u b s t r a t e s (38)…………………………………………… 4.7 S e e p a g e p r e v e n t i o n (40)…………………………………5 C o n s t r u c t i o na n d a c c e p t a n c e (42)…………………………… 5.1 C o n s t r u c t i o n (42)………………………………………… 5.2 D e b u g g i n g (43)…………………………………………… 5.3 A c c e p t a n c e (43)…………………………………………6 O p e r a t i o na n dm a n a g e m e n t (44)……………………………1 总 则1.0.1 说明制定本规程的宗旨㊂1.0.2 规定本规程的适用范围㊂1.0.3 关于人工湿地工程建设尚应执行现行有关标准的规定㊂722 术语与符号2.1 术 语2.1.5 关于人工湿地填料的定义㊂人工湿地填料是可为植物提供支持载体,可为微生物提供附着表面,且本身最好具有污染物去除作用的功能性介质材料㊂2.1.6 关于人工湿地前处理的定义㊂人工湿地前处理设施主要包括格栅㊁沉砂池㊁初沉池㊁调节池等,如有必要,可设置混凝沉淀过滤或二级生物处理工艺㊂人工湿地应设置前处理设施,以去除污水中漂浮物㊁部分悬浮物或有机物及平衡水质水量㊂823 工艺流程3.1 一般规定3.1.1 关于人工湿地前处理的规定㊂污水中污染物浓度过高不利于人工湿地的处理,尤其悬浮颗粒浓度较高易引发人工湿地堵塞㊂因此需对人工湿地进水进行前处理,以有效降低进水污染物浓度,一般采用格栅㊁沉砂池或初沉池即可,当进水量较大,污染物浓度很高或者对人工湿地出水要求较高时,应采用一级强化处理或二级生物处理㊂3.1.2 关于人工湿地进水水质的规定㊂从延长人工湿地使用寿命角度考虑,规定了人工湿地的进水S S值不宜超过100m g/L㊂3.1.3 关于人工湿地处理系统组合的规定㊂人工湿地可根据地形㊁景观㊁处理水质水量等外部条件的变化而采用不同的组合㊂当多个人工湿地进行串联时,需对单一人工湿地进行污染物负荷和水力负荷的独立核算,应避免串联前端人工湿地负荷过高㊂3.1.4 关于人工湿地出水水质的规定㊂人工湿地的出水水质应根据实际要求确定,应满足国家和本市现行的有关标准,并根据进水水质和出水水质要求来合理确定人工湿地的污染物负荷和水力负荷,以避免工程规模过大或过小㊂3.1.5 关于人工湿地出水消毒的规定㊂人工湿地末端出水应根据利用途径决定是否消毒㊂从国内外人工湿地实际工程建设以及相应的规范标准来看,出水作为补充水源直接排入天然水体或者人工水体时一般不进行消毒;出水作为再生水进行回用时,多数需要进行消毒㊂我国‘污水再生利用工程设计规范“G B5033592规定:对于需要通过管道输送再生水的非现场回用必须加氯消毒,而对于现场回用不限制消毒方式㊂3.2 工艺流程的选择3.2.1 关于人工湿地工艺流程选择的规定㊂不同类型的人工湿地在污染物去除㊁工程费用㊁占地面积㊁水力负荷和长期运行维护等方面均有不小的差异,表3.2.1为不同类型人工湿地在负荷㊁面积㊁工程费用㊁环境效应以及处理效果等方面的定性比较㊂在处理污水时,可综合考虑进水水质特点㊁资金投入以及外部条件限制等多种因素选择单一类型人工湿地或者多类型组合式人工湿地㊂表3.2.1 不同类型人工湿地特性参 数表面流人工湿地水平潜流人工湿地上行垂直流人工湿地下行垂直流人工湿地水流方式表面漫流水平潜流上行垂直流下行垂直流负荷低较高高高占地面积大一般较小较小构造管理简单一般复杂复杂工程建设费用低较高高高季节气候影响大一般一般一般卫生状况差好一般一般景观效果好好较好较好有机物去除能力一般强强强硝化能力较强较强一般强反硝化能力弱强较强一般除磷能力弱较强较强较强034 设 计4.1 一般规定4.1.3 关于人工湿地设计进水水质的规定㊂进水水质是人工湿地的重要设计参数,直接关系人工湿地处理效果㊁占地面积和工程造价及运行维护㊂因此,在进行人工湿地设计时,宜根据进水水质实测结果,确定人工湿地设计进水水质㊂4.1.4 关于人工湿地有效面积的规定㊂人工湿地的有效面积应保证人工湿地建成运行时水力负荷和污染负荷同时满足要求,故作此规定㊂4.1.5 关于人工湿地数量控制的规定㊂为保证人工湿地单体在检修或休养调整时不影响处理效果,人工湿地设计时应设计两个单体以上,并确保有单体检修或休养调整时,整体水力负荷和污染负荷仍满足处理要求㊂由于水力流动时存在边际效应,人工湿地单体面积可大于20m2,以提高有效面积比例,但也可根据实际情况酌情减少㊂考虑布水集水的均匀性等问题,人工湿地的单体面积亦不宜过大㊂4.1.6 关于人工湿地水位的规定㊂人工湿地内的水位影响人工湿地有效容积和水力停留时间,较高的水位可以在一定程度上提升人工湿地的利用效率㊂不同的人工湿地植物在根系等生长特性方面存在差异,应根据不同植物及不同时期选择合适的水位㊂134.2 表面流人工湿地4.2.1 关于表面流人工湿地结构组成的规定㊂表面流人工湿地结构如图4.2.1所示㊂进水区的主要目的为均匀配水,要求在人工湿地横向和垂直高度上尽可能配水均匀,以充分利用人工湿地㊂处理区为人工湿地的主体部分,水质净化作用主要在此区域完成,该区域通过植物的拦截过滤吸收作用以及附着在植物表面的微生物生化作用对污染物进行处理㊂出水区的主要目的为均匀出水,要求在人工湿地横向和垂直高度上尽可能集水均匀㊂图4.2.1 表面流人工湿地示意图1 配水管;2 出水管;3 覆盖层;4 防渗层a 进水区;b 处理区;c 出水区4.2.2 关于表面流人工湿地长宽的规定㊂在停留时间一定的条件下,人工湿地越长,水流流速越快,污染物的沉降以及植物的拦23。

农村生活污水人工湿地处理设施运行维护导则

农村生活污水人工湿地处理设施运行维护导则

农村生活污水人工湿地处理设施运行维护导则Guidelines for operation and maintenance of constructed wetlands forrural domestic sewage treatment浙江省住房和城乡建设厅2019年11月根据《浙江省农村生活污水处理设施管理条例》,按照标准化运维要求,为确保农村生活污水人工湿地处理设 施的稳定运行,改善农村水环境质量,编制组经广泛调查研究,认真总结人工湿 地处理设施运行维护的实践经验,在 广泛征求意见的基础上,制定了本导则。

本导则共分为7章。

主要内容包括:总则,术语,基本规定,日常养护,巡查,维修,废弃物处置和尾水排 放。

本导则为首次发布。

本导则由浙江省住房和城乡建设厅村镇处负责解释。

主编单位:浙江清华长三角研究院浙江天洼环保科技有限公司浙江问源环保科技股份有限公司参编单位:宁波滕头环保有限公司宁波诺丁汉新材料研究院有限公司浙江省长三角标准技术研究院嘉兴市住房和城乡建设局杭州 市水处理设施建设发展中心目次1总则 ............................................................................ 1 2术语 ........................................................................... 2 3基本规定 ........................................................................ 3 4日常养护 ........................................................................ 5 5巡查 ........................................................................... 6 6 维修 ........................................................................... 9 7 废弃物处置和尾水排放 . (10)本导则用词说明 ..................................................................... 11 弓I 用标准名录 ..................................................................... 12主要起草1 • 盛晓琳刘锐 许明海 史楷岐 郭正邓铭庭 韦星任主要审查 人: a 十幺T 韦 _ 丰去棊 -梁志伟 王付超 何起利 郁强强 宋小燕 张宏斌 许枫 施君源 方乾勇 朱国平 章燃灵 孔令为 徐超明1总则1.0.1为规范农村生活污水人工湿地处理设施的运行维护管理,持续有效发挥其削减污染物排放的功效,改善农村水环境,制定本导则。

我的文献检索作业

我的文献检索作业

1、作为一名研究生,谈谈你对文献信息检索在科学研究中作用的认识文献检索是将信息按一定的方式组织和储存起来,并根据信息用户的需要找出相应信息的过程。

科学研究立足于对已有知识的搜集、积累、研究和对未知世界的探索。

因此,善于信息检索是进行科学研究必备的要素。

科学研究的高速发展,研究规模迅速扩大,研究成果的大量涌现,导致文献数量急剧增加。

作为一名在校研究生,从事科学的研究,文献的检索有着关键性的作用。

首先,它给予科研向导、指引的作用。

通过大量相关文献的阅读,了解相关领域研究的范围和进度,提供一些研究的思路和方法,具体限制和提供研究课题和假设,相关的背景材料和可能出现的问题及解决方案,从而便于我们研究方向的确定,避免重复的劳动和错误的方法的使用,开拓我们的思路,把研究的水平提高到更高地层次,而不是仅仅限于现状。

其次,它给予我们研究结论的论证和鉴定。

我们科研结论并不是所有都具有正确性,需要和其他人的研究结论相对比,所以我们需要通过文献的查询,了解他人的科研结论,当研究方向一致并结论一致的时候,可以得出我们正确的结论,才是有意义的科研结论。

2、参观图书馆阅览室,以现实生活中一个问题的解决为例,详细介绍说明这个问题解决的全过程问题的提出:我们环境工程在做设计时不仅设计工艺流程,还要进行环保设备的选取。

在整个设计中有个消毒处理,消毒处理有很多的方式方法,考虑到经济、效果等综合条件,决定选用加氯消毒。

因此需要选取加氯消毒的设备。

解决过程:首先来到图书馆304,用电脑进入华东交通大学图书馆主页,进入图书分布情况,了解到我们环境科学属于X类。

然后在书架上找到X类,在这里找到《环保设备材料手册》这本书。

《环保设备材料手册》作者:王绍文、张殿印、徐世勤主编出版社:冶金工业出版社编号:X505 W159 ISBN 7-5024-0750-2在这本书487-491页,第二篇:水污染处理设备,第三节:加氯消毒设备里介绍了四种加氯机,分别为转子真空加氯机、74型全玻璃加氯机、ZJ型转子加氯机和SDX型随动式加氯机。

英语作文废水处理

英语作文废水处理

英语作文废水处理Water is one of the most essential resources for human survival, and it is crucial to ensure that the water we use is clean and safe. However, with the rapidindustrialization and urbanization, the issue of water pollution has become increasingly severe. One of the major sources of water pollution is the discharge of wastewater from industrial processes and domestic activities. Therefore, it is important to develop effective wastewater treatment methods to protect our water resources and the environment.Wastewater treatment is the process of removing contaminants from wastewater, making it safe to be discharged back into the environment or reused. There are several steps involved in wastewater treatment, including physical, chemical, and biological processes. The goal of these processes is to remove pollutants such as organic matter, nutrients, and toxic substances from the wastewater, and to disinfect it to prevent the spread of waterbornediseases.One of the most common methods of wastewater treatmentis the use of sewage treatment plants. These plants use a combination of physical, chemical, and biological processes to remove contaminants from the wastewater. In the physical treatment stage, large solids are removed from the wastewater through processes such as screening and sedimentation. Then, in the chemical treatment stage, chemicals such as chlorine are added to the wastewater to remove pathogens and other harmful substances. Finally, in the biological treatment stage, microorganisms are used to break down organic matter in the wastewater.Another method of wastewater treatment is the use of constructed wetlands. Constructed wetlands are artificial wetlands that are designed to mimic the natural processesof wetland ecosystems. In these wetlands, plants and microorganisms help to remove pollutants from the wastewater through processes such as filtration, adsorption, and microbial degradation. Constructed wetlands are an effective and environmentally friendly method of wastewatertreatment, as they can remove a wide range of contaminants and provide habitat for wildlife.In addition to these traditional methods of wastewater treatment, there are also emerging technologies that show promise in treating wastewater more effectively. For example, membrane bioreactors use a combination of biological treatment and membrane filtration to remove contaminants from wastewater. This technology is particularly effective in treating wastewater with high organic and nutrient content. Another emerging technology is electrocoagulation, which uses an electric current to remove contaminants from wastewater through processes such as coagulation, flocculation, and oxidation.Overall, wastewater treatment is a crucial process for protecting our water resources and the environment. By developing and implementing effective wastewater treatment methods, we can ensure that the water we use is clean and safe for both human consumption and the environment. It is important for governments, industries, and individuals to work together to invest in wastewater treatmentinfrastructure and technologies, and to promote water conservation and pollution prevention practices. Only by doing so can we ensure a sustainable and healthy future for our water resources.。

英语作文-水生态环境保护与修复技术研究

英语作文-水生态环境保护与修复技术研究

英语作文-水生态环境保护与修复技术研究The preservation and restoration of aquatic ecosystems are paramount in ensuring the sustainability of our environment. With the increasing threats posed by pollution, habitat destruction, and climate change, it is imperative that we focus our efforts on researching and implementing effective techniques for the protection and rehabilitation of aquatic habitats. This essay explores various technologies and strategies employed in the study of water ecology and ecosystem restoration.One of the most pressing issues affecting aquatic ecosystems is water pollution. Chemical pollutants from industrial, agricultural, and domestic sources contaminate water bodies, endangering the health of aquatic organisms and disrupting entire ecosystems. To address this challenge, researchers have developed advanced water treatment technologies aimed at removing contaminants and restoring water quality.Among these technologies, bioremediation stands out as a promising approach for mitigating water pollution. Bioremediation harnesses the natural abilities of microorganisms to degrade pollutants and cleanse contaminated environments. By introducing specific microbial strains or enhancing existing microbial communities, bioremediation can effectively break down pollutants such as oil spills, heavy metals, and organic compounds, restoring the ecological balance of aquatic systems.In addition to bioremediation, the implementation of constructed wetlands has emerged as a sustainable solution for water treatment and habitat restoration. Constructed wetlands mimic the natural filtration processes of wetland ecosystems, utilizing plants, soil, and microorganisms to remove pollutants and improve water quality. These engineered ecosystems not only provide habitat for diverse plant and animal species but also serve as effective buffers against flooding and erosion, enhancing the resilience of aquatic ecosystems to environmental disturbances.Furthermore, advances in monitoring and modeling technologies have revolutionized our understanding of aquatic ecosystems and their response to environmental changes. Remote sensing, geographic information systems (GIS), and mathematical modelingtechniques enable scientists to analyze complex ecological data, identify patterns, and predict future trends in water quality and ecosystem dynamics. By integrating field observations with computational analyses, researchers can develop evidence-based management strategies for the conservation and restoration of aquatic habitats.Moreover, community-based approaches play a crucial role in promoting public participation and stewardship in water conservation efforts. Citizen science initiatives empower individuals and local communities to contribute valuable data on water quality, biodiversity, and ecosystem health, fostering a sense of ownership and responsibility for the protection of aquatic environments. Through education, outreach, and collaborative partnerships, stakeholders can work together to address the root causes of water pollution and advocate for sustainable water management practices.In conclusion, the preservation and restoration of aquatic ecosystems require a multidisciplinary approach that combines scientific research, technological innovation, and community engagement. By investing in the development and implementation of effective water management strategies, we can safeguard the health and integrity of our water resources for future generations. Together, we can strive towards a more sustainable and resilient aquatic environment for all living beings.。

人工湿地污水处理工程技术规范

人工湿地污水处理工程技术规范

人工湿地污水处理工程技术规范人工湿地污水处理工程技术规范2011年07月18日重要提醒:系统检测到您的帐号可能存在被盗风险,请尽快查瞧风险提示,并立即修改密码。

| 关闭网易博客安全提醒:系统检测到您当前密码的安全性较低,为了您的账号安全,建议您适时修改密码立即修改 | 关闭人工湿地、污水BOT、垃圾BOT项目我公司专业从事人工湿地设计与施工;污水处理、垃圾填埋及焚烧发电项目的BOT、BT HJ 中华人民共与国环境保护行业标准HJ ×××-×××× 人工湿地污水处理工程技术规范Technical specification of constructed wetlandsfor wastewater treatment engineering(征求意见稿)20××-××-××发布20××-××-××实施环境保护部发布前言为贯彻《中华人民共与国环境保护法》与《中华人民共与国水污染环境防治法》,规范我国人工湿地污水处理工程的建设、运行、维护与管理,制订本标准。

本标准规定了人工湿地污水处理工程的设计、施工、验收与运行管理的技术要求。

本标准为首次发布。

本标准由环境保护部科技标准司组织制订。

本标准起草单位:沈阳环境科学研究院。

本标准由环境保护部20□□年□□月□□日批准。

本标准自20□□年□□月□□日起实施。

本标准由环境保护部解释人工湿地污水处理工程技术规范本标准规定了采用人工湿地工艺的污水处理工程设计、施工、验收、运行维护与管理的技术要求。

本标准适用于采用人工湿地工艺的新建、扩建、改建的城镇生活污水及接近城镇生活污水水质其她类型的污水处理工程,可作为环境影响评价、可行性研究、设计施工、建设项目竣工环境保护验收及建成后运行与管理的技术依据。

建在水上的豪宅英文作文

建在水上的豪宅英文作文

建在水上的豪宅英文作文英文回答:Waterfront Mansions: A Luxurious Paradise。

Waterfront mansions are the epitome of opulence and tranquility, offering an unparalleled living experience. These magnificent dwellings command breathtaking views of shimmering waters, swaying palm trees, and serene landscapes. Whether you seek a secluded retreat or a grand entertainment space, waterfront mansions cater to your every desire.Unparalleled Views and Ambiance。

The primary allure of waterfront mansions lies in their awe-inspiring vistas. From panoramic ocean views to serene lakefront settings, these homes provide a constant connection with nature. The gentle lapping of waves against the shore or the tranquil reflections of the sun on thewater create a calming and rejuvenating ambiance.Exceptional Architecture and Design。

Waterfront mansions are architectural masterpieces that showcase innovative design and exquisite craftsmanship.They often feature expansive open floor plans, floor-to-ceiling windows, and soaring ceilings that maximize the natural light and panoramic views. The exteriors areequally impressive, with graceful curves, intricate details, and opulent facades that complement the surrounding environment.Lavish Amenities and Features。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Use of constructed wetland for the removal of heavy metals from industrial wastewaterSardar Khan a ,*,Irshad Ahmad b ,M.Tahir Shah b ,Shafiqur Rehman a ,Abdul Khaliq caDepartment of Environmental Science,University of Peshawar,Peshawar 25120,Pakistan bNational Center of Excellence in Geology,University of Peshawar,Pakistan cAtomic Energy Commission,REO-Peshawar,PO Box No.734,University of Peshawar,Pakistana r t i c l e i n f oArticle history:Received 14October 2008Received in revised form 24April 2009Accepted 22May 2009Available online 17June 2009Keywords:Industrial wastewater EfficiencyConstructed wetland Hydrophytes Treatmenta b s t r a c tThis study was conducted to investigate the effectiveness of a continuous free surface flow wetland for removal of heavy metals from industrial wastewater,in Gadoon Amazai Industrial Estate (GAIE),Swabi,Pakistan.Industrial wastewater samples were collected from the in-let,out-let and all cells of the con-structed wetland (CW)and analyzed for heavy metals such as lead (Pb),cadmium (Cd),iron (Fe),nickel (Ni),chromium (Cr)and copper (Cu)using standard methods.Similarly,samples of aquatic macrophytes and sediments were also analyzed for selected heavy metals.Results indicate that the removal effi-ciencies of the CW for Pb,Cd,Fe,Ni,Cr,and Cu were 50%,91.9%,74.1%,40.9%,89%,and 48.3%,respectively.Furthermore,the performance of the CW was efficient enough to remove the heavy metals,particularly Cd,Fe,and Cu,from the industrial wastewater fed to it.However,it is suggested that the metal removal efficiency of the CW can be further enhanced by using proper management of vegetation and area expansion of the present CW.Ó2009Elsevier Ltd.All rights reserved.1.IntroductionConstructed wetland (CW)is a biogeochemical and highly effi-cient system to treat wastewater generating from different sources such as domestic,highways,mining and industrial sectors (Moshiri,1993;Kadlec and Knight,1996;Vymazal et al.,1998;Kadlec et al.,2000).CW offers an effective alternative for traditional wastewater treatment systems.From the last few decades,the application of this technology has gained the popularity (IWA,2000)throughout the world including America,China,Argentina,Czech Republic,Greece,The Netherlands and Europe (Whitney et al.,2003;Chen et al.,2006;Lesage et al.,2007;Vymazal et al.,2007).However,the industrial sector has focused a great deal of attention on CWs for removing heavy metals (HMs)from its wastewater (Hadad et al.,2006;Maine et al.,2006;Jayaweera et al.,2008).The CW system contains natural processes of aquatic macrophytes that not only accumulate pollutants directly into their tissues but also act as catalysts for purification reactions usually occur in the rhizosphere of the plants (Jenssen et al.,1993).In rhizosphere,physicochemical and biological processes are induced by the interaction of plants,microorganisms and soil/sediments,to remove HMs fromwastewater (Stottmeister et al.,2003).Numerous factors including pH of water and sediment,mobilization and uptake from the soil,compartmentalization and sequestration within the root,efficiency of xylem loading and transport (transfer factors),distribution between metal sinks in the aerial parts,sequestration and storage in leaf cells,and plant growing and transpiration rates can also effect the remediation processes of the contaminated sites (Hadad et al.,2006;Khan et al.,2006).Industrialization has contaminated the environments with HMs,particularly,in developing countries of the world,where advance treatment technologies are neither available nor affordable.The CW,therefore,presents a cost effective and promising alternative for the treatment of industrial effluents.Previously,numerous studies have demonstrated that CW has effectively removed HMs from wastewater (Mays and Edwards,2001;Chen et al.,2006;Hadad et al.,2006).However,the use and practice of CW in Pakistan remains largely unreported.Keeping in view the appropriateness and low-cost effectiveness of this technology,the availability of native aquatic plants and favorable climatic condition,a CW is the first choice in Pakistan for the treatment of industrial effluents.A CW was established in Gadoon Amazai Industrial Estate (GAIE),which is one of the largest industrial estates in the country.It has textile,chemicals,ghee and cooking oil,marble,steel,plastic,soap and detergent industries.Considering the environmental pollution caused by industrial wastewater,it is important to treat it*Corresponding author.Tel./fax:þ92919216742.E-mail address:sardar.khan2008@ (S.Khan).Contents lists available at ScienceDirectJournal of Environmental Managementjournal homepage:/locate/jenvman0301-4797/$–see front matter Ó2009Elsevier Ltd.All rights reserved.doi:10.1016/j.jenvman.2009.05.026Journal of Environmental Management 90(2009)3451–3457before dumping into environment using CW.The main objective of this study was to evaluate the efficiency of CW for removal of pollutants present in industrial effluent.This paper,therefore, describes the pollutant load in different cells containing plants and sediments and the role of macrophytes for removal of HMs present in industrial effluent.2.Materials and methods2.1.Site descriptionThe study area is situated in district Swabi,Pakistan(Fig.1). Across the eastern hills,the famous Tarbella dam occurs along the river Indus.Topographically,the study area is consisting offlood deposits,uneven ground and natural drains.It contains extensive gravel deposits with shingle beds,silt and clay stratifications, generallyflat in the south and west of the industrial estate.The industrial effluents were discharged into environment without any treatment that led to pollute the surrounding environment including soil and surface and subsurface water.2.2.Wetland designFree surfaceflow wetland having7cells was constructed in GAIE with a total area of4145.71m2,total storage capacity of1305.58m3 and the overall retention time of wastewater from in-let to out-let was40h.A diagrammatic representation of the CW is given in Fig.2.The complete profile of individual cell(area,depth and storage)is given in Table1.A variety of native plant seedlings were transplanted and cultivated on about45%area of the CW.The plants were selected on the basis of their characteristics(e.g.,fast growing,hyperaccumulation of HMs and high tolerance towards HM toxicities),investigated during treatability studies.The detailed information of the plant species is given in Table2.2.3.SamplingSamples of wastewater were collected from main in-let,out-let and centre of each cell of CW,in polyethylene bottles properly washed with de-ionized water in both fall and spring of2003–2004.Samples were acidified with5%HNO3,and stored at4 C for HM analysis.Aquatic plant samples(at the age of13-weeks)were also randomly collected from each cell and divided into aerial and root components.Moreover,sediment samples(0–10cm)were also collected in polythene bags from the centre of each cell.2.4.Sample preparation and analysesWater samples were analyzed for HMs including lead(Pb), cadmium(Cd),iron(Fe),nickel(Ni),chromium(Cr)and copper(Cu) using atomic absorption spectrophotometer(AA-6601,Shimadzu), following APHA(1992)procedures in the laboratory of Environ-mental Protection Agency,Peshawar.Plant samples were properly washed to remove clay and sand particles and dried in oven at70 C for48h to a constant weight.The dry weights were determined and the dried samples were powdered,and stored for further analyses.Sub-samples were subsequently digested with5mL concentrated HNO3at160 C till colorless solution was obtained. After cooling,the suspensions werefiltered andfiltrate was adjusted to50mL with double deionised water.Similarly,sedi-ments/clay samples were treated with double acids(HNO3and HClO4)and the HM concentrations were measured.All the samples of plants and sediments were analyzed for selected HMs including Cd,Cr,Cu,Ni,Fe,and Pb using AAS(AA-6601,Shimadzu).ReagentFig.1.Location map of GAIE,Swabi,Pakistan.S.Khan et al./Journal of Environmental Management90(2009)3451–34573452blank,reference plant and soil materials were included to verify the accuracy and precision of the digestion procedure and subsequent analysis.2.5.Data analysisResults (HMs in in-let,out-let and sediment samples)were statistically analyzed using SPSS 11.5(SPSS USA)and statistical significance was computed by analysis of variance (ANOVA)at P <0.01.Treatment efficiency for removal of various HMs was determined by the retention equation,as used by Heal and Salt (1999)and Solano et al.(2004).R ¼1ÀC eC iÂ100Where as R,C e and C i are the removal efficiency,the effluent and influent concentrations of various HMs,respectively.In the field environment,root concentration factor (RCF)and aerial tissue concentration factor (ACF)in the samples of wastewater and plants on the basis of dry weight,were measured.The RCF and ACF were calculated as follows:RCF ¼C root C w :waterand SCF ¼C aerial parts C w :waterwhere C root ,C aerial parts and C w.water represent the heavy metal concentration in roots,aerial parts (on dry weight basis)and wastewater,respectively.3.Results and discussions 3.1.LeadTable 3summarizes the concentrations of Pb in the wastewater samples collected from in-let,out-let and different cells of CW.In the wastewater samples,Pb concentrations ranged from 0.78to 1.56mg/L and exceeded the permissible limit (0.5mg/L)set for industrial and sewage wastewater (Pak-EPA,2000).The ANOVA analyses showed that the concentration of Pb in the out-let wastewater samples was significantly lower (P <0.001)than in-let of the CW,indicating that the wetland has efficiently removed Pb from the wastewater.Pb concentrations ranged from 1.0to 2.9mg/kg in the sediment samples (Table 4).In the sediment samples,Pb concentrations were decreased as the distance increased from the in-let and the interaction between concentrations and distance was significant (P <0.01)only for in-let and out-let samples.A strong decrease in Pb concentrations in the sediments was also reported by Lesage et al.(2007).The removal performance of the CW was different for all selected HMs.The Pb removal efficiency of the CW was 50%,higher than those (33%)reported in the literature (Ter-zakis et al.,2008).In the study conducted by Lesage et al.(2007),Pb removal efficiency of a CW was 81%.This can be attributed to the difference in type of wastewater (domestic)and its basic charac-teristics,including high concentrations of nutrients.Pb concen-tration was 3folds higher in the in-let samples and reduced to 0.78mg/L,slightly above from the permissible limit set for indus-trial wastewater in Pakistan.The macrophytes used forindustrialTable 3Mean concentrations (mg/L)of HMs in the wastewater samples collected from CW and indicate the significant decrease between in-let and out-let in HMs at level of P <0.001,and P <0.01,respectively.NEQS c National Environmental Quality Standards,PakistanEPA-2000.yout of CW atGAIE.Table 1Table 2S.Khan et al./Journal of Environmental Management 90(2009)3451–34573453wastewater treatment,showed variable degrees of uptake and accumulation of Pb.As CW is a bioremediation mechanism based system,its metal removal efficiency depending on phytoaccumu-lation,sedimentation,microbial accumulation,and the nature of the plant species (Kadlec and Knight,1996).Plants (Echornia cras-sipes )are helping to prevent precipitation to the bottom and metals are sorbed by macrophytes (Maine et al.,2009).Furthermore,emergent plants contribute to reclamation of wastewater through a variety of physical,chemical and biochemical processes which enhance metal retention by the sediment (Brix,1997;Kadlec et al.,2000).Plant uptake and accumulation of Pb varied from species to species and metal concentration in plant tissue was higher in roots than in aerial parts (Table 5).Concentrations of Pb ranged from 3.8to 7.2mg/kg in the root tissues,while varied from 1.5to 3.2mg/kg in the aerial tissues.These results are generally comparable with those previously reported in the literature (Vymazal et al.,2007).The highest Pb concentration (root þaerial tissues)was found in the Pistia stratiotes species with RCF and ACF of 4.8and 2.2,respectively (Table 6).This plant species is assumed to be hyper-accumulator for Pb,therefore,can be use for removal of Pb from wastewater.The trends of Pb uptake and accumulation in different plant species were in the order of P.stratiotes >Ceratophyllum demersum >Lemna gibba L.>Carex aquatitis >Typha lat-ifolia >Juncus articulatus >E.cressipes >Scirpus cypernius >Alisma plantago -aquatica >Polygonum glabrum >Phragmites australis .3.2.CadmiumCd concentrations (0.19–0.62mg/L)in wastewater samples collected from in-let to cell-5,exceeded the permissible limit (0.1mg/L)set for industrial and sewage wastewater (Pak-EPA,2000),while its concentrations (0.05–0.09mg/L)in the samples from cells 6and 7and out-let met the permissible limit (Table 3).Furthermore,Cd concentrations in the out-let wastewater samples were significantly lower (P <0.01)than in-let of the CW,indicating that the CW has effectively removed the Cd from the wastewater.Inthe sediment samples,the Cd concentrations (0.7–1.8mg/kg)decreased as the distance increased from the in-let towards out-let,as shown in Table 4.This interaction between concentrations and distance was significant (P <0.01)only for in-let and out-let samples.Like Pb,a strong decrease in Cd concentration in the sediments was also reported by Lesage et al.(2007).Mass balance suggested that retained metals were stored mainly in sediments and hydrophytes of the CW.This is a common feature and also observed by earlier researchers (Mays and Edwards,2001;Hadad et al.,2006).Cd removal performance of CW was 91.9%(Table 3).In general,this value agreed with the findings of the previous studies (Yang et al.,2006;Kanagy et al.,2008).Cd concentration was 12folds high in the in-let samples and reduced to guideline limit before entering to cell-6.Interestingly,Cd removal efficiency was highest as compared to other HMs and this could be related with high mobilization of Cd and further uptake of plants.However,Singh et al.(2004)proposed that high accumulation of metals by plants (Helianthus annuus )particularly in the root tissues might have resulted from complexation of the metals with sulfhydryl groups.Plant uptake and accumulation of Cd varied from one species to another and high concentrations (2.3–5.2mg/kg)were found in root tissues as compared to aerial tissues (0.9–2.5mg/kg)as given in Table 5.These findings are generally comparable with those reported by Lesage et al.(2007)and Vymazal et al.(2007).In this study,the highest Cd concentration was found in the J.articulatus species followed by P.stratiotes and C.aquatitis .Similarly,different plant species have shown different RCF and ACF values (Table 6).The RCF for J.articulatus ,P.stratiotes and C.aquatitis were 5.3,4.4and 4.9,respectively,while ACF for J.articulatus ,P.stratiotes and C.aquatitis were 2.3,2.5and 2.0,respectively.All these plant species can be cultivated for effective removal of Cd from wastewater.3.3.IronTable 3shows the Fe concentrations (0.07–0.27mg/L)in wastewater samples collected from in-let,all cells and out-let of the CW and found within the permissible limit (2.0mg/L)set for industrial and sewage wastewater (Pak-EPA,2000).However,the Fe concentrations in the out-let wastewater samples were signifi-cantly lower (P <0.01)than in-let of the CW,indicating that the CW has been also effectively removed Fe from the wastewater.These findings are consistent with those observed by Maine et al.(2009).In sediment samples,the concentrations of Fe ranged from 1.0to 1.7mg/kg and significantly (P <0.01)decreased as the distance increased from in-let towards out-let of CW.Fe concentration was 3–4folds high in the in-let samples as compared to out-let.Like Pb and Cd,the interaction between concentrations and distance was significant for in-let and out-let samples.The Fe removalefficiencyTable 4Indicates the significant decrease between first and last cell of the CW in HMs at the level of P <0.01.Table 5S.Khan et al./Journal of Environmental Management 90(2009)3451–34573454of the CW was 74.1%,higher than those (47%)reported by Jayaweera et al.(2008)and consistent with those reported by Maine et al.(2009).It means that the CW was very effective in the removal of Fe from wastewater.In general,these findings are in agreement with those of Ye et al.(2001a,b)and O’Sullivan et al.(2004)but in contrast with those reported by Lesage et al.(2007).Table 5summarizes the uptake and accumulation of Fe by plants and their concentrations varied from species to species.The Fe concentrations in aerial and root tissues were ranged from 1.0to 2.8mg/kg and 2.7to 5.7mg/kg,respectively.These values are lower than those reported by Lesage et al.(2007)in the plants collected from CW treating domestic wastewater in Flanders,Belgium.This may be due to the lower initial Fe concentrations and other phys-iochemical properties of wastewater treated in that CW.The highest Fe concentration was found in the C.aquatitis ,tifolia and C.demersum species with RCF 4.6,4.6and 4.4,respectively,and ACF 2.5,1.9and 2.3,respectively (Table 6).These plant species can be used for phytoremediation of Fe contaminated wastewater.Earlier study conducted by Jayaweera et al.(2008)indicated that chemical precipitation and rhizofilteration are the key mechanisms to remove Fe from Fe-rich wastewater.3.4.NickelIn the wastewater samples,Ni concentrations ranged from 1.63to 2.76mg/L (Table 3)and exceeded the permissible limit (1.0mg/L)set by Pak-EPA (2000).The ANOVA analyses indicated that the concentration of Ni in the out-let wastewater samples was significantly lower (P <0.001)than in the in-let of the CW.It means that Ni was efficiently removed from the wastewater.Unlikely other metals,the Ni concentrations (2.2–2.9mg/kg)in the sediment samples were not significantly reduced as the distance increased from the in-let towards out-let.These results are comparable with those previously reported in literature (Mays and Edwards,2001;Lesage et al.,2007;Terzakis et al.,2008).The lowest removal efficiency (40.9%)was observed for Ni,as compared to other studied metals.Ni removal efficiency of the present CW was lower than those reported by Hadad et al.(2006)and Maine et al.(2007),but was consistent with those (37.4%)reported by Chandra et al.(2008).Furthermore,this CW was unable to reduce the Ni concentrations up to permissible limit set for industrial wastewater in Pakistan.Like other metals,the uptake and accumulation of Ni by plants varied from species to species as shown in the Table 5.Concentrations of Ni ranged from 1.8to 4.0mg/kg in the aerial tissues and 4.3to 7.6mg/kg in the root tissues.These results are generally comparable with those previously reported by Vymazal et al.(2007).Among all the studied plants,the tifolia species contained the highest Ni concentration with RCF and ACF of 3.0and 1.6,respectively(Table 6).Fascinatingly,higher uptake rates and tolerance towards metal toxicity were observed in tifolia as compared to other macrophytes.These findings are also consistent with the previous studies conducted by Cardwell et al.(2002)and Maine et al.(2007).It means that this plant species can be used for removal of Ni from wastewater.The trends of Ni uptake and accumulation in different plant species were in the order of tifolia >L.gibba L.>P.glabrum >S.cypernius >E.cressipes >P.australis >P.stratiotes >A.plantago -aquatica >J.articulatus >C.aquatilis >C.demersum .However,bio-transformation of metallic complexes is responsible for removal of heavy metals from wastewater in a CW,because of enzymatic action that made the metals more easily bioavailable to the plants (Preeti and Anir-uddha,2006).3.5.ChromiumCr concentrations in wastewater samples ranged from 0.07to 0.35mg/L (Table 3).In the samples from in-let to cell-3,Cr concentrations were exceeded the permissible limit (0.1mg/L)set for industrial and sewage wastewater (Pak-EPA,2000),while its concentrations in the samples from cells 4–7and out-let were within the permissible limit.Furthermore,Cr concentrations in the out-let wastewater samples was significantly lower (P <0.001)than in in-let of the CW,indicating that the CW has effectively removed the Cr from wastewater.Cr concentrations ranged from 0.4to 1.3mg/kg in the sediment samples (Table 4).Like other metals,Cr concentrations were also shown decreasing trend as the distance increased from the in-let towards out-let.These results are comparable with those reported by Lesage et al.(2007)and are contrary with those reported by Mays and Edwards (2001).The Cr removal performance of the CW was 89%(Table 3),which is consistent with the findings (82%)of Hadad et al.(2006).The Cr concentrations were 5folds high in the in-let samples as compared to out-let and reduced to permissible limits before entering in to cell-3.Plant uptake and accumulation of Cr varied from species to species,as given in Table 5.Cr concentrations ranged from 0.4to 1.2mg/kg in aerial tissues and from 1.4to 2.3mg/kg in root tissues.The highest Cr concentration was found in the A.plantago-aquatica species with RCF and ACF of 3.5and 2.0,respectively (Table 6).On the basis of Cr hyperaccumulation,this plant species along with other hyperaccumulators can be used for phytoremediation of Cr-rich wastewater.3.6.CopperTable 3shows the Cu concentrations in wastewater samples collected from in-let,all cells and out-let of the CW.The Cu concentrations were ranged from 0.75to 1.45mg/L anditsTable 6S.Khan et al./Journal of Environmental Management 90(2009)3451–34573455concentrations were exceeded the permissible limit(1.0mg/L)in the wastewater samples collected from in-let to cell-5.The ANOVA analysis showed that the Cu concentrations in the out-let wastewater samples were significantly lower(P<0.01)than in-let of the CW,indicating that the CW has effectively removed the Cu from the wastewater.The Cu concentrations were ranged from1.8 to2.7mg/kg in the sediment samples(Table4).The Cu concen-trations were not regularly decreased as the distance increased from in-let.Thesefindings are in agreement with those reported by Mays and Edwards(2001).The interaction between concen-trations and distance was significant for in-let and out-let samples.This CW has shown48.3%removal efficiency for Cu, which is lower than thefindings(98.8%and99.3%for saline and hypersaline water,respectively)of Kanagy et al.(2008).On other hand,thesefindings are in agreement with those obtained from CW treating highway runoff in the central Mediterranean region (Terzakis et al.,2008).Table5summarizes the plant uptake and accumulation of Cu and its concentrations varied from species to species.Cu concentrations ranged from1.3to2.7mg/kg in aerial tissues and from4.0to5.6mg/kg in root tissues.Thesefindings are compa-rable with those reported in the literature(Campbell et al.,1988; Bernard and Lauve,1995;Lesage et al.,2007).The highest Cu concentration was found in the P.australis followed by C.aquatilis and tifolia.These plant species can be used for phytor-emediation of Cu contaminated wastewater.The RCF and ACF values for different plant species are given in Table6.Previous studies have shown that the rhizofilteration is one of the main mechanisms to remove Cu from wastewater(Lesage et al.,2007; Jayaweera et al.,2008).4.ConclusionsThe CW was very effective in the removal of HMs from industrial wastewater and its removal performance was in order of Cd>Cr>Fe>Pb>Cu>Ni.The studied metal concentrations, except Pb and Ni,were reduced to their specific permissible limits set for wastewater in Pakistan.No significant relationship between plant species and removal efficiency was obtained because of a mix cultivation of macrophytes in all cells of CW.However,it was observed that tifolia,P.stratiotes,P.australis,C.aquatilis and A. plantago-aquatica were more efficient in removal of HMs from wastewater.Finally,it was observed that CW is cost-effective and environmental friendly technology and can be used for reclamation of wastewater.AcknowledgementWe acknowledge thefinancial support provided by the Director, National Center of Excellence in Geology,University of Peshawar,to conduct this research.Dr.Hussain Ahmad,Director,EPA-Peshawar, is thanked for providing facility for sample analyses.We thank the anonymous reviewers for their excellent comments and suggestions.ReferencesAPHA,1992.Standard Methods for the Examination of Water and Wastewater,18th ed.American Public Health Association and Water Environmental Foundation EPS Group,Inc.,Maryland,USA,pp.2–55and129–131.Bernard,J.M.,Lauve,T.E.,1995.A comparison of growth and nutrient uptake in Phalaris arundinacea L.growing in a wetland and a constructed bed receiving landfill leachate.Wetlands15,176–182.Brix,H.,1997.Do macrophytes play a role in constructed treatment wetlands?Water Science Technology35,11–17.Campbell,P.G.C.,Lewis,A.G.,Chapman,P.M.,Crowder,A.A.,Fletcher,W.K.,Imber,B., et al.,1988.Biologically Available Metals in Sediments.No.27694.NRCC, Ottawa,Canada.Cardwell,A.,Hawker,D.,Greenway,M.,2002.Metal accumulation in macrophytes from Southeast Queensland,Australia.Chemosphere48,653–663.Chandra,R.,Yadav,S.,Bharagava,R.N.,Murthy,R.C.,2008.Bacterial pretreatment enhances removal of heavy metals during treatment of post-methanated distillery effluent by Typha angustata L.Journal of Environmental Management 88,1016–1024.Chen,T.Y.,Kao,C.M.,Yeh,T.Y.,Chien,H.Y.,Chao,A.C.,2006.Application of a con-structed wetland for industrial wastewater treatment:a pilot-scale study.Chemosphere64,497–502.Hadad,H.R.,Maine,M.A.,Bonetto,C.A.,2006.Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment.Chemosphere63, 1744–1753.Heal,K.V.,Salt,C.A.,1999.Treatment of acidic metal-rich drainage from reclaimed ironstone mine spoil.Water Science Technology39,141–148.IWA,2000.Constructed Wetland for Pollution Control.Processes,Performance, Design and Operation.International Water Association,IWA Publishing, London.Jayaweera,M.W.,Kasturiarachchi,J.C.,Kularatne,R.K.A.,Wijeyekoon,S.L.J.,2008.Contribution of water hyacinth(Eichhornia crassipes(Mart.)Solms)grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands.Journal of Environmental Management87,450–460.Jenssen,P.D.,Krogstad,T.,Mahlum,T.,1993.Potential Use of Constructed Wetland for Wastewater Treatment in Northern Environment.Department of Soil Science,Agricultural University of Norway,Norway.N-1432As.Kadlec,R.H.,Knight,R.L.,1996.Treatment Wetland.CRC Press,USA.Kadlec,R.H.,Knight,R.L.,Vymazal,J.,Brix,H.,Cooper,P.,Haberl,R.,2000.Con-structed Wetlands for Pollution Control:Processes,Performance,Design and Operation.IWA Specialist Group on use of Macrophytes in Water Pollution Control.IWA Publishing,p.156.Kanagy,L.E.,Johnson,B.M.,Castle,J.W.,Rodgers,J.H.,2008.Design and performance of a pilot-scale constructed wetland treatment system for natural gas storage produced water.Bioresource Technology99,1877–1885.Khan,S.,Cao,Q.,Chen,B.,Zhu,Y.G.,2006.Humic acids increase the phytoavail-ability of Cd and Pb to wheat plants cultivated in freshly spiked,contaminated soil.Journal of Soils and Sediments6,236–242.Lesage,E.,Rousseau,D.P.L.,Meers,E.,Tack,F.M.G.,De Pauw,N.,2007.Accumulation of metals in a horizontal subsurfaceflow constructed wetland treating domestic wastewater in Flanders,Belgium.Science of the Total Environment380, 102–115.Maine,M.A.,Sun˜e,N.,Hadad,H.,Sa´nchez,G.,Bonetto,C.,2006.Nutrient and metal removal in a constructed wetland for wastewater treatment from a metallurgic industry.Ecological Engineering26,341–347.Maine,M.A.,Sun˜e,N.,Hadad,H.,Sa´nchez,G.,Bonetto,C.,2007.Removal efficiency of a constructed wetland for wastewater treatment according to vegetation dominance.Chemosphere68,1105–1113.Maine,M.A.,Sun˜e,N.,Hadad,H.,Sa´nchez,G.,Bonetto,C.,2009.Influence of vege-tation on the removal of heavy metals and nutrients a constructed wetland.Journal of Environmental Management90,355–363.Mays,P.A.,Edwards,G.S.,parison of heavy metals accumulation ina natural wetland and constructed wetlands reserving acid mine drainage.Ecological Engineering16,487–500.Moshiri,G.A.,1993.Constructed Wetlands for Water Quality Improvement.Lewis Publishers,Boca Raton,p.632.O’Sullivan,A.D.,Moran,B.M.,Otte,M.L.,2004.Accumulation and fate of contami-nants(Zn,Pb,Fe and S)in substrates of wetlands constructed for treating mine wastewater.Water Air and Soil Pollution157,345–364.Pak-EPA,2000.Pakistan Environmental Protection Agency.National Environmental Quality Standards./neqs.html(accessed20.12.04). Preeti,C.S.,Aniruddha,B.P.,2006.Enhancement in biodegradability of distillery wastewater using enzymatic pretreatment.Journal of Environmental Manage-ment78,77–85.Singh,S.,Saxena,R.,Pandey,K.,Bhatt,K.,Sinha,S.,2004.Response of antioxidants in sunflower(Helianthus annuus L.)grown on different amendments of tannery sludge:its metal accumulation potential.Chemosphere57,1663–1673. Solano,M.L.,Soriano,P.,Ciria,M.P.,2004.Constructed wetland as a sustainable solution for wastewater treatment in small village.Bio-System Engineering87, 109–118.Stottmeister,U.,Wiebner,A.,Kuschk,P.,Kappelmeyer,U.,2003.Effects of plants and microorganisms in constructed wetlands for wastewater treatment.Biotech-nology Advances22,93–117.Terzakis,S.,Fountoulakis,M.S.,Georgaki,I.,Albantakis, D.,Sabathianakis,I., Karathanasis, A.D.,Kalogerakis,N.,Manios,T.,2008.Constructed wetlands treating highway runoff in the central Mediterranean region.Chemosphere72, 141–149.Vymazal,J.,Sˇvehla,J.,Kro¨pfelova´,L.,Chrastn y,V.,2007.Trace metals in Phragmites australis and Phalaris arundinacea growing in constructed and natural wetlands.Science of the Total Environment380,154–162.Vymazal,J.,Brix,H.,Cooper,P.F.,Haberl,R.,Perfler,R.,Laber,J.,1998.In: Vymazal,J.,Brix,H.,Cooper,P.F.,Green,M.B.,Haberl,R.(Eds.),Removal Mechanisms and Types of Constructed Wetlands.Constructed Wetlands for Wastewater Treatment in Europe.Backhuys Publishers,Leiden,The Netherlands,pp.17–66.S.Khan et al./Journal of Environmental Management90(2009)3451–3457 3456。

相关文档
最新文档