基于马尔可夫随机场图像分割的多尺度模糊C-均值聚类(IJITCS-V1-N1-7)

合集下载

基于马尔科夫随机场的纹理图像分割方法研究

基于马尔科夫随机场的纹理图像分割方法研究
S c i e n c e a n d E n g i n e e r i n g , S o u t h e a s t U n i v e r s i t y , N a n j i n g 2 1 0 0 9 6 , C h i n a)
Ab s t r a c t : T hi s p a p e r p r o p o s e s a n i mp r o v e dБайду номын сангаас t e x t u r e i ma g e s e g me n t a t i o n me t ho d ba s e d o n Ma r k o v r a n d o m ie f l d mo d e 1 .
关键词 : 纹 理 图像 分 割 ; 分数阶微分 ; 灰度共生矩阵 ; 马 尔科 夫 随 机场 ; 模 糊 熵
中 图分 类 号 : T P = ; 9 1 T H 7 文献标识码 : A 国 家标 准 学 科 分 类代 码 : 4 6 0 . 4 0
Re s e a r c h o n t h e t e x t ur e i ma g e s e g me nt a t i o n me t ho d
b a s e d o n na r ko v r a n do m ie f l d
C a o J i a z i ,S o n g Ai g u o
(R e mo t e Me a s u r e m e n t a n d C o n t r o l K e y L a b o r a t o r y o f J i a n g s u P r o v i n c e , S c h o o l o f I n s t r u m e n t

模糊C—均值(FCM)聚类法与矢量量化法相结合用于说话人识别

模糊C—均值(FCM)聚类法与矢量量化法相结合用于说话人识别

得到 L C , L CCL P P (PC倒谱) 参数.它为语音谱的包络提供 了很好的近似 ,比直接 由 F T离 F (
散 傅 里 叶 变 换 ) 到 的语 音谱 平 稳 . 得 语 音的 L PC 参 数 分 析 即 是 用 语 音 信 号 对过 去 P 个 时刻 的采 样 值 的线 性 组 台 最 小 预 测 误 差 预 测 下一 时刻 的信 号采 样 值 ,其 时 域 模 型 表 示 式 为
维普资讯

笨2 第6 4 期。. .
电 子 与 信 息 学 报
鞋 鏊 瓣 髂
墼 飘曩辨 躲 罄
Vi4 n o2 N 6
Jn 02 u e2 0

J OURNAL OF E ECTRONI SAND NF L C I ORM A ON ECH TI T OL OGY
语音信号中 提取的 1 2阶 L C( P 拽性顶测编码) 倒谱系数作为待分类样本的 1 2十指标.先用矢量量化法求
出每 十说话 ^表征特征参数的码书,作为模糊聚类算法的聚类中心.景后将待识别的持征矢量以得 到的码书 为聚娄中心,进行聚类识 别.该算法所使用的特征参数较少,计赞 比较简单,但识别率较 矢量量化法高. 关 键 诃 模 糊 幕 粪 . 矢量 量 化 ,说 话 ^ 识 别 .语 音 特 征 中 图号 TP3 142 TN9 2 3 9 . 1
2语 音 特 征 参 数 l -
2i 音 信 号 预 处 理 首 先 根 据 语 音信 号 的 短 时 能 量 和 短 时平 均 过零 率 可 确 定 语 音 信 号 的 有 语 无 当短 时 能 量 和 过零 率 都 很 小 时 , 判 定 无语 音信 号 可 其次 瞄颓 对 语 音 信号 进 行 预 加 重 处理 . 本

改进的基于模糊C-均值聚类的图像分割算法

改进的基于模糊C-均值聚类的图像分割算法
t o g r a m o f t h e i ma g e .Th e q u a l i t y o f t he i ma g e wa s i mp r o v e d.Th i s p a p e r r e d u c e d t h e no i s e e f f e c t t o t h e s e g me n t a t i o n t h r o u g h t he a d a pt i v e f i l t e r .Us e d K —me a n s c l u s t e r i ng a l g o it r h m i n t h e i ma g e s e g me nt a t i o n t o o b t a i n a c c u r a t e c l u s t e in r g c e n t e r a n d t h e i n i t i a l s e g me n t a t i o n i ma g e i n o r d e r t o a v o i d t h e d e a d p o i n t p r o b l e m c a u s e d b y t he i n a p p r o p r i a t e i n i t i a l c l us t e r i n g c e n t e r, o b t a i ne d s e c o n d a r y d i v i s i o n i ma g e wi t h t h e n e i g h bo r h o o d g r a y s c a l e a v e r a g e i n f o r ma t i o n i n- s t e a d o f t he g r a y i n f o r ma t i o n o f t r a d i t i o n a l f u z z y C —me a ns c l u s t e r i n g a l g o r i t hm.T hi s me t h o d c o u l d r e d u c e t h e i n t e fe r r e n c e o f no i s e b e t t e r a n d i mp r o v e t h e a c c u r a c y o f s e g me n t a t i o n o f t h e

基于马尔科夫随机场的三维激光雷达路面实时分割

基于马尔科夫随机场的三维激光雷达路面实时分割

基于马尔科夫随机场的三维激光雷达路面实时分割朱株;刘济林【摘要】针对多类型场景下三维激光雷达地面高准确性实时提取问题,提出一种基于马尔科夫随机场的路面分割算法.算法对三维点云进行滤波和位姿修正,采用基于最大模糊线段法对每条激光雷达扫描线在x-y平面上的投影进行分割,使用角点检测准确定位每条线段端点.利用原始雷达数据结构信息,建立以线段为节点的无向图马尔科夫随机场,通过分析线段长度、相邻线段间的距离、梯度以及垂直高度差等特征,构建能量方程,用图分割的方法求出最优解,并将线段标记为2类:地面区域和障碍区域.分别在城市平坦路面和乡村起伏道路场景下进行实验,结果表明:与现有算法相比,本算法地面提取准确率更高,在颠簸的乡村道路区域具有更高的稳定性.【期刊名称】《浙江大学学报(工学版)》【年(卷),期】2015(049)003【总页数】6页(P464-469)【关键词】马尔可夫随机场;线段特征;实时;三维激光雷达;路面分割【作者】朱株;刘济林【作者单位】浙江大学信息与电子工程学系,浙江杭州310027;浙江大学信息与电子工程学系,浙江杭州310027【正文语种】中文【中图分类】TN911.73精确感知三维环境是地面自主智能车辆的一项重要工作.为保证安全行驶,自主车辆通常装有激光雷达和相机组成的传感器系统,用于探测障碍区域和地面区域.早期自主机器人平台一般采用单线激光雷达作为距离传感器,具有数据量小及响应速度快的优点,但是存在探测范围有限的缺点.随着VELODYNE 64线激光雷达的问世,这种三维激光雷达开始替代单线激光雷达,广泛用于自主车平台[1-3].现有的三维激光雷达地面分割算法主要有如下2类.1)基于栅格地图的地面分割算法.这类算法将数据栅格化,投影到一个栅格地图中,分析每个栅格中的三维点云特性来确定该栅格的障碍物属性.Kammel等[4]提出了一种基于栅格中点云最大高程差的地面检测方法,如果栅格最大高程差小于某个阈值,栅格将被标记为地面区域.Himmelsbach等[5]将三维数据以极坐标的方式栅格化,并且用非参数的方法来拟合地平面,分离地面和障碍物.Guo等[6]将栅格图以无向图的方式处理,用马尔科夫随机场将栅格分为4类,从中选取地面.虽然基于栅格的检测方法较为稳定,但是该方法的检测精度取决于栅格大小(往往是20 cm×20 cm),相比于原始三维点云数据精度(0.2 cm),栅格算法精度较小;受限于计算速度,栅格地图范围不大,典型的250×150栅格图相当于50 m×30 m的检测范围,相比于原始数据200 m×200 m的检测范围,大量数据丢失;由于三维数据分布的非均匀性,大量栅格内并没有数据,造成了存储和处理的浪费.2)基于图的地面检测.三维激光雷达数据结构的特点:任意三维点与其在同一扫描线上相邻角度的点以及前后扫描线相同角度的点组成4邻域系统,可以将三维点云以无向图的方式组织起来.Montemerlo等[7]使用三维数据环之间的距离来判断单个三维点是否属于地面区域(三维激光雷达地面反射点在二维平面上呈现出环的样式,障碍物点的环间距要远小于地的面点间距).Moosmann等[8]使用局部凹凸性分割不同物体.Douillard等[9]采用Mesh方式构造图,并且通过计算梯度来确定地面点.相比于栅格类的分割算法,基于图的算法精度较高,并且能处理全部雷达数据,但是现有算法均使用单个三维点作为图的节点,特征单一,容易受到噪声干扰,在起伏道路环境中鲁棒性较差.本文提出一种新的基于图的算法.将扫描线χ-y平面上的投影曲线进行分段,构建以线段为节点的马尔科夫随机场,通过对线段特征分析建立能量函数,并采用图分割算法求全局最优解.算法不仅能在100 ms内完成,而且在不同场景下分割效果都优于现有基于图的分割算法.1 算法概述观察雷达数据在χ-y平面上的投影可以发现,地面数据和障碍物数据在线型上的明显区别.地面区域如图1(a)环状图案所示,单条扫描线障碍区域放大后如图1(b)、(c)所示:在同一扫描线上呈断开状或是折角状.据此,本文提出的地面分割算法采用线段特征.图1 扫描线在x-y平面上投影的样式Fig.1 Projection of scan lines onχ-y plane图2 地面分割算法流程图Fig.2 Flow chart of ground segmentation algorithm 图2为地面分割算法的流程框图,该流程分为3个步骤:扫描线投影分段;线段端点精确定位;建立无向图马尔科夫随机场并且求解.首先输入激光雷达原始数据,并且进行预处理,包括异常距离三维点滤除以及采用GPS进行点云位姿修正.考虑到在χ-y平面的投影中每条扫描线处于同一直线上的相邻点属性相同,算法首先对每条扫描线进行快速分割.由于存在噪声,分割后相邻线段端点(角点)可能出现定位错误,通过角点检测,准确选取端点,增加算法的精确度.采用线段作为图节点,不仅大大减少了节点数量(从每帧大约130 000个点减少到20 000个点左右)加快图分割的处理速度,而且能获取多个基于线段的特征,增加了算法的鲁棒性.最后通过图分割算法,获取全局优化后的分割结果,提升算法的性能.2 扫描线投影分割由于地面不平整以及激光雷达本身具有的检测噪声,扫描线在χ-y平面上投影含有噪声.采用基于最大模糊线段的方法对扫描线投影进行快速分割.模糊线段(blurred segment,BS)定义为介于直线l1:aχ+by=μ以及直线l2:aχ+by=μ+ω之间的有限离散二维点集,如图3所示.ν为BS的宽度:图3 模糊线段Fig.3 Blurred segment一个二维点集模糊线段的参数可以通过计算该点集凸包络的支持线来获取[10],计算复杂度与点的数目成线性关系.分割算法流程如下:1)将单条扫描线的映射点顺序输入,如果当前点和前一个点的距离大于阈值T p-d,则将前一个点作为当前线段的终止端点,当前点作为新一条线段的起始端点.相邻2个点的属性都标记为分离点.2)若当前点和前一个点的距离小于阈值Tp-d,则进行模糊线段参数计算.如果模糊线段的宽度大于阈值Tv,则将前一个点作为当前线段的终止端点,当前点作为新一条线段的起始端点.相邻2个点的属性都标记为连接点.三维激光雷达在不同距离下有不同的分辨率,Tp-d和Tv均为距离相关的自适应参数:式中:D为当前点在χoy平面的投影到原点的距离,μ1、μ2 为比例因子.由于VELODYNE HDL64E雷达在不同距离,扫描线在地面上的点间隔不同,对此阈值使用比例因子与距离的乘积.考虑到在10 Hz运行下,激光雷达角分辨率最大为0.18°,2个连续扫描点间距理论上为D×0.18π/180.作为阈值将该值适当放大,取3倍值,计算中μ1=0.009 42.式(3)用于确定分割线段的最大宽度.该阈值不仅受到距离的影响,也受到不同地形环境的影响.本文使用经验值,平坦地形下μ2=0.003,在颠簸环境下μ2=0.005.分割结果见图4,相邻的线段用2种不同的灰度表示.3 角点检测图4 模糊线段分割结果Fig.4 Segmentation by blurred segment模糊线段有一定的宽度,当连接点很多时不能准确定位在局部曲率最大的角点上.可以通过角点检测算法重新定位连接点.实空间R上的算子A被定义为以下形式:二维曲线Γ定义为参数化方程a(s),核函数φ定义为高斯函数,其中u为均值,t为方差:将a(u)在u=0附近进行泰勒展开:可得:积分算子在χ处的值在曲线法方向nχ上正比于曲线曲率κχ,选择局部曲率最大的点作为角点.角点定位前后分割结果如图5(a)、(b)所示.图5 角点定位前后不同的分割结果Fig.5 Segment results before and after corner detection4 建立无向图马尔科夫随机场马尔科夫随机场框架建立了全局标记优化模型,常被用于解决场景分类问题[11].定义G= (V,E)为无向图,节点v i∈V;边(vi,v j)∈E对应于相邻的节点对.每条边(vi,vj)∈E被赋以非负权重W(v i,v j),用于描述相邻节点vi及v j间的相似度.标记推测算法能为每个节点找到概率最大的标记,例如图分割[12].定义L为一个有限的标记集合,f为标记赋值函数,f(v i)为每个节点赋以标记.假设标记在区域内变化缓慢,而在区域边缘变化剧烈.标记赋值的准确度由能量方程来衡量:式(8)中等号右侧第一项是数据项,是对节点本身的约束;第二项是平滑项,是对能量方程解的平滑性约束[13].本文算法利用激光雷达原始数据结构,构建无向图.把每条线段当作一个节点,所有包含与当前节点线段相邻三维点的线段,与该节点线段组成一个相邻集合.定义与节点相邻的同一扫描线线段为侧邻线段(SN),定义与节点相邻的前一扫描线线段为上邻线段(UN),定义与节点相邻的后一扫描线线段为下邻线段(DN).根据定义,每条线段只有左右2条侧邻线段,可以有多条上下邻线段.根据线段内点数依据阈值Tp-n将线段分为2类:长线段(Sl)和短线段(Ss).由于地面较为平坦,长线段大多属于高概率地面区域(Agh),只有在以下情况长线段被定义为高概率的障碍区域(Aoh):1)长线段端点标记为分离点,且该点距雷达原点的距离与侧邻线段分离点距原点距离的差大于阈值Td.2)长线段端点标记为连接点,且它与侧邻线段夹角与直角的差小于阈值Ta.3)长线段与上邻线段的梯度大于阈值Tg.梯度定义为线段包含三维点平均高度差与线段在χ-y平面上的平均距离的比值.短线段大多属于高概率障碍区域,只有在以下情况长线段被定义为高概率的地面区域:1)短线段端点标记为连接点,与侧邻定义为高概率地面区域的长线段夹角与直角的差值大于阈值Ta.2)短线段与上邻定义为高概率地面区域的长线段的梯度小于阈值Tg.本文采用线段点数阈值的经验值Tp-n=6.Td、Tg均为障碍物阈值,障碍物会造成同一扫描线上线段的分离以及相邻扫描线上线段间产生梯度.这2个阈值的取值与地形或者障碍物区分敏感度有关.实验中,城市道路的Td=40,Tg=tan 12°(0.212);乡村颠簸道路的Td=60,Tg=tan 25°(0.466).Ta主要用于区分城市道路中的马路牙子和地面,实验中Ta=30.根据以上准则,可得:η是符合判断准则下,标记为地面的先验概率值,实验中η=0.8.为保证局部区域标记的一致性,定义平滑项:φ(Δh)是根据相邻线段在三维空间中的平均高度差Δh来度量相似性的函数,k 为经验系数(实验中k=0.01):最后使用图分割的方法(Graph-Cut)优化能量方程,得出标记结果.5 实验过程及其结果实验平台如图6所示.三维激光雷达安装在车顶部,除少部分盲区外,能较为全面地获取车体周围的三维环境信息.图6 三维激光雷达与自主车Fig.6 3D LIDAR and autonomous landing vehicle 分别在城市平坦路面场景和乡村起伏道路场景采集数据,将本文算法结果与局部凹凸性算法[8]、Mesh梯度算法[9]以及人工标记的结果进行对比.图7中第1行是城市平坦路面场景;第2行是乡村起伏道路场景;图7(a)、(f)是对2种场景的相机图片;图7(b)、(g)是三维激光雷达数据人工标记的结果,在本文中该图为灰度图,实际中该图的其中地面区域标记为绿色,障碍区域标记为红色,黑色区域为未知区域;图7(c)、(h)为局部凹凸性算法的结果;图7(d)、(i)为 Mesh梯度算法结果;图7(e)、(j)为本文算法的结果.在城市平坦路面场景下,Mesh梯度算法(图7(d))结果和本文算法(图7(e))的结果都较好,接近人工标记的结果(图7(a)).局部凹凸性算法(图7(c))结果较差,以局部平面的法向量方向作为判断准则,用单个三维点的邻接4点拟合平面.因此,在构建图时,删除了长度大于某个阈值的边,以防止远距离点用于平面拟合,造成障碍物边缘判断错误.由于在远距离,激光雷达相邻点本身相距很远,导致删除长边后的图出现大量未知区域,影响了检测效果.在乡村起伏道路场景下,地面起伏变化大,使得基于单个三维点梯度特征的Mesh 梯度算法(图7(i))检测效果下降,出现了大量地面区域漏检点;路边大量低矮植物造成了地面区域误检点.局部凹凸性算法(图7(h))不仅在远距离存在未知区域;在近距离,由于地面不平整,使得局部平面的法向量变化很大,导致地面区域漏检,路边大量低矮植物又造成局部平面的法向量变化缓慢,产生地面区域误检点.本文算法(图7(j))效果优于Mesh梯度算法和局部凹凸性算法:由于本算法使用线段的梯度特征,减少噪声对单点梯度的影响,线段夹角特征和分离点距离特征的判断增加了地面区域判断的可靠性,最后使用马尔科夫随机场进行全局优化使得结果具有更好的鲁棒性.图7 2种场景的分割结果Fig.7 Segmentation results of two kinds of scenes式中:NTP为地面点被正确标记的数目,NFP为障碍点被标记为地面点的数目,NFN为地面点被标记为障碍点的数目,NTN为障碍点正确标记的数目.城市场景下的算法准确率如图8所示,横坐标为连续帧的编号,纵坐标为准确率.Mesh梯度算法和本文算法都有较高的准确率.乡村起伏道路场景下的算法准确率如图9所示,本文算法相比于Mesh梯度算法和局部凹凸性算法,不仅准确率高于这2种算法,而且稳定性也要好于这2种算法.在起伏道路环境中,地面梯度变化剧烈,基于单点局部特征的算法稳定性差不适用于这类场景.本文算法通过多特征全局优化,获得了较高的稳定性,更适合乡村起伏道路场景.本文算法使用C++实现,在Intel酷睿i5双核2.8 GHz CPU、2 G内存的自主车平台上运行时间图8 城市场景下算法准确率Fig.8 Accuracy of algorithms under urban scene 图9 乡村起伏道路场景下算法准确率Fig.9 Accuracy of algorithms under rural bumpy scene在2种场景下运行100帧数据序列,通过正确率(R)对不同算法的结果与人工标记的真值进行量化比较.为每帧61 ms,其中原始激光雷达距离数据转换成三维点云25 ms,扫描线分割15 ms,马尔科夫随机场建立和求解21 ms,符合实时运行的要求.6 结语本文提出了一种适用于多类场景的实时三维激光雷达地面分割算法.算法首先使用最大模糊线段方法对三维扫描先在平面上的投影曲线进行分割,然后采用角点检测算法重新精确定位线段端点,最后建立无向图马尔科夫随机场并求解标记地面区域.在城市平坦路面和乡村起伏路面下的实验结果表明:本文算法相比于其他算法具有较高的鲁棒性,能在起伏路面场景下稳定可靠地为自主车辆提供路面区域信息.参考文献(References):【相关文献】[1]GLENNIE C.Calibration and kinematic analysis of the Velodyne HDL-64E S2 Lidar sensor[J].Photogrammetric Engineering and Remote Sensing,2012,78(4):339- 347.[2]HASELICH M,BING R,PAULUS D.Calibration of multiple cameras to a 3D laser range finder[C]∥International Conference on Emerging Signal Processing Applications (ESPA).Las Vegas:IEEE,2012:25- 28.[3]杨飞,朱株,龚小谨,等.基于三维激光雷达的动态障碍实时检测与跟踪[J].浙江大学学报:工学版,2012,46(9):1565- 1571.YANG Fei,Zhu Zhu,GONG Xiao-jin,et al.Real-time dynamic obstacle detection and tracking using 3D Lidar[J].Journal of Zhejiang University:Engineering Science,2012,46(9):1565- 1571.[4]KAMMEL S,PITZER B.Lidar-based lane marker detection and mapping[C]∥Intelligent Veh icles Symposium.Eindhoven:IEEE,2008:1137- 1142.[5]HIMMELSBACH M,HUNDELSHAUSEN F,WUENSCHE H.Fast segmentation of 3D point clouds for ground vehicles[C]∥Intelligent Vehicles Symposium(IV).San Diego:IEEE,2010:560- 565.[6]GUO C,SATO W,HAN L,et al.Graph-based 2D road representation of 3D point clouds for intelligent vehicles[C]∥Intelligent Vehicles Symposium(IV).Detroit:IEEE,2011:715- 721.[7]MONTEMERLO M,BECHER J,BHAT S,et al.Junior:The stanford entry in the urban challenge[J].Journal of Field Robotics,2008,25(9):569- 597.[8]MOOSMANN F,PINK O,STILLER C.Segmentation of 3D lidar data in non-flat urban environments using a local convexity criterion[C]∥Intelligent VehiclesSymposium.Xi’an:IEEE,2009:215- 220.[9]DOUILLARD B,UNDERWOOD J,KUNTZ N,et al.On the segmentation of 3D LIDAR point clouds[C]∥International Conference on Robotics and Automation(ICRA).Shanghai:IEEE,2011:2798- 2805.[10]DEBLED RENNESSON I,FESCHET F,ROUYERDEGLI J.Optimal blurred segments decomposition in linear time[C]∥ Discrete Geometry for Comput er Imagery.Berlin Heidelberg:Springer,2005:371- 382.[11]BESAG J.Spatial interaction and the statistical analysis of lattice systems[J].Journal of the Royal Statistical Society.Series B(Methodological),1974,36(2):192- 236.[12]BOYKOV Y,VEKSLER O,ZABIH R.Fast approximate energy minimization via graph cuts[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(11):1222- 1239.[13]BOYKOV Y,KOLMOGOROV V.An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[J].IEEE Transactions on Pattern Analysis and Machine Intelligenc e,2004,26(9):1124- 1137.。

马尔可夫随机场约束下的PCM图像分割算法

马尔可夫随机场约束下的PCM图像分割算法

马尔可夫随机场约束下的PCM图像分割算法周彤彤;杨恢先;李淼;谭正华;张建波【期刊名称】《计算机工程与应用》【年(卷),期】2013(000)024【摘要】与模糊C均值(FCM)算法相比较,可能性C均值(PCM)聚类算法具有更好的抗干扰能力。

但PCM聚类算法对初始化条件很敏感,在聚类的过程中很容易导致聚类结果一致性,并且没有考虑到像素的空间信息,用在图像分割尤其是多目标图像分割上效果极不稳定。

在PCM算法的基础上,利用Markov随机场中的邻域关系属性,引入先验空间约束信息,建立包含灰度信息与空间信息的新聚类目标函数,提出马尔可夫随机场与PCM聚类算法相融合的图像分割新算法(MP-CM算法)。

实验结果表明,在多目标图像分割上利用MPCM算法可以取得比PCM更好的分割效果。

%Compared with Fuzzy C-Means(FCM)clustering, Possibilistic C-Means(PCM)has a better anti jamming capability. But the Possibilistic C-Means clustering is very sensitive to initial conditions and is very easy to cause the clustering result of consisten cy. And it doesn’t take into account the pixel spatial information. It is extremely unstable when it is used in image segmen-tation especially in multi-object image segmentation. Based on the PCM clustering, the prior spatial constraint is incorporated according to Markov random field theory, to build a new clustering objective function including the establishment of gray information and spatial information. This paper presents a new image segmentation algorithm(MPCM)combining Markovand PCM clustering. With experiments, using MPCM algorithm can achieve a better segmentation result than PCM in multi-object image segmentation.【总页数】4页(P157-160)【作者】周彤彤;杨恢先;李淼;谭正华;张建波【作者单位】湘潭大学材料与光电物理学院,湖南湘潭 411105;湘潭大学材料与光电物理学院,湖南湘潭 411105;湘潭大学材料与光电物理学院,湖南湘潭411105;湘潭大学信息工程学院,湖南湘潭 411105;湘潭大学信息工程学院,湖南湘潭 411105【正文语种】中文【中图分类】TN911.73【相关文献】1.改进的分层马尔可夫随机场彩色图像分割算法 [J], 王雷;黄晨雪2.融合马尔可夫随机场与量子粒子群聚类的棉花图像分割算法 [J], 龙金辉;朱真峰3.基于相干系数-马尔可夫随机场的高分辨率SAR图像建筑物分割算法 [J], 千倩;汪丙南;向茂生;付希凯;蒋帅4.基于马尔可夫随机场和模糊C-均值聚类的DTI图像分割算法 [J], 陈康; 张相芬; 马燕; 袁非牛; 李传江5.基于隐马尔可夫随机场和共轭梯度算法的脑部MRI图像分割算法研究 [J], 居敏;薛丽君;朱建新因版权原因,仅展示原文概要,查看原文内容请购买。

基于模糊C均值与Markov随机场的图像分割

基于模糊C均值与Markov随机场的图像分割

[ sr c]T vro h eet o g e mett nb lsi fzy C men F Ab tat o o ec metedfcs fi esg nao ycas u z — a s(CM)cut ig ta c niesn tig ao ti g ma i c ls rn h t o s r ohn b u ma e e d
e pe i n sa e c n u td o i l t d g a ma e n e l o o a e . p rme t l e u t ho t a e p o o e p r a h i r fe t e x rme t o d c e n smu a e r y i g sa d r a l ri g s Ex e i n a r s l s w h t r p s d a p o c s mo e e f c i r c m s h t v
中 分 号: P9 圈 类 T3 1
基 于模 糊 C 均值 与 Ma k v随机 场 的 图像 分割 ro
蔡 涛 ,徐 国华 ,徐筱龙
( 华中科技大学 交通学 院水下作 业实验 室,武汉 4 0 7 ) 3 0 3

要 :针对传统模糊 C均值 ( M) 一 F C 图像分割算法没有考 虑图像 空间连续性的缺点 ,提出一种改进 的空间约束 F M 分割算法 。该算法 引 C
骤 ,其 目的是将 图像划分为多个互不重叠的若干 区域 ,每 个
区域内的像素具有相似 的或一致的性质 ,并且相邻 区域不具 有类似性质 。由于 图像分割实现了对 图像 中人们感兴趣 区域
割方法 。模拟 图像及真实图像的分割实验表明本文提 出的方
法是相 当有效 的。
的分离 ,使得 目标特征和参数的提取成为可能 ,因此 图像分 割多年来一直是人们 高度重视 的研究领域。 在诸多 的图像分割算法中,源于模式识别领域的聚类分

基于直觉模糊C-均值聚类算法的图像分割

基于直觉模糊C-均值聚类算法的图像分割

基于直觉模糊C-均值聚类算法的图像分割
兰蓉;马姣婷
【期刊名称】《西安邮电学院学报》
【年(卷),期】2016(021)004
【摘要】基于直觉模糊集理论对模糊C-均值(Fuzzy C-Means,FCM)聚类算法进行改进.采用模糊补算子生成非隶属度,得出相对应的直觉模糊集犹豫度,用于更新模糊C-均值聚类算法中的模糊隶属度值.针对常用测试图像的仿真实验结果显示,在分割的视觉效果几乎一致的情况下,改进算法在迭代效率上相对于原FCM聚类算法有一定提高.
【总页数】4页(P53-56)
【作者】兰蓉;马姣婷
【作者单位】西安邮电大学通信与信息工程学院,陕西西安710121;西安邮电大学通信与信息工程学院,陕西西安710121
【正文语种】中文
【中图分类】TP391
【相关文献】
1.基于PSO的模糊C-均值聚类算法的图像分割 [J], 陈曦;李春月;李峰;曹鹏
2.基于空间信息的直觉模糊C-均值图像分割算法 [J], 马姣婷;贾世英;吴伟霖
3.基于核模糊C-均值和EM混合聚类算法的遥感图像分割 [J], 王民;张鑫;贠卫国;卫铭斐;王静
4.基于直觉模糊C-均值聚类算法的图像分割 [J], 兰蓉;马姣婷;
5.基于直觉模糊C均值聚类算法的作物病害图像分割 [J], 张晴晴; 张云龙; 齐国红; 李瑶
因版权原因,仅展示原文概要,查看原文内容请购买。

基于马尔科夫随机场模型的多视角异质多模图像的目标检测

基于马尔科夫随机场模型的多视角异质多模图像的目标检测

基于马尔科夫随机场模型的多视角异质多模图像的目标检测何智翔;丁晓青【期刊名称】《成都理工大学学报(自然科学版)》【年(卷),期】2012(039)005【摘要】研究复杂背景中不同视角的不同光质图像中的特定目标检测问题.利用马尔可夫随机场模型,提出了一个基于地面区域匹配和空间约束关系的目标检测方法.在可见光俯视参考图像和红外光侧视观测图像的实验数据集上的检测结果表明,区域匹配能够有效提高召回率,而空间约束能够有效降低虚警率,获得了比一般异质光图像检测中基于边缘的方法更好的检测结果.该方法降低了不同视角带来的影响,同时能够克服图像间光质不同带来的检测困难,能够有效处理复杂背景下不同光质图像的匹配及其中目标的准确检测定位.%The paper study the problem of target detection in multiview and multimodal (multisensor) images. To solve it, a new target detection method is proposed by using Markov Random Field and based on the ground region matching and spatial constraints. The detection result in the data sets including visual reference images in top views and infrared sensed images in side views shows that the region matching can improve the recall rate and the spatial constraints can reduce the false alarm rate. The detection result is better than that by the common methods using edges to detect in multimodal images. The target detection can effectively reduce the impact of multiview, overcome the difficulties of detection in multimodal images and solve the problems ofmultimodal image registration and target detection in multiview and multimodal images against complex backgrounds.【总页数】8页(P541-548)【作者】何智翔;丁晓青【作者单位】智能技术与系统国家重点实验室,清华信息科学与技术国家实验室,清华大学电子工程系,北京100084;智能技术与系统国家重点实验室,清华信息科学与技术国家实验室,清华大学电子工程系,北京100084【正文语种】中文【中图分类】TP391.41【相关文献】1.基于马尔科夫随机场模型的图像融合 [J], 江之洋2.基于分裂级联模型的多视角多姿态目标检测 [J], 黄江华;尹东;张荣;黄俊3.基于马尔科夫随机场学习模型的图像模糊核估计 [J], 何富运;张志胜4.基于马尔科夫随机场和混合高斯模型的两图像配准算法 [J], 石启群5.基于多模型耦合的城市内涝多视角分析 [J], 李尤;邸苏闯;朱永华;李永坤;张宇航;徐袈檬因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I.J. Information Technology and Computer Science, 2009, 1, 49-57Published Online October 2009 in MECS (/)Multiresolution Fuzzy C-Means Clustering Using Markov Random Field for Image SegmentationXuchao LiCollege of Information Science and Media, Jinggangshan University, Ji’an, Chinabsx7096@Suxuan BianCollege of Nursing, Jinggangshan University, Ji’an, Chinalixuchaoliaoning@Abstract—In this paper, an unsupervised multiresolution image segmentation algorithm is put forward, which combines interscale and intrascale Markov random field and fuzzy c-means clustering with spatial constraints. In the initial label determination of wavelet coefficient phase, the statistical distribution property of wavelet coefficients is characterized by Gaussian mixture model, the properties of intrascale clustering and interscale persistence of wavelet coefficients are captured by Markov prior probability model. According to maximum a posterior rule, the initial label of wavelet coefficient from coarse to fine scale is determined. In the image segmentation phase, in order to overcome the shortcomings of conventional fuzzy c-means clustering, such as being sensitive to noise and lacking of spatial constraints, we construct the novel fuzzy c-means objective function based on the property of intrascale clustering and interscale persistence of wavelet coefficients, taking advantage of Lagrange multipliers, the improved objective function with spatial constraints is optimized, the final label of wavelet coefficient is determined by iteratively updating the membership degree and cluster centers. The experimental results on real magnetic resonance image and peppers image with noise show that the proposed algorithm obtains much better segmentation results, such as accurately differentiating different regions and being immune to noise. Index Terms—image segmentation, Markov random field, wavelet transform, fuzzy c-means, multiresolution, scaleI.I NTRODUCTIONSegmentation has been found extensive applications in areas such as quantitative analysis of brain tissues, scene analysis, content-based image retrieval and object tracking[1,2]. The purpose of image segmentation is to partition the given image into a number of regions with significantly different properties, such as statistical and structural information. Segmentation is implemented by assigning each pixel to one of a finite number of classes or labels, based on certain contextual property of the neighbouring pixels.In recent years, image segmentation technique based on stochastic field model has received extensive attention, one of the most influence on image segmentations is Markov random field (MRF)[3]. It is roughly classified into three types, namely, the single resolution and multiresolution segmentation based space domain [4, 5], multiresolution segmentation based wavelet domain [6]. The single resolution segmentation approach assumes that the spatial distribution of regions consists of a single random field, the feature field based on original image is described by conditional probability function given a label field, the label field is modeled as MRF to impose smoothness constraints on the image segmentation [7]. The technique based on single resolution has demonstrated substantial success for image segmentation, but the single resolution MRF model usually favors the formation of large regions and leads to over segmentation, although the segmentation performance can be improved by using a larger neighborhood for each pixel, it maybe blurs the high frequency of image, these shortcomings produce unfavourable influence on image analysis.The multiresolution segmentation based space domain [8] assumes that the spatial distribution of regions consists of a serial of random field models from coarse to fine scale, the coarse scale label field affects the fine scale label field by the interscale label transition probability of MRF. The approach takes into account the interscale contextual information of pixels, it can improve the accuracy of boundary localization, but when the image is blurred by noise, the spatial domain multiresolution approach will lose the performance of region classification and boundary detection. Although spatial filter can reduce the effect of noise, but the high frequency information of image is badly worn out. Moreover, the feature field model is still established by probability density function (pdf) of pixels, which can not accurately capture the wide range frequency features of image. Since image has locally varying statistical distributions such as texture regions, smooth shading regions, flat regions or their combinations of aburt features, the spatial non-stationary feature contradicts single frequency statistical characterization based on pixels.Multiresolution Fuzzy C-Means Clustering Using Markov Random Field for Image Segmentation 50The multiresolution segmentation based wavelet domain receives extensive attention. Wavelet transform decomposes an image into a casual hierarchical sub-images, which are characterized by a serial of MRF models with good time-frequency characteristics[9]. The approach can incorporate the interscale persistence and intrascale clustering properties of wavelet coefficients into the label field prior probability model, it can overcome the shortcoming that the label prior probability model easily produces over segmentation. Moreover, wavelet transform can reduce noise without smearing high frequency information of image, since the features of image are extracted by high pass and low pass filter with different frequencies, the filter bank adapt to the non-stationary characterization of image.In the last decade, soft computing approaches, such as k-means, possibilistic c-means (PCM)[10] and fuzzy c-means (FCM) clustering[11], have been successfully used for image segmentation. K-means forces each pixel to be associated with exactly one label, it is not realistic, since the uncertainty is almost everywhere in medical image, particularly in the case of magnetic resonance image (MRI) due to partial volume effects and noise (during the acquirement). Consequently, the labels of border between tissues can not be thought as belonging to a single region and must be determined by the degree of membership, fuzzy method is a strong tool to solve the problems.PCM clustering algorithm[10] is firstly proposed by Krishnapuram Raghu and Keller James M. in 1996, it is a variant FCM algorithm, the PCM objective function is constructed by the Euclidean distance between the likelihood function of sample and clustering centers, the algorithm can overcome the unfavourable influence of noise or outliers on image segmentation. But the difficulty of the algorithm is how to determine the likelihood function of characterizing samples and cluster centers, and how to incorporate spatial constraint into the objective function, which directly affects the segmentation results. Moreover, PCM algorithm is sensitive to initialization, it is usually initialized by the standard FCM algorithm.The first studied FCM algorithm by Jim Bezdek [12], who constructed FCM objective function for image segmentation, but the algorithm has some limitations, firstly which is sensitive to noise, noise can be reduced by the chosen space filter groups, but the edges of image is seriously lost. Secondly, lacks of spatial context information constraints, the spatially neighboring pixels maybe belong to the same region that can be of great aid in image segmentation. Thirdly, is sensitive to initial values and easily converges a local maxima.In order to overcome the shortcomings of standard FCM clustering and PCM algorithm without taking into account spatial constraints, many researchers have incorporated local spatial statistical information into the conventional clustering algorithm[13] to improve the performance of image segmentation by modifying the objective function, but the improved objective function is established in single or multiresolution space domain[14] instead of wavelet domain.In this paper, a wavelet domain MRF and FCM clustering algorithm with spatial constraints for robust multiresolution image segmentation is proposed, it has the following features:The given image is decomposed into different subbands, which can reduce noise and accurately extract the features of image. In order to represent the observed image for multiresolution Bayesian segmentation, we construct a serial of feature field and label field models.At the initial label determination of wavelet coefficient stage, the feature field is described by Gaussian mixture model (GMM)[15], it can provide a good fit to the global statistical distribution of wavelet coefficients. In order to capture the intrascale clustering and interscale persistence properties of local wavelet coefficients, the contextual statistical information of intrascale and interscale label field models are captured by Markov prior probability model, the model parameters are estimated by improved expectation maximization (EM), according to maximum a posterior (MAP) estimate, the initial label of wavelet coefficient across scales is determined. Taking advantage of the initial label of wavelet coefficient, we can obtain initial clustering centers and the degree of membership for the following improved FCM algorithm.At the image segmentation stage, we incorporate the local statistical distribution and contextual information of wavelet coefficients into the FCM objective function, the local statistical information captures the clustering property of intrascale wavelet coefficients, the contextual information captures the persistence property of interscale wavelet coefficients. We optimize the modified FCM objective function, an unsupervised multiresolution image segmentation algorithm from coarse to fine scale is obtained.The rest of this paper is organized as follows: In section 2, two-dimensional discrete wavelet transform (DWT) of image is briefly introduced, then the feature field of image is described by GMM, the intrascale and interscale contextual information is captured by MRF, the model parameters are estimated by improved EM algorithm, according to MAP rule, the initial label of wavelet is determined. Section 3 gives the modified FCM objective function, which incorporates the intrascale clustering and interscale persistence properties of wavelet coefficients, optimizing the new objective function, an unsupervised image segmentation algorithm is obtained. The proposed is outlined in section 4. Simulation results on real MRI and peppers image with noise are given in section 5, and some conclusions are drawn in section 6.II.T HE INITIAL LABEL DETERMINATION OF WAVELETCOEFFICIENTA. Image Multiresolution Representation by DWT Wavelet transform is a multiresolution analysis technique that has been developed and applied in various fields, such as astronomy, finances, quantum physics, signal processing, video compression and image processing[16,17], etc. Wavelet has a varying window size and finite duration to fit low and high frequencyMultiresolution Fuzzy C-Means Clustering Using Markov Random Field for Image Segmentation 51information of non-stationary signals, and produces an optimal time-frequency resolutions from coarse to fine scale [18].The continuous wavelet transform of a 1-dimensional signal ()f x is defined as,(,),(,)()()a b R Wf a b f a b f x x dx ϕϕ==∫, (1) 12,()a b x b x a a ϕϕ−⎛=⎜⎝⎠⎞⎟. (2) Where, is called scale parameter that controls wavelet frequency, b is called translation parameter that controls wavelet position (time), a , denotes inner product. The function ,a b ϕis called mother wavelet, which satisifies ∫and generates the other wavelet functions with parameters a dilation and translation.,a b ϕ()x dx =0R b The two-dimensional wavelet transform is performed by consecutively convolving one-dimensional filter bank with the rows and columns of image. The given image is decomposed by applying low-pass and high-pass filters associated with a mother wavelet as shown in Fig.1. and denote the one-dimensional low-pass and high-pass filters, respectively, while 1:2 represents downsampling by a factor of 2 in horizontal and vertical direction of image. Fig.1 shows four subband images with resolution in j-level wavelet transform, LL j denotes approximate subimage, we can recursively decompose it further to obtain next level multiresolution representation of the original image, and three subimages, LH j , HL j , HH j denote the horizontal, vertical and diagonal subband details. Fig. 2(b) shows that the image DWT decomposition and wavelet coefficients distribution. The given image is decomposed by three level wavelet transform in Fig.2(b), as can be seen, the wavelet transform preserves better the spatial-frequency features of image. As far as frequency property of wavelet coefficients is concerned, the stationary portions of image is described by a few large magnitude value wavelet coefficients. Moreover, the magnitude do not vary significantly across scales. On the contrary, the non-stationary portions (around edges) of image is described by large magnitude value wavelet coefficients. As far as spatial property is concerned, the spatially relative position of wavelet coefficients remains unchange from coarse to fine scale. In other words, the persistence of wavelet coefficient magnitude propagates across scales, the property indicates the label of interscale wavelet coefficient maybe remains unchangeable. In Fig. 2(c), the subimages of three level wavelet transform can be represented by hierarchical structure, each coefficient in coarse scales has four wavelet coefficients in the next finer scale, as the pink color box shows the relationship between “parent” and its four “children”. According to the persistence property of interscale wavelet coefficients, it indicates that the label of children is closely similar to its immdeiate parent. Fig.2(d) shows the statistical distribution of the HH 2 subband wavelet coefficients, it means that intrascale wavelet coefficients have clusteringand compaction properties, the label of each wavelet coefficient depends on its direct neighbouring waveletcoefficients.0H (z)1H (z)j N/2Figure 1. Tree representation j-scale DWT decomposition(a) original image (b) three scale DWT decomposition j N/2×(c) subband hierarchical representation (d) coefficients distribution Figure 2. Image DWT decomposition and coefficients distributionB. Establishment of Feature Field Statistical ModelAfter the given image is decomposed by wavelet transform, we are interested in subimages of wavelet domain instead of the spatial domain where the original image exists. Because of multiresolution time-frequency property of wavelet transform, subband wavelet coefficients reflect the statistical features of subimages. Fig. 2(d) displays the histograms of wavelet coefficients of the HH 2 subband of the original image, the wavelet coefficients exhibit approximately Gaussian statistics, GMM[15] can approach arbitrary pdf. To better model the subband statistical features of wavelet coefficients, we utilized GMM for approximating the histograms of wavelet coefficients. According to the decorrelated property of wavelet coefficients, we can assume that coefficients subbands are conditionally independent, the model likelihood of wavelet coefficients is expressed as the following productMultiresolution Fuzzy C-Means Clustering Using Markov Random Field for Image Segmentation52 /2/21(|)(|)j jN N k k k f f ωθω×==∏θ (3)Assuming that the image consists of M distinct regions, the model likelihood function of wavelet coefficient is approximated by GMM with M components, it is defined as1(|)(,)Mm k k k k k m f g m ωθπωθ==∑ (4)Where, m k πis the mixture ratio of the component th m −(,)m k k g ωθ of GMM and satisfies11Mm k m π==∑,,1 (5) 01mk π≤≤m M ≤≤The conditional likelihood model of waveletcoefficient given the label can be formulated as following2()1exp[()()](|,)m m mk k k k k m m k k k g l ωμσωμωθ−−−−=(6) Where, , 2(){,,1,2,,}m m m k k k m θμσ==L M m k μand are mean and variance.2()m k σThus the overall subband wavelet coefficients distribution of image is parameterized as follows2(){,,,1,2,,/2/2;1,2,,}B m m m j jj k k k k N N m θπμσ==×=L M L (7)Where j denotes scale, B denotes wavelet coefficientthree subbands.C. MRF Theory in Wavelet DomainFrom (3) and (4), the histogram of wavelet coefficients can be approximated by GMM, but GMM only describes wavelet coefficients frequency statistical property, the spatial interactions between wavelet coefficients is not considered. Wavelet coefficients reflect the spatial- frequency information of image, subband wavelet coefficients from totally different two images maybe have the same frequency histogram, however, the spatial structure information of images is totally different. In order to characterize the spatial structure of image, we exploit MRF to describe the local interactions of wavelet coefficients.After the image is decomposed by J-level wavelet transform, we obtain 3J+1 subimages. It is assumed that the subimages are defined on a serial of subband lattics11{,,,JJ LL B B S S S S −=L }{,,jjjB HH HL LH S S S S =,, }j/2jHHj S N = /2j N ×, N N ×represents the size of original image. Let L denote the random field associated with the labels of the subimages, it is defined as 11{,,,}JJ B B LL L l l l −L =, . Let {,,}jjjjB HH HL LHl l l l =ηdenote neighborhood system of sites, it is defined as ,, where,11,,}JJ B B ηη−L {,LL ηη=j{,}j j j B B B i i S ηη=∈Bi ηis the set of sitesneighboring , i j B i i η∉and j jB Bk i k i ηη∈⇔∈. A random field L is regarded as an MRF on S with respect to aneighborhood system η, the random field is defined as (8) {}(|)(|,)jj j j jB j iB B B B Bi i k i p l l p l l k ηη−=∈i According to Hammersley-Clifford theorem[19], agiven random is an MRF if and only if its probabilitydistribution ()jB i p l is a Gibbs distribution, the probability distribtion of the label field is formulated as1()exp[()]jj Bi i p l U l Q=(9) B Where is a normalizing cone en ,Q stant (partition function),()j BU l i is th ergy function having the following form()()j j B ji BB i kik U l V lη∈=∑ (10)D. Establishment of Intrascale Prior Probability Model n properties. From Fig. 2(b),w and Interscale Label Field As we see from Fig. 2(d), the wavelet coefficients have clustering and compressio e can know the neighbor wavelet coefficients maybehave the same labels, so when determining the label ofwavelet coefficients, we must consider the influence ofintrascale wavelet coefficient labels. To take intrascale spatial context information into account, we adopt MRFprior probability model for imposing the interactions ofwavelet coefficient label field. The prior probability model should express the belief that the pixels within aregion have a higher probability. We use the second-order neighbourhood system with respect to the Euclidiandistance, and only consider the interactions of wavelet coefficients with two pair site clique, as is shown in Fig.3.(a) (b)cale neigh hood and clique. (a) A second-order distance. (b) The odel of intrascale wavelet coefficient is defined asbour Figure 3. Intras neighbourhood system with respect to the Euclidian four associated two-site cliques.According to (9), the label field prior probability m 1()[exp(())]/v v p l U l Q = (11)Here,1Q is a normalizing constant called the partition sublattics. ()U l is funct ca e ion, denotes the position of v lled th intrascale energy function, which has the following form:()()v v U l V l τ=v ()B jv v sτη∈∈∑∑ (12)jB v s∈, ()v ηWhereis the seco syste nd order neighbour m, h ly depends on ,()v l v ()v V l τ, w ich on τη∈, aree clique tial function. The function has the followin ()[()1]v v V l l l ττβδth poten g form ()B j v v s τη∈∈=−−−∑∑ (13) Where, the Markov parameter β efficien cont interactions of local wavelet co ts, so that twone rols the spatial ighbouring wavelet coefficients are more likely to have the same label than the different labels. ()δ is thediscrete delta function, it is defined asMultiresolution Fuzzy C-Means Clustering Using Markov Random Field for Image Segmentation 53()()()1a b a b a b if l l l l if l l δ=⎧−=⎨≠⎩ (14)Fig. 2(b) indicates the interscale whave persistence property. Fig. 4co b avelet coefficients shows a wavelet efficient is decomposed by 3-level wavelet transform,each wavelet in coarse scale has four children in next fine scale. If we want to determine the label of node v at j-th scale, according to the interscale persistence property, the label of its parent node 5 in (j-1)th scale will affect the label of node v , moreover, node 5 has three brothers, which derive from the same parent node 1, their labels will affect the label of node v . We call the nodes of 2,3,4 and 5 as the interscale neighbor of node v . It is assumed that the labels of interscale wavelet coefficients have oneorder Markov property, The prior proba ility model ofinterscale label field with quadtree neighborhood system is defined as 121(|)exp[()]jj jB B B v v p l l U l γ−=− (15) 2Q Where,is called the interscale it is defined aswher 2()jB v U l energy function, 1[()1]j j B Bv U l l γαδ−−−−∑∑ (16) 12()()j B B jj B v v ssl γρ−∈∈=e αdenotes the Markov parameter,the interscale neighbour clique. 1)j B −denotes (s ρFigure 4. Interscale neighbourhood and cliqueE. MAP The purpose of multiresolution image segmentation is of Estimate of Initial Label to assign a class label from the set L for each subband wavelet coefficient. Let l $ denote the optimum estimate for true but unknown label *l of wavelet coefficient, l $and *l are realization of MRF, which are formulated as Markov label field prior probability model. The observed subb d wavelet coefficients an ωare formulated as a realization of GMM, which is formulated as feature fieldconditional probability model given the label field.According to MAP, the optimum criterion of label is formulated asarg max (|,)l Llp l ωθ∈=$ (17) Where θ is the model parame Using Bayesian rule, equation (18) label field and the likelihood prob Submitting (6), (11) and (15) into (eq ter.(17) is reformulated asarg max (|,)()l Llp l p l ωθ∈=$ From (18), we need to compute the prior probability of ability of feature field. 18), according to MAPuivalent to minimizing energy function, (18) can beexpressed as12(|)arg min[(|)()()]l L U l U l U l U l ωω∈=++ (19)Where (|)U l ωdenotes the posterior energy function of label field. ting (6)th roperty as Submit , (13) and (16) into (19), according to e local p of MRF, the posterior energy function is expressed 2()21()(|,)[ln ]2B jk k v v k k U l l ηωμωσσ⎧−⎪(),()v s τηγρ∈∈∝++⎨⎪⎩∑ }[()1][()1]v v l l l l τβδαδ−−+−−γ (20) Some stochastic iterative optimization algorithm such as simulated annealing and deterministic adopted to get the global minimum of (th s relaxation are20), but finding e optimum labels of the posterior energy functionrequires a lot of compution time. In this paper, we adoptthe iterative conditional modes (ICM) algorithm[19] toupdate the label of wavelet coefficient. Given the wavelet coefficient ωand the initial label of coarse scale waveletcoefficient, the ICM algorithm sequentially updates label (1)t v l + by minimizing the following formula(1)()()arg min (|,)t t v v v l U l l ηω+=$. (21)here t denotes the numbet of iterations.WF. EM Algorithm for Model Parameters l arameters EstimationTo imp ement image segmentation, the p θ in GMM have to be estimated, the procedure determining the unknown parameters is known as m for odel fit s concrete structure is problemde ting, the objective of model fitting is to obtain the unbiased estimation of model parameters. However, because of the nonlinear relationship between the parameters of GMM and their pdfs in (4) and (6), it isimpossible to derive an explicit expression for the maximum likelihood (ML) estimation of parameters. Many iterative algorithms have been employed to solve the problem, among which the EM algorithm[20] is theone most widely utilized. The classicla EM algorithm is a general ML estimation algorithm, it has a well-known basic structure for dealing with the incomplete data, it pendent. Here, the determination of wavelet coefficientlabel is formulated as an incomplete data processingproblem. The observed wavelet coefficient ωis considered as the incomplete data characterized by likelihood (|)p ωθ, let the label l denote unobservabel or missing data, let the couple (,)l ωdenote the completedata characterized by the joint likelihood function(,|)p l ωθ, where θ is parameter to be estimated. The ML estimation of θ is determined by the following formula $arg max log (,|)p l θθωθ= (22) EM algorith starts with assigning initial values to the m parameter θ, it then iteratively al expectation step (E-step) and maximization step (M-step) ternates between theMultiresolution Fuzzy C-Means Clustering Using Markov Random Field for Image Segmentation54for approximating the ML estimation of parameter θ. It can be expressed as follows:E-step: computing the log-likelihood function conditional expectation of the complete data z , given the observed wavelet coefficient ωand the curr ara ter ent p me ()t θ ML estimation()()(|)[ln (,|)|,]t t l E p l θθωθωθΦ= (23)Where []l E denotes the ma he expectation of random able l , which is t vari described by the con mi a gi e ditional pdf of s.ssing dat ven the wavelet coefficient M-step: th parameter θ is reestimated by maximizing(1)()arg max (|)t t θθθθ+=Φ (24)Where t denotes the number of iterations.From (24), we can get ML estim equation (23) indicates that the M pa itializa n, co ation of parameter, L estimation of rameter is seriously dependent on in tio nsequently, clssicial EM algorithm usually obtains the local maxima. Besides, because EM algorithm is a general framework, we must integrate concerte application issue into the general framework for obtaining the optimum estimation of parameter. To improve the performance of parameter estimation, we introduce histogram of image as constraint conditions of EM algorithm.In order to impose constraints, we introduce a hidden variable z , let {[,1,2,,],1,2,,}p pl z z z l L p P ====L L , where pl to the th l region, P denotes the number of grey levels. The improved EM algorithm computes the co onal expectation of the complete data (,)z z denotes s the probability of grey level p bel ng ndi o ti ωas follow ()()(|)(|,)ln (,|)t t z p z p z dz θθωθωθΦ=•∫ (25) From (25), we do not have any pr or knowledge aboutmissing variable z , in order to c ute the cond si omp expectation of co plete data, we must obtai pr itional n the priorm obability of missing data zvia maximum entropy principle. The maximizing entropy of prior probability of missing data z is defined as(|,)ln |,)z H p z p z dz ωθωθ=−•∫ (26) Under the constraint(|,)p z dz ωθ(1z=∫ates the constraint must conf to on.According to Lagrangian theo to dz (28) (27)Equation (27) indic the normalising condit orm rem, the optimization is maximize the following objective function()(|)t E H θθ=Φ+Γ+((|,)1)p z λωθ−∫zWhere Γand λ are Lagrange multipliers. By maximizing (28) with respect to the prior probability (|,)p z ωθ, we have3()(,|)]p z p z Q 1ωθ= (29) Where Q rmalising f Γ3 is the no unction that satisfiesz w to th p g algorithm, during the cooling proc gl ri 3[(,|)]zQ p z d ωθΓ=∫ (30) In (29), e introduce a parameter Γ, which is similar e tem erature parameter of simulated annealin ess, we can get the obal optima. The improved EM algo thm is formulated as:E-step: the conditional expectation of complete data (,)z ω is()[(,|)](|)ln (,|)[(,|)]z zp z p z p z ωθt θθωθΦ=• (31) M- e parameter ωθΓ∑∑step: th Γθ is reestimated by maximizing (31).S According to (21), we obtain the initial labels of wa he initial cluster centers etermined. In order to membership. LetⅢ. F UZZY C LUSTERING A LGORITHM W ITH S PATIALC ON TRAINTSvelet coefficients from coarse to fine scale, then t of regions are d overcome the standard FCM algorithm without considering wavelet domain spatial-frequency property shortcomings[21], we incorporate intrascale local spatial clustering property and interscale frequency persistence property into FCM objective function. The improved FCM objective function is optimized by Lagrange multipliers, we can obtain a new image segmentation algorithm by iteratively updating clustering centers and degree of membership. Taking advantage of maximizing degree of membership criterion, the final segmentation results of original image are obtained.A. Standard FCM AlgorithmThe FCM algorithm assigns each wavelet coefficient to a region label by using fuzzy degree of {,1,2,,}js j J ωω==L ,{js ωω=12,,,}jjjjM s s s ωωL , js ωω∈,denote the j th scale wavelet coefficiens to be partitionedinto K classes, and the grey value {,1,2,,}js c c j J ==L ,s {j c = 12,,,}jj j K c c c L , s s s j s c c ∈, denote a set of t n cluster cent rs. In order to achieve optimum clustering, the formulation of the FCM optimi e ized i wshe regio e zation model to b minim s defined as follo 2,1(,)()j j jjKi l m i l m s s s l i s J u c u c ω=∈=−∑∑ (32)with the following constraints,11j Li ls l u==∑,,01j i l s u ≤≤ (33)where ,ji l s udenotes the degree of membership ofwavelet c efficient o ji s ω i cluster, jl n the th l s c is the th l class center, • represents the E and is uclidean distance, ma fuzzifizer that controls the resulting partition,[1,)m ∈∞. B. The Intras le FCM Objective FunctionIn standard FCM algorithm, the degree of membership den ca is depen t solely on the distance between the waveletr in waveletcoefficient and each individual cluster cente domain, and disregards the spatial property of wavelet coefficients. According to the spatial clustering property of intrascale wavelet coefficients, the local neighboring。

相关文档
最新文档