第三章 3.3.1二元一次不等式(组)与平面区域
课程资料:二元一次不等式(组)表示的平面区域

3.点 P(1,-1)在直线y=ax+b的上方,则a,b满足的 关系式:( B ) A. a+b>-1 B. a+b<-1 C. a+b>1 D. a-b<-1
7.确定m的范围,使点(1,2)和点(1,1)在y 3x m 0
的异侧.
5.若不等式组
y
≥
a,
表示的平面区域是一个三角
0 ≤ x ≤ 2
形,则 a 的取值范围是( C )
A. a 5
B. a≥7
C. 5≤a 7
D. a 5 或 a≥7
[例4] 画出不等式(x+2y+1)(x-y+4)>0表示 的区域.
[解] 原不等式等价于
①xx-+y2+y+4>1>0.0, 或
• §3.3.1二元一次不等式(组) 表示的平面区域
那么:x – y < 6或x – y形?
问题2
一条直线
直线将平面分成两部分,这与 x y ()6
有什么关联呢?
y
x –y =6
左上方区
O
域
x
右下方 区域
二元一次不等式x-y<6表示直 线x- y=6左上方的平面区域
2.有粮食和石油两种货物,可用轮船和飞机两种 方式运输,每天每艘轮船和每架飞机的运输量 如下表:
货物 轮船运输量 飞机运输量
粮食/t 300
150
石油/t 250
100
现在要在一天之内运输2 000 t粮食和1 500 t石
油,试用代数和几何两种方法表示运输工具和
运输数量满足的关系.
解:设需要 x 艘轮船,y 架飞机,代数关系式和几何描述(如
(3)
3.3.1二元一次不等式(组)与平面区域(一)

企业和个人贷款,希望这笔贷款至少可带来3万元的收益, 其中从企业贷款中获益12%,从个人贷款中获益10%.那 么,信贷部应如何分配资金呢?
x y 2500, 12 x 10 y 300 x 0, y0
1. 我们把含有两个未知数,并且未知数的次数是1的不
满足 x y 6 的点集在坐标平面上是怎样的图形?
l:x-y=6
问题一
满足 x y 6 的点集{( x, y) x y 6}在坐标平面上 是怎样的图形?
l:x-y=6
二元一次不等式 x-y<6所表示的图形.
在直角坐标系中,所有点被直线l : x-y<6分成三类: ①在直线l上的点;
确定.
一般地
C≠0时,常用点(0,0)确定.
C=0时,常用点(0,1)或(1,0)确定.
二元一次不等式Ax+By+C>0表示的平面区域常用 “直线定界,特殊点定域”的方法,即画线—取点—判 断.
例1. 画出x+4y<4表示的平面区域.
练习
教材P86练习第1、2题
x 3 y 6 0 例2. 画出 表示的平面区域. x y 2 0
l:x-y=6
问题一
满足 x y 6 的点集{( x, y) x y 6}在坐标平面上 是怎样的图形?
问题二
满足 Ax By C 0 的点集 {(x, y) Ax By C 0}
在坐标平面上是怎样的图形?
( A, B不同时为0)
问题三
满足 Ax 2 Bx C 0 的点集源自Ax 2 Bx C 0 的同
(1) x y 1
1.判断下列式子是不是二元一次不等式? 2
(2) x y 1
数学ⅱ北师大版3.3.1二元一次不等式(组)与平面区域第2课时教案

随堂练习1
1、画出不等式2 +y-6<0表示的平面区域.
2、画出不等式组 表示的平面区域。
2.讲授新课
【应用举例】
例3某人预备投资1200万兴办一所完全中学,对教育市场进行调查后,他得到了下面的数据表格〔以班级为单位〕:
学段
班级学生人数
配备教师数
硬件建设/万元
教师年薪/万元
初中
45
2
26/班
2/人
高中
课题
§3.3.1二元一次不等式〔组〕与平面区域
第2课时
课型
新授课
课时
备课时间
教学目标
知识与技能
巩固二元一次不等式和二元一次不等式组所表示的平面区域;能依照实际问题中的条件,找出约束条件;
过程与方法
经历把实际问题抽象为数学问题的过程,体会集合、化归、数形结合的数学思想;
情感态度与价值观
结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新.
重点
理解二元一次不等式表示平面区域并能把不等式〔组〕所表示的平面区域画出来;
难点
把实际问题抽象化,用二元一次不等式〔组〕表示平面区域
教学方法
教学过程
1.课题导入
[复习引入]
二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.〔虚线表示区域不包括边界直线〕
高中数学必修5课件:第3章3-3-1二元一次不等式(组)与平面区域

数学 必修5
第三章 不等式
(3)若直线 l:Ax+By+C=0,记 f(x,y)=Ax+By+C,M(x1, y1),N(x2,y2),则
点M,N在l的同侧 ⇔ fx1,y1·fx2,y2>0 点M,N在l的异侧 ⇔ fx1,y1·fx2,y2<0
数学 必修5
第三章 不等式
1.不等式x-2y≥0表示的平面区域是( )
() A.32 4 C.3
B.23 D.34
数学 必修5
第三章 不等式
解析: 如图所示为不等式表示的平 面区域,平面区域为一三角形,三个顶点 坐标分别为(4,0),43,0,(1,1),所以三角 形的面积为 S=12×4-43×1=43.
答案: C
数学 必修5
第三章 不等式
用二元一次不等式(组)表示实际问题
数学 必修5
第三章 不等式
答案:
4x+3y≤480, 2x+5y≤500, x≥0, y≥0, x,y∈N*
数学 必修5
第三章 不等式
4.画出不等式组x0-≤yx≤+1y0≤,20, 0≤y≤15,
表示的平面区域.
解析: 根据题意画出不等式组表示的平面区域,如图所
示.
数学 必修5
第三章 不等式
数学 必修5
第三章 不等式
3.一工厂生产甲、乙两种产品,生产每种1 t产品的资源 需求如下表:
品种 电力/kW·h 煤/t 工人/人
甲
2
3
5
乙ቤተ መጻሕፍቲ ባይዱ
8
5
2
该厂有工人200人,每天只能保证160 kW·h的用电额度, 每天用煤不得超过150 t,请在直角坐标系中画出每天甲、乙两 种产品允许的产量的范围.
高中数学第三章不等式3.3.1二元一次不等式组与平面区域课件新人教A版必修5

则有
该不等式组表示的平面区域如图阴影部分所示
≥ 0,
≥ 0.
(含边界).
-19-
二元一次不等式(组)与
平面区域
探究一
探究二
课前篇自主预习
探究三
思维辨析
课堂篇探究学习
课堂篇探究学习
当堂检测
反思感悟用二元一次不等式组表示实际问题的步骤
1.先根据问题的需要选取起关键作用且关联较多的两个量,并用字
(1)定义:我们把含有两个未知数,并且未知数的最高次数是1的不等
式称为二元一次不等式;把由几个二元一次不等式组成的不等式组
称为二元一次不等式组.
(2)解集:满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),
所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的
解集.有序数对可以看成直角坐标平面内点的坐标.于是,二元一次
课堂篇探究学习
当堂检测
用二元一次不等式(组)表示实际问题
例3投资生产A产品时,每生产100 吨需要资金200 万元,需场地200
平方米;投资生产B产品时,每生产100 吨需要资金300 万元,需场地
100 平方米.现某单位可使用资金1 400 万元,场地900 平方米,用数
学关系式和图形表示上述要求.
(1,0)作为测试点.
-6-
二元一次不等式(组)与
平面区域
课前篇自主预习
课堂篇探究学习
3.做一做:
(1)判断正误.
①不等式Ax+By+C>0是二元一次不等式.(
)
②点(1,3)在不等式2x-y-2<0所表示的平面区域内. (
)
3.3.1平面区域

高二数学必修五 编号:SX-05-113.3.1 二元一次不等式(组)与平面区域【学习目标】1.了解二元一次不等式表示的平面区域.2.会画出二元一次不等式(组)表示的平面区域.【基础知识】1.二元一次不等式(组)的概念①含有 未知数,并且未知数的次数是 的不等式叫做二元一次不等式. ②由几个二元一次不等式组成的不等式组称为 .2.二元一次不等式表示的平面区域①在平面直角坐标系中,二元一次不等式Ax +By +C>0表示直线 某一侧所有点组成的平面区域,把直线画成 ,以表示区域不包括边界.②不等式Ax +By +C≥0表示的平面区域包括边界,把边界画成 .探究点一 二元一次不等式表示的平面区域在平面直角坐标系中,画出直线x -y +2=0,并标出以下九点:O(0,0),A(0,2), B(-2,0),C(-1,1),D(1,0),E(0,-1),F(-3,0),G(-2,2),H(0,3).通过图象容易得出以下结论:(1)点A(0,2),B(-2,0),C(-1,1)的坐标满足方程 ,它们在直线x -y +2=0上;(2)点O(0,0),D(1,0),E(0,-1)的坐标满足不等式 ,它们在直线x -y +2=0的 ;(3)点F(-3,0),G(-2,2),H(0,3)的坐标满足不等式 ,它们在直线x -y +2=0的 .◆◆ 一般地,二元一次不等式Ax +By +C>0与Ax +By +C<0分别表示直线Ax +By +C =0 (A 2+B 2≠0)两侧的平面区域.例如,不等式 表示直线x +y +2=0右上方的平面区域; 表示直线x +y +2=0左下方的平面区域.即:同侧同号,同号同侧:异侧异号,异号异侧P(11,y x )、Q(22,y x )在直线Ax +By +C =0 同侧⇔P(11,y x )、Q(22,y x )在直线Ax +By +C =0 异侧⇔探究点二 二元一次不等式(组)表示平面区域的确定方法问题 在平面直角坐标系中,画出直线Ax +By +C =0以后,需要判断出不等式Ax +By+C>0与Ax +By +C<0分别表示直线Ax +By +C =0的哪一侧?方法1:特殊值代入法------------直线定界,特殊点定域第一步,直线定边界:画出直线Ax +By +C =0(如果原不等式中带等号,那么画成实线,否则,画成虚线).第二步:取特殊点定平面区域:一般地,当C ≠0时,常取原点(0,0);当C=0时,常取点(1,0)或(0,1).然后计算Ax 0+By 0+C 的值,得出Ax 0+By 0+C 的符号,则原点所在的区域和它同号,另外一侧异号。
高中数学3.3.1 二元一次不等式(组)与平面区域优秀教案

课时同步练3.3.1二元一次不等式〔组〕与平面区域一、单项选择题1.假设点(1,2)-在二元一次不等式10x my ++≤表示的区域中,则m 的取值范围为〔 〕 A .1m B .1m ≥ C .1m < D .1m 2.在平面直角坐标系xOy 中,与原点位于直线3x+2y+5=0同一侧的点是〔 〕 A .〔-3,4〕 B .〔-3,-2〕 C .〔-3,-4〕 D .〔0,-3〕3.不等式组4,0,0x y x y +≤⎧⎪>⎨⎪>⎩表示的平面区域为Ω,则以下坐标对应的点落在区域Ω内的是〔 〕 A .(1,1) B .(3,1)-- C .(0,5) D .(5,1)4.不等式组000x x x ≥⎧⎪≤⎨⎪+-≤⎩表示的平向区域为D ,则区域D 的面积为〔 〕A. B .2 CD5.假设不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域被直线43y kx =+分为面积相等的两局部,则k 的值是〔 〕A .73B .37C .43D .346.D 是由不等式组20,{30x y x y -≥+≥所确定的平面区域,则圆224x y +=在区域D 内的弧长为〔 〕A .4πB .2πC .34πD .32π 7.点()2,3A ,且点B 为不等式组00260y x y x y ⎧⎪-⎨⎪+-⎩,所表示平面区域内的任意一点,则||AB 的最小值为〔 〕A .12 B.2 CD .18.假设0,0a b ≥≥且当001x y x y ≥⎧⎪≥⎨⎪+≤⎩时,恒有1ax by +≤,则以,a b 为坐标的点(,)P a b 所形成的平面区域的面积是〔 〕A .12B .4πC .1D .2π 9.不等式||||3x y +<表示的平面区域内的整点个数为〔 〕A .10B .13C .14D .1710.假设不等式组1,10,20,x x ay x y ⎧⎪-+⎨⎪+-⎩可表示为由直线围成的三角形区域〔包括边界〕,则实数a 的范围是〔 〕A .()0,2B .()2,+∞C .()1,2-D .(),1-∞-11.在平面直角坐标系中,假设不等式组44021005220x y x y x y -+≤⎧⎪+-≤⎨⎪-+≥⎩所表示的平面区域被直线1y ax =+分为面积相等的两局部,则a 的值为〔 〕A .12B .1C .2D .9412.设不等式组()221x y y k x ⎧+≤⎪⎨+≤+⎪⎩所表示的区域为D ,其面积为S ,以下命题不正确的是〔 〕 A .假设4S =,则k 的值唯一 B .假设12S =,则k 的值有2个 C .假设D 为三角形,则203k <≤ D .假设D 为五边形,则4k >二、填空题13.坐标原点和点()1,1在直线0x y a +-=的两侧,则实数a 的取值范围是______.14.不等式组3020x x y x y ⎧⎪+⎨⎪-+⎩,,表示的平面区域的面积等于____________.15.不等式组6011x y x y +-≤⎧⎪>⎨⎪>⎩所表示的平面区域内整点的个数是____________16.设不等式组03434x x y x y ⎧⎪+≥⎨⎪+⎩,,所表示的平面区域为D .假设直线1y a x =+()与D 有公共点,则实数a 的取值范围是_____________.17.不等式组04032140x x y x y ≥⎧⎪-⎨⎪+-≤⎩所表示的平面区域被直线y =kx 分成面积相等的两局部,则k 的值为________.18.假设实数x ,y 满足约束条件210200x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则点(),A x y 构成的区域面积为________;点(),B x y x y +-构成的区域面积为________.三、解答题19.不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,〔1〕画出不等式组所表示的平面区域〔要求尺规作图,不用写出作图步骤,画草图不能得分〕; 〔2〕求平面区域的面积.20.求满足||||3x y +的整点x y (,)的个数.21.假设平面区域22(1)x y y k x ⎧+⎨++⎩,是一个三角形,求实数k 的取值范围.22.在平面直角坐标系xOy 中,点()1,1A 、()2,3B 、()3,2C ,点P 在ABC ∆三边围成的区域〔含边界〕上; 〔1〕假设0PA PB PC ++=,求OP ;〔2〕设OP mAB nAC =+,求动点(),Q m n 所构成的图形的面积;。
二元一次不等式(组)与平面区域

2.点(x0,y0)在直线Ax+By+C=0的右上方,则一定 有Ax0+By0+C>0吗?
提示:不一定.与系数B的符号有关.
3.若A(x1,y1),B(x2,y2)两点在直线Ax+By+C=0的 同侧或两侧应满足什么条件?
提示:同侧(Ax1+By1+C)(Ax2+By2+C)>0.异侧(Ax1+ By1+C)(Ax2+By2+C)<0.
课 堂 互 动 探 究
例 练 结 合 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·素 能 提 升
典例导悟
类型一 二元一次不等式(组)表示平面区域 [例1] 画出下列不等式(组)表示的平面区域.
变式训练1
如图所示的阴影部分表示的区域用二元一 )
x+y-1≤0 B. x-2y+2≤0 x+y-1≤0 D. x-2y+2≥0
次不等式组表示为(
x+y-1≥0 A. x-2y+2≥0 x+y-1≥0 C. x-2y+2≤0
答案:A
类型二 [例2]
(2)不等式组的解集是x+y≤5 ①,x-2y≥3 集的交集.
②的解
①式表示的区域是直线x+y-5=0左下方平面区域并 且包括直线x+y-5=0. ②式表示的区域是直线x-2y=3右下方平面区域并且 包括直线x-2y-3=0. 所以不等式组表示的区域是图(2)中的阴影部分(包括直 线).
【点评】 画直线时容易虚实不分,若含等号应画成 实线.区域容易弄反,要注意方法.
(1)2x+y-6<0;
x+y≤5 (2) x-2y≥3.
[分析]
解题的关键在于正确地描绘出边界直线,然
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.3 二元一次不等式(组)与简单的
线性规划问题
3.3.1 二元一次不等式(组)与平面区域
一、基础过关
1.如图所示,表示满足不等式(x -y )(x +2y -2)>0的点(x ,y )所在的平面区域为( )
2.不等式组⎩⎪⎨⎪
⎧
4x +3y ≤12,x -y >-1,
y ≥0表示的平面区域内整点的个数是
( )
A .2个
B .4个
C .6个
D .8个
3.在平面直角坐标系中,不等式组⎩⎪⎨⎪
⎧
x +y ≥0,x -y +4≥0,
x ≤a (a 为常数)表示的平面区域的面积是9,
那么实数a 的值为
( )
A .32+2
B .-32+2
C .-5
D .1
4.若平面区域D 的点(x ,y )满足不等式组⎩⎪⎨⎪
⎧
(x +1)2
+y 2
≤1x -y ≤0
x +y ≤0,则平面区域D 的面积是( )
A.12+π
2
B .1+π
2
C.12+π4
D .1+π
4
5.若不等式组⎩⎪⎨⎪
⎧
x ≥0,x +3y ≥4,
3x +y ≤4所表示的平面区域被直线y =kx +4
3分为面积相等的两部分,
则k 的值是
( )
A.7
3
B.37
C.43
D.34
6.不等式组⎩⎪⎨⎪⎧
x +y ≤1,x -y ≤1,
-x +y ≤1,
-x -y ≤1
表示的平面区域的形状为___________________.
7.利用平面区域求不等式组⎩⎪⎨⎪
⎧
x ≥3y ≥2
6x +7y ≤50
的整数解.
8.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4吨,硝酸盐18吨;生产1车皮乙种肥料的主要原料是磷酸盐1吨,硝酸盐15吨.现库存磷酸盐10吨,硝酸盐66吨,在此基础上生产这两种混合肥料.列出满足生产条件的数学关系式,并画出相应的平面区域. 二、能力提升
9.设不等式组⎩⎪⎨⎪
⎧
x +y -11≥0,3x -y +3≥0,
5x -3y +9≤0
表示的平面区域为D .若指数函数y =a x 的图象上存在区域
D 上的点,则a 的取值范围是 ( )
A .(1,3]
B .[2,3]
C .(1,2]
D .[3,+∞)
10.若A 为不等式组⎩⎪⎨⎪
⎧
x ≤0,y ≥0,
y -x ≤2
表示的平面区域,则当a 从-2连续变化到1时,动直线x
+y =a 扫过A 中的那部分区域的面积为________. 11.若不等式组⎩⎪⎨⎪⎧
x -y ≥0,2x +y ≤2,
y ≥0,
x +y ≤a
表示的平面区域是一个三角形,则a 的取值范围是________.
12.画出不等式|x |+|y |≤2所表示的平面区域,并求出它的面积. 三、探究与拓展
13.若直线y =kx +1与圆x 2+y 2+kx +my -4=0相交于P 、Q 两点,且P 、Q 关于直线x +y =0对称,则不等式组⎩⎪⎨⎪
⎧
kx -y +1≥0kx -my ≤0
y ≥0
表示的平面区域的面积是多少?
答案
1.B 2.C 3.D 4.B 5.A 6.正方形
7.解 先画出平面区域,再用代入法逐个验证.
把x =3代入6x +7y ≤50, 得y ≤32
7,又∵y ≥2,
∴整点有(3,2),(3,3),(3,4); 把x =4代入6x +7y ≤50, 得y ≤267
,
∴整点有(4,2),(4,3).
把x =5代入6x +7y ≤50,得y ≤20
7,
∴整点有(5,2);
把x =6代入6x +7y ≤50,得y ≤2,整点有(6,2); 把x =7代入6x +7y ≤50,得y ≤8
7
,与y ≥2不符.
∴整数解共有7个为(3,2),(3,3),(3,4),(4,2),(4,3),(5,2),(6,2). 8.解
设x 、y ⎩⎪⎨⎪⎧
4x +y ≤10,18x +15y ≤66,x ≥0,y ≥0.
(*)
在直角坐标系中完成不等式组(*)所表示的平面区域,如图阴影部分.
9.A 10.74 11.0<a ≤1或a ≥4
3
12.解 不等式组⎩⎪⎨⎪
⎧
x ≥0,y ≥0,
x +y ≤2
所表示的平面区域,为如图所示的Rt △AOB
的周边及其内部.
∵|-x |=|x |,|-y |=|y |,∴正方形ABCD 的边长为22,故S 正方形ABCD =8.
13.解 P 、Q 关于直线x +y =0对称,故PQ 与直线x +y =0垂直,直线PQ 即为直线y =kx +1,故k =1;
又线段PQ 为圆x 2+y 2+kx +my -4=0的一条弦,故该圆的圆心在线段PQ 的垂直平分线上,即为直线x +y =0,又圆心为(-k 2,-m
2
),
∴m =-k =-1, ∴不等式组为⎩⎪⎨⎪
⎧
x -y +1≥0x +y ≤0
y ≥0
,
它表示的平面区域如图所示,直线x -y +1=0与x +y =0的交点为(-12,12),∴S △=
1
2×1×12=14.故面积为1
4.。