(十)平行四边形
人教版第十八章 平行四边形集体备课

第三次集体备课课题:第十八章《平行四边形》地点:XX中学教学楼三楼时间:2019.4.3参加人员:八年级数学教师主备人:望海彬哥一、地位与作用同三角形一样,四边形也是最基本的平面图形,是本学段“空间与图形”的主要研究对象.本章将在平行线、三角形的基础上进一步研究一些特殊四边形的知识,探索平行四边形、矩形、菱形、正方形的有关性质和常用判定方法,并对有关结论进行推理证明,进一步发展学生的逻辑思维能力和推理论证能力,对学生要求较高. 就本学期的教学内容来讲,平行四边形一章是教学重点和难点之一. 就中考来讲,平行四边形的知识会以填空选择题、中档解答题、动手操作题、综合解答题等形式进行考察,约占中考总分的15~18%. 所以,学好这一章,既是对三角形知识的巩固,又是为后续的几何学习做好充分的知识和能力储备。
二、知识结构图从属关系:演变关系:三、课标要求【课标要求】:(1)理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系。
(2)探索并证明平行四边形的性质定理及其判定定理。
(3)了解两条平行线之间距离的意义,能度量两条平行线之间的距离。
(4)探索并证明矩形、菱形、正方形的性质定理以及它们的判定定理。
(5)探索并证明三角形的中位线定理。
四、课时安排建议本章教学时间约需20课时,具体安排如下:18.1 平行四边形7课时18.2 特殊的平行四边形6课时数学活动复习、考试、讲评7课时五、全章教学建议(一) 复习有关知识1、三角形的全等2、等腰三角形3、直角三角形4、几何变换:轴对称、旋转变换、平移变换。
(二)引导学生把学习性质和判定的过程, 变成系统研究这些新课题的过程这部分的新知识其实在难度上并不大, 学生对这些基本的几何图形和比较熟悉, 一般来说, 学生独立探究它们的性质和判定方法是完全可行的.1. 探究的方式: 实验+ 推理2. 引导学生有序地进行探究. 比如:在探究平行四边形的性质的时候, 可以给学生逐步提出下面的问题:[问题1] “对比三角形的研究方法,平行四边形我们可以研究哪些方面的知识?“平行四边形的定义、性质、判定。
人教版初中数学八年级下册教学课件 第十八章 平行四边形 平行四边形的性质 (第1课时)

数学
8年级/下
八年级数学·下 新课标[人]
第十八章 平行四边形
18.1.1 平行四边形的性质
(第1课时)
学习新知
检测反馈
观察思考
观察下图中的小区的伸缩门,庭院的竹篱笆和 载重汽车的防护栏,它们是什么几何图形的形象?
学习新知
你知道什么样的图形叫做平行四边形吗? 两组对边分别平行的四边形叫做平行四
边形.说明定义的两方面作用:既可以作为性 质,又可以作为判定平行四边形的依据.
平行四边形如何好记好读呢?
平行四边形用“□”表示,平行四边形ABCD,
记作“□ABCD”.
如右图所示 对边:AD与BC,AB与DC; 对角:∠A与∠C,∠B与∠D.
总结:四边形中不相邻的边,也就是没有公共 顶点的边叫做对边;没有公共边的角,叫做对角.
的对角线.(1)请你说出图中的相等的角、相等的线段;
AB=CD,AD=BC, ∠DAB=∠BCD,∠B=∠D.
(2)对角线AC需添加一个什么条件,能使平行四边形 ABCD的四条边相等?
添加AC平分∠DAB.
请同学们拿出方格纸,在方格纸上画两条互相平行 的直线,在其中一条直线上任取若干点,过这些点作另一 条直线的垂线.请同学们用刻度尺量一下方格纸上两平 行线间的所有垂线段的长度,你发现了什么现象?
3.如图所示,在□ ABCD中,AD=2AB,CE平分∠BCD交
AD边于点E,且AE=3,则AB的长为 A.4 B.3 C.5 D.2
2
(B)
解析:∵四边形ABCD是平行四边 形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE, ∵CE平分∠DCB,∴∠DCE=∠BCE, ∴∠DEC=∠DCE,∴DE=DC=AB, ∵AD=2AB=2CD,CD=DE,∴AD=2DE, ∴AE=DE=3,∴DC=AB=DE=3.故选B.
人教版初中数学八年级下册第十八章《平行四边形》教案

(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行四边形的基本概念、重要性质和判定方法。同时,我们也通过实践活动和小组讨论加深了对平行四边形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(4)面积计算的灵活运用:学生在计算平行四边形面积时,有时难以确定底和高。
突破方法:通过讲解不同形状的平行四边形面积计算方法,让学生学会根据实际情况确定底和高,并运用到实际问题中。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平行四边形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状像梯子斜靠在墙上的图形?”(如平行四边形)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行四边形的奥秘。
人教版初中数学八年级下册第十八章《平行四边形》教案
一、教学内容
人教版初中数学八年级下册第十八章《平行四边形》主要包括以下内容:
1.平行四边形的定义及性质:平行四边形的定义、对边平行且相等、Байду номын сангаас角相等、对角线互相平分。
2.特殊平行四边形:矩形、菱形、正方形的性质及判定方法。
3.平行四边形的判定:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形。
2.提升逻辑推理能力:在学习平行四边形的判定方法及性质证明过程中,培养学生严谨的逻辑思维和推理能力。
第十讲:平行四边形和梯形

平行四边形和梯形1、同一平面内两条直线的位置关系:2、平行:在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。
3、垂直:如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
垂直的标注最重要的就是直角符号,一定要记得标注,如果需要用字母表示则分别用两个字母代表一条直线,写出关系式。
4、三条直线的位置关系:(1)如果两条直线都和第三条直线平行,这两条直线也一定互相平行,这叫做平行的传递性。
(2)在同一个平面内,如果两条直线都和第三条直线垂直,则这两条直线也一定互相平行。
5、画垂线和平行线的方法:靠、移、画、验6、点到直线的距离:从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。
注意:缩句后变成——垂直线段的长度叫距离。
7、平行线的性质:两条平行线之间的距离处处相等。
这个性质可以用来证明长方形对边相等且平行。
8、画长方形和正方形时的要点:用垂直和平行的方法画图,注意标注:长方形要标出一组邻边的长度,正方形要标出一条边的长度(如果有的话),再标上直角(3个及以上)或者在旁边写出“长方形”、“正方形”。
注意:长方形标出四个直角即可,利用“同一平面内垂直于同一条直线的两条直线互相平行”很容易证明出它的两组对边分别平行(所以不用标注平行符号);正方形不仅要标出四个直角,还要标注“四边相等”这个特性。
如下图当然如果用含字母的等式表示相等就更好了,在五年级会学到,这里不作要求。
至少要学会右边这两种依据特性标注的方法。
9、平行四边形和梯形:两组对边分别平行的四边形叫做平行四边形;10、只有一组对边平行的四边形叫做梯形。
菱形(考试不要求):四条边都相等的四边形是菱形,菱形是特殊的平行四边形。
正方形是特殊的菱形,特殊在“正方形是有四个直角的菱形”。
正方形是长方形“有四个直角”和菱形“四边相等”特性的结合体,是最特殊的平行四边形,也叫做“正四边形”。
平行四边形教案(最新6篇)

平行四边形教案(最新6篇)平行四边形篇一第二课时:平行四边形面积的计算练习课教学内容:练习二1 — 5题教学目标:使学生进一步熟悉平行四边形的面积公式并能熟练地加以运用。
教学过程:练习二:第1题:使学生画出的平行四边形面积与图中长方形面积相等,平行四边形底与高的乘积为15.所画平行四边形的底和高分别为5和3、3和5或15和1.第2题:学生在测量时一定要注意底和高必须是对应的一组。
第3题:要告诉学生用途中标出的数据计算出来的面积是近似值。
这种近似的测量和计算在实际生活中经常用到。
第5题:可以让同桌两人分别准备一样大小的长方形框架。
操作时,一个长方形不动,另一个长方形拉成平行四边形。
通过观察、比较后要明确两点:1、把长方形拉成平行四边形后,周长没变,面积变了。
2、拉成的平行四边形越是显得扁平,它的高就越短,面积就会越小平行四边形篇二七、教学步骤【复习提问】图11.什么叫平行四边形?我们已经学习了它的哪些性质?2.已知:如图1,,.求证:.3.什么叫做两条平行线间的距离?它有什么性质?【引入新课】在证明“平行四边形对角相等”这一性质时,是通过连结一条对角线,把它分成两个全等三角形来证明的。
如果把平行四边形的两条对角两条对角线都连结起来,那么这两条对角线之间又有什么关系呢?下面来研究这个问题。
【讲解新课】图2(1)平行四边形的性质定理3,平行四边形的对角线互相平分。
先让学生观察图形,如图2.获得对角线互相平分的感性认识,然后引导学生写出已知,求证、证明。
(2)平行四边形性质,定理的综合应用:同学们已经掌握了平行四边形的边、角、对角线的性质,这是解决平行四边形有关问题的基础,灵活应用则是关键。
图3例2 已知:如图3 的对角线、相交于点,过点与、分别相交于点、.求证:.证明比较容易,只须证出△ △△,或△ △△,这是学生自己可以完成的,但需注意及时应用新知识,防止思维定势。
如这里可直接由定理3得出,而不再重复定理的推导过程证出。
初中数学八年级下册第十八章《平行四边形》简介

初中数学八年级下册第十八章《平行四边形》简介平行四边形是特殊的四边形。
本章我们在平行线、三角形和四边形的基础上进一步研究平行四边形;并通过平行四边形角、边的特殊化,研究矩形、菱形和正方形等特殊的平行四边形,认识这些概念之间的联系与区别,明确它们的内涵与外延;探索并证明平行四边形、矩形、菱形、正方形的有关性质定理和判定定理,进一步明确命题及其逆命题的关系,不断发展学生的合情推理和演绎推理能力。
本章教学时间约需14课时,具体分配如下(仅供参考):18.1 平行四边形6课时18.2 特殊的平行四边形6课时数学活动小结2课时一、教科书内容和本章学习目标(一)本章知识结构框图(二)教科书内容平行四边形是常见的几何图形,既有丰富的性质,又在现实生活中具有广泛的应用,尤其是矩形、菱形、正方形等特殊平行四边形的性质更加丰富、应用更加广泛。
学生在第一学段已经学习过平行四边形,本学段七年级下册“三角形”一章中研究了多边形及其内角和等内容,包括四边形及其内角和;八年级上册“全等三角形”一章又研究了三角形全等的判定及全等三角形的性质。
这些内容是学习本章的重要基础。
本章引言直接进入特殊的四边形——平行四边形:两组对边分别平行的四边形的学习,在平行四边形的基础上,学习矩形、菱形、正方形这些特殊平行四边形。
“18.1 平行四边形”主要研究平行四边形的概念、性质定理和判定定理;在平行四边形概念和性质的基础上,介绍两条平行线间距离的概念;作为性质定理和判定定理的一个应用,探究并证明三角形中位线定理。
“18.2 特殊的平行四边形”首先研究特殊的平行四边形:矩形和菱形,它们分别是有一个角是直角,或有一组邻边相等的特殊的平行四边形。
18.2.1和18.2.2分别研究矩形和菱形的概念、性质定理和判定定理,在矩形和菱形的基础上,再研究它们的特殊情况:同时具有两个特殊条件的平行四边形:正方形,它是有一个角是直角的特殊菱形,或者是有一组邻边相等的特殊矩形。
八年级下册数学第十八章-平行四边形》教学设计

第十八章平行四边形18.1平行四边形18.平行四边形的性质第1课时平行四边形的性质(1)理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.重点平行四边形的定义,平行四边形对角、对边相等的性质以及性质的应用.难点运用平行四边形的性质进行有关的论证和计算.一、复习导入1.师:我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象.生:平行四边形.师:平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?生:自动伸缩门、挂衣服的简易衣钩等.师:你能总结出平行四边形的定义吗(小组讨论,教师总结)(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“▱”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“▱ABCD”,读作“平行四边形ABCD”.①∵AB∥DC,AD∥BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC(性质).2.探究.师:平行四边形是一种特殊的四边形,它除了具有四边形的性质和两组对边分别平行的性质外,还有什么特殊的性质呢?我们一起来探究一下.(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.如图,已知:▱ABCD.求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作四边形ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.证明:连接AC,∵AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又AC=CA,∴△ABC≌△CDA(ASA).∴AB=CD,CB=AD,∠B=∠D.由上面的证明可知:∠1=∠3,∠2=∠4,∴∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形的性质1平行四边形的对边相等.平行四边形的性质2平行四边形的对角相等.二、新课教授【例】教材第42页例1师:距离是几何中的重要度量之一,前面我们已经学习了点与点之间的距离、点到直线的距离.在此基础上,我们结合平行四边形的概念和性质,介绍平行线之间的距离.如图1,a∥b,c∥d,c,d与a,b分别相交于A,B,C,D四点.由平行四边形的概念和性质可知,四边形ABDC是平行四边形,AB=CD.也就是说,两条平行线之间的任何两条平行线段都相等.从上面的结论可以知道,如果两条直线平行,那么一条直线上所有的点到另一条直线的距离都相等.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.如图2,a∥b,A是a上的任意一点,AB⊥b,B是垂足,线段AB的长就是a,b之间的距离.三、巩固练习1.▱ABCD中,∠A比∠B大20°,则∠C的度数为()A.60°B.80°C.100°D.120°【答案】C2.在下列图形的性质中,平行四边形不一定具有的是()A.对角相等B.对角互补C.邻角互补D.内角和是360°【答案】B3.在▱ABCD中,如果EF∥AD,GH∥CD,EF与GH相交于点O,那么图中的平行四边形一共有()A.4个B.6个C.8个D.9个【答案】D四、课堂小结1.两组对边分别平行的四边形叫做平行四边形.2.平行四边形的性质:对边平行;对边相等;对角相等我在设计本节课时先让学生看图形,体会到平行四边形在日常生活中的广泛应用,给出平行四边形的定义,从定义出发得到第一个性质,再由学生动手操作和教师演示旋转得到其他性质.因为本章课标明确要求学生能够规范地写出说理过程,所以我在得出平行四边形性质的同时加上几何语言的描述,在练习中也注意规范学生的说理过程.第2课时平行四边形的性质(2)理解并掌握平行四边形对角线互相平分的性质.重点平行四边形对角线互相平分的性质以及性质的应用.难点综合运用平行四边形的性质进行有关的论证和计算.一、复习导入1.复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:①具有一般四边形的性质(内角和是360°);②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.2.探究:请学生在纸上画两个全等的平行四边形ABCD和平行四边形EFGH,并连接对角线AC,BD和EG,HF,设它们分别交于点O.把这两个平行四边形摞在一起,在点O处钉一个图钉,将四边形ABCD绕点O旋转180°,观察它是否还是和四边形EFGH重合.你能从中看出前面所提到的平行四边形的边、角关系吗你还能发现平行四边形的什么性质吗结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.二、新课教授【例1】已知:如图,▱ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.证明:在▱ABCD中,AB∥CD,∴∠1=∠2,∠3=∠4.又OA=OC(平行四边形的对角线互相平分),∴△AOE≌△COF(AAS).∴OE=OF,AE=CF(全等三角形的对应边相等).∵四边形ABCD是平行四边形,∴AB=CD(平行四边形的对边相等).∴AB-AE=CD-CF,即BE=FD.引申:若例1中的条件都不变,将EF转动到图①的位置,那么例1的结论是否成立?若将EF向两边延长与平行四边形的两条对边的延长线分别相交(图②和图③),例1的结论是否成立?说明你的理由.解略.【例2】教材第44页例2三、巩固练习1.▱ABCD中,∠A的余角与∠B的和是120°,则∠A=________,∠B=________.分析:平行四边形的邻角互补.【答案】75°105°2.平行四边形的周长等于56 cm,两邻边的长的比为3∶1,那么这个平行四边形较长的边长为________.分析:平行四边形的对边相等.【答案】21 cm3.▱ABCD的周长为60 cm,对角线交于点O,△AOB的周长比△BOC的周长大8 cm,则AB,BC的长分别是________.分析:平行四边形的对边相等,对角线互相平分.【答案】19 cm,11 cm4.▱ABCD的周长为50 cm,AB=15 cm,∠A=30°,则此平行四边形的面积为________.分析:平行四边形的对边相等,面积等于边与该边上的高的乘积.【答案】75 cm2四、课堂小结定义:两组对边分别平行的四边形是平行四边形.性质:(1)边的性质:对边平行且相等;(2)角的性质:对角相等,邻角互补;(3)对角线的性质:对角线互相平分.课堂中,我通过让学生说一说、找一找等多种活动,在同桌合作、小组合作等活动交流中,让学生充分感知四边形的特征,培养了学生的合作意识、交流的能力和动手操作的能力.在作业方面,让学生以小组为单位,在校园中寻找我们身边的四边形,让学生感受数学在生活中的应用,感受数学真正就在我们身边.平行四边形的判定第1课时平行四边形的判定(1)使学生掌握用平行四边形的定义判定一个四边形是否是平行四边形的方法.重点平行四边形的判定方法及应用.难点平行四边形的判定定理与性质定理的灵活应用.一、复习导入1.什么叫平行四边形平行四边形有什么性质(学生口答,教师板书)2.将以上的性质定理分别用命题的形式叙述出来.(即用“如果……那么……”的形式)根据平行四边形的定义,我们研究了平行四边形的其他性质,那么如何判定一个四边形是否是平行四边形呢除了定义,还有什么方法平行四边形性质定理的逆命题是否成立可以证明,这些逆命题都成立,于是得到平行四边形的判定定理:平行四边形的判定方法1两组对边分别相等的四边形是平行四边形.平行四边形的判定方法2两组对角分别相等的四边形是平行四边形.平行四边形的判定方法3对角线互相平分的四边形是平行四边形.下面我们以“对角线互相平分的四边形是平行四边形”为例,通过三角形全等进行证明.如图,在四边形ABCD中,AC,BD相交于点O,且OA=OC,OB=OD,求证:四边形ABCD 是平行四边形.证明:∵OA=OC,OB=OD,∠AOD=∠COB,∴△AOD≌△COB,∴∠OAD=∠OCB,∴AD ∥BC,同理AB∥DC,∴四边形ABCD是平行四边形.二、新课教授【例1】教材第46页例3【例2】已知:如图,E,F分别为平行四边形ABCD的两边AD,BC的中点,连接BE,DF.求证:∠1=∠2.证明:在△ABE和△CDF中,∠A=∠C,AB=CD,AE=CF,∴△ABE≌△CDF,∴BE=DF.又∵DE=BF,∴四边形BFDE是平行四边形,∴∠1=∠2.三、巩固练习1.下列条件中,能判断四边形是平行四边形的是()A.对角线互相垂直B.对角线相等C.对角线互相垂直且相等D.对角线互相平分【答案】D2.已知:如图,▱ABCD中,点E,F分别在CD,AB上,DF∥BE,EF交BD于点O.求证:EO =OF.【答案】证明:∵四边形ABCD是平行四边形,∴CD∥AB,∴DE∥BF.又DF∥BE,∴四边形DEBF为平行四边形,∴EO=OF.四、课堂小结1.平行四边形的三个判定定理.2.会用四边形的三个判定定理解决简单的问题.在教学过程中教师应积极转变传统的“传道、授业、解惑”的角色,在教学中应把握教材的精神,在设计、安排和组织教学过程的每一个环节都应当有意识地体现探索的内容和方法,避免教学内容的过分抽象和形式化,使学生通过直观感受去理解和把握,体验数学学习的乐趣,积累数学活动经验,体会数学推理的意义,让学生在做中学,逐步形成创新意识.第2课时平行四边形的判定(2)理解并掌握平行四边形的判定定理.重点理解并掌握平行四边形的判定定理,做到熟练应用.难点理解并掌握平行四边形的判定定理,体会几何推理的思维方法.一、复习导入1.平行四边形的定义是什么?2.平行四边形具有哪些性质?3.平行四边形是如何判定的?教师板书,并画出一个平行四边形,如图.(帮助理解)学生活动:踊跃发言,相互讨论,回顾平行四边形的性质与判定定理.二、讲授新课师:通过前面的学习,我们知道,如果一个四边形是平行四边形,那么它的任意一组对边平行且相等.那么反过来,一组对边平行且相等的四边形是平行四边形吗?下面我们就来证明这个结论是否正确.如图,在四边形ABCD中,AB∥CD,AB=CD.求证:四边形ABCD是平行四边形.证明:连接AC.∵AB∥CD,∴∠1=∠2.又AB=CD,AC=CA,∴△ABC≌△CDA,∴BC=DA,∴四边形ABCD的两组对边分别相等,它是平行四边形.于是我们又得到平行四边形的一个判定定理:一组对边平行且相等的四边形是平行四边形.三、例题讲解【例1】教材第47页例4【例2】已知:如图,在▱ABCD中,AE,CF分别是∠DAB,∠BCD的平分线.求证:四边形AFCE是平行四边形.证明:∵四边形ABCD是平行四边形,∴∠DAB=∠BCD.∵AE,CF分别平分∠DAB,∠BCD,∴∠DAE=∠BCF.又∵∠D=∠B,AD=BC,∴△DAE≌△BCF,∴DE=BF,AE=FC,∴EC=AF,∴四边形AFCE是平行四边形.【例3】已知:如图,▱ABCD中,E,F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平行四边形.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠BAE=∠DCF.∵BE⊥AC于E,DF⊥AC于F,∴BE∥DF,且∠BEA=∠DFC=90°.∴△ABE≌△CDF(AAS).∴BE=DF.∴四边形BEDF是平行四边形(一组对边平行且相等的四边形是平行四边形).四、巩固练习1.判断题:(1)相邻的两个角都互补的四边形是平行四边形.()(2)两组对角分别相等的四边形是平行四边形.()(3)一组对边平行,另一组对边相等的四边形是平行四边形.()(4)一组对边平行且相等的四边形是平行四边形.()(5)对角线相等的四边形是平行四边形.()(6)对角线互相平分的四边形是平行四边形.()【答案】(1)√(2)√(3)×(4)√(5)×(6)√2.在四边形ABCD中,(1)AB∥CD;(2)AD∥BC;(3)AD=BC;(4)AO=OC;(5)DO=BO;(6)AB =CD.选择两个条件,能判定四边形ABCD是平行四边形的共有________对.【答案】略五、课堂小结平行四边形性质判定⎩⎪⎨⎪⎧⎩⎨⎧两组对边分别平行两组对边分别相等一组对边平行且相等角——两组对角分别相等对角线——两条对角线互相平分经过这两节课的学习,学生基本掌握了几何证明题的解题方法,能应用平行四边形的性质和判定方法解决问题.在以后的学习过程中最主要的任务是让学生落实到笔头上,要让学生学会反思做完的每一道题.第3课时平行四边形的判定(3)1.理解并掌握三角形中位线的概念,掌握它的性质.2.能较熟练地应用三角形中位线的性质进行有关的证明和计算.重点掌握并运用三角形中位线的性质解决问题.难点三角形中位线性质的证明.(辅助线的添加方法)一、复习导入创设情境:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的(答案如图)图中有几个平行四边形你是如何判断的二、讲授新课师:在前面学习平行四边形时,常把它分成几个三角形,利用三角形全等的性质研究平行四边形的有关问题.下面我们利用平行四边形来研究三角形的有关问题.如图,在△ABC中,D,E分别是AB,AC的中点,连接DE,像DE这样,连接三角形两边中点的线段,我们称之为三角形的中位线,我们猜想,DE∥BC,DE=12BC.下面我们对它进行证明.如图,D,E分别是△ABC的边AB,AC的中点.求证:DE∥BC,且DE=12BC.分析:本题既要证明两条线段所在的直线平行,又要证明其中一条线段的长等于另一条线段长的一半,将DE延长一倍后,可以将证明DE=12BC转化为证明延长后的线段与BC相等.又由于E是AC的中点,根据对角线互相平分的四边形是平行四边形构造一个平行四边形,利用平行四边形的性质进行证明.证明:如图,延长DE到点F,使EF=DE,连接FC,DC,AF.∵AE=EC,DE=EF,∴四边形ADCF是平行四边形,∴CF綊DA.∴CF綊BD∴四边形DBCF是平行四边形,∴DF綊BC.又DE=12DF,∴DE∥BC,且DE=12BC.通过上述证明,我们可以得到三角形的中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.三、例题讲解【例】已知:如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.证明:连接AC,在△DAC中,∵AH=HD,CG=GD,∴HG∥AC,HG=12AC(三角形中位线的性质).同理EF∥AC,EF=12AC.∴HG∥EF,且HG=EF.∴四边形EFGH是平行四边形.此题可得结论:顺次连接四边形四条边的中点,所得的四边形是平行四边形.四、巩固练习1.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC和BC,并分别找出AC和BC的中点M,N.如果测得MN=20 m,那么A,B两点的距离是________m,理由是________________________.【答案】40MN是△ABC的中位线2.如图,△ABC中,D,E,F分别是AB,AC,BC的中点.(1)若EF=5 cm,则AB=________cm;若BC=9 cm,则DE=________cm;(2)中线AF与中位线DE有什么特殊的关系?证明你的猜想.【答案】(1)10(2)AF与DE互相平分,证明略五、课堂小结三角形中位线定理:三角形两边中点的连线是三角形的中位线;三角形的中位线平行于第三边,并且等于第三边的一半.三角形的中位线是三角形中一条重要的线段,三角形中位线定理在许多计算及证明中都要用到.在课堂导入中,我以创设问题情景的形式,激起学生探索的欲望,激发学习的兴趣.在问题情境中引出三角形的中位线,导入本节学习的课题;同时,为证明三角形的中位线定理埋下伏笔,也是有助于用运动的思想来思考数学问题.此时教学体现的是人人都能获得必需的数学.三角形的中位线的性质定理的简单应用,学生都能掌握,这个定理在实际生活中的应用是非常广泛的.特殊的平行四边形18.矩形第1课时矩形(1)掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.重点 矩形的性质. 难点矩形的性质的灵活应用.一、复习导入1.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗为什么(动画演示拉动的过程,如图)2.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形(小学学过的长方形)引出本节课题及矩形的定义.矩形的定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).矩形是我们最常见的图形之一,例如门窗框、书桌面、教科书的封面、地砖等都有矩形的形象. 探究:在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.(1)随着∠α的变化,两条对角线的长度分别是怎样变化的?(2)当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角它的两条对角线的长度有什么关系操作、思考、交流、归纳后得到矩形的性质: 矩形的性质1 矩形的四个角都是直角. 矩形的性质2 矩形的对角线相等.如图,在矩形ABCD 中,AC ,BD 相交于点O ,由性质2有AO =BO =CO =DO =12AC =12BD.因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.二、新课教授【例1】教材第53页例1【例2】已知:如图,矩形ABCD中,AB长8 cm,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.分析:因为矩形的四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.解:设AD=x cm,则对角线长(x+4) cm,在Rt△ABD中,由勾股定理,得x2+82=(x+4)2,解得x=6,即AD=6 cm.由AE·DB=AD·AB,解得AE=cm.三、巩固练习1.矩形的两条对角线的夹角为60°,对角线的长为15 cm,较短边的长为()A.12 cm B.10 cmC.cm D.5 cm【答案】C2.在直角三角形ABC中,∠C=90°,AB=2AC,求∠A,∠B的度数.【答案】∠A=60°,∠B=30°四、课堂小结1.掌握矩形的定义及性质.2.会用矩形的性质求相关的角的度数.本节课主要在学生已有的认知水平上,在实际问题情景中,由学生自主探索发现矩形的性质定理,使学生经历实践、推理、交流等数学活动过程,亲身体验数学思想方法,培养学生的学习能力及运用所学知识解决问题的能力,促进学生发展.第2课时矩形(2)通过探索与交流,逐渐得出矩形的判定定理,使学生亲身经历知识的探究过程,掌握矩形的三种判定方法,并会运用它们解决相关问题.重点矩形的判定.难点矩形的判定定理及性质的综合应用.一、复习提问,引入新课师:什么叫做平行四边形什么叫做矩形生:两组对边分别平行的四边形叫做平行四边形.有一个角是直角的平行四边形叫做矩形.师:矩形有哪些性质?生:矩形的四个角都是直角,矩形的对角线相等.师:矩形是有一个角是直角的平行四边形,判定一个四边形是不是矩形,首先要看这个四边形是不是平行四边形,再看它两边的夹角是不是直角,这种用“定义”来判定是最重要和最基本的判定方法.除此之外,还有其他几种判定矩形的方法,下面我们就来研究这些方法.二、提出疑问,引导探索师:小华想要做一个矩形相框送给妈妈做生日礼物,于是找来了两根长度相同的长木条和两根长度相同的短木条制作.你有什么方法可以检测他做的相框是否为矩形?生:可以用量角器量一下它的一个内角,若是90°,则这个相框为矩形.师:对,这是根据矩形的定义得到的,定义法突出是在平行四边形的基础上添加了一个条件(有一个角是直角),观察矩形和平行四边形,除了角的特性外,边和对角线还有特性吗?生:“边”没有特性,“对角线”是相等的.师:我们是否可以利用这一特性来判定四边形是不是矩形呢?请把这个判定用命题的形式写出来.生:对角线相等的平行四边形是矩形.师:这个命题是否正确(分析命题的题设和结论,写出已知和结论,分析证明过程)证明过程由学生板书完成.师(归纳板书):定理:对角线相等的平行四边形是矩形.师:对角线相等的四边形是矩形吗?生:不一定是矩形.师:画出反例,如下图所示的四边形,对角线相等,但它不是矩形(先画两条相等但不互相平分的相交线段,再顺次连接各端点得四边形).师生讨论,归纳矩形的判定方法:定义:有一个角是直角的平行四边形是矩形.定理:对角线相等的平行四边形是矩形.有三个角是直角的四边形是矩形.(除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值.)三、例题讲解【例1】教材第54页例2【例2】如图,在△ABC中,AB=AC,点D是AC的中点,AE∥BC,过点D作直线EF∥AB,分别交AE,BC于E,F.求证:四边形AECF是矩形.证明:∵点D是AC的中点,∴AD=CD.∵AE∥BC,∴∠EAD=∠DCF.∴△ADE≌△CDF,∴AE=FC.∵AE∥BF,AB∥EF.∴四边形ABFE和四边形AFCE是平行四边形,∴AB=EF,又∵AB=AC,∴EF=AC,∴平行四边形AFCE是矩形.四、课堂练习已知:O是矩形ABCD的对角线的交点,E,F,G,H分别是OA,OB,OC,OD上的点,AE=BF=CG=DH.求证:四边形EFGH为矩形.【答案】证明:∵四边形ABCD为矩形,∴AC=BD.∵AC,BD互相平分于O,∴AO=BO=CO=DO.∵AE=BF=CG=DH,∴EO =FO =GO =HO.∴四边形EFGH 是平行四边形且HF =EG , ∴四边形EFGH 为矩形. 五、课堂小结⎭⎬⎫一个角是直角的平行四边形对角线相等的平行四边形有三个角是直角的四边形是矩形本节课在引入时,我先提出一个实际生活问题,激发学生的求知欲望,再引导学生逆向思考问题,从而让学生提出“对角线相等的平行四边形是矩形”这一结论,最后通过逻辑推理证明命题的正确性,为以后学习其他特殊的四边形的判定打下了基础. 菱 形第1课时 菱 形(1)1.探索并掌握菱形的概念和它所具有的特殊性质,会进行简单的推理和运算. 2.能推导出菱形的面积等于它的两条对角线长的积的一半的性质.重点菱形的概念及性质. 难点菱形性质的灵活应用.一、创设情境,导入新课 活动:(四人一个小组)将一张硬纸片对折后再对折,然后剪成一个三角形,打开观察并讨论. 师:这是一个什么样的图形为什么(学生独立操作,教师演示)生:是平行四边形,因为它的对角线是互相平分的.师:再观察一下,这个平行四边形的邻边之间有什么关系为什么生:是相等的,因为它们是重合的.师(板书):菱形的定义:我们把有一组邻边相等的平行四边形叫做菱形.(强调菱形必须满足两个条件:一是平行四边形;二是有一组邻边相等)二、探索研究,归纳性质活动:菱形具有什么性质呢你能发现吗1.折叠:上下对折,左右对折,你有什么发现?2.旋转.结合学生探索、讨论、交流的情况,必要时教师对知识做适当梳理,板书菱形的性质.菱形的性质1:菱形的四条边都相等.菱形的性质2:菱形的对角线互相垂直,并且每条对角线平分一组对角.菱形是轴对称图形,两条对角线所在的直线都是它的对称轴.师:这些性质我们是通过折叠、旋转观察得到的.如何用逻辑推理的方法证明它呢?已知:如图,在菱形ABCD中,AC,BD相交于O.求证:AC⊥BD,AC平分∠BAD和∠BCD.证明:∵AB=AD,BO=OD,∴AC⊥BD,AC平分∠BAD(等腰三角形三线合一).同理:AC平分∠BCD,BD平分∠ABC和∠ADC.三、继续探索,深化提高师:菱形的对角线将菱形分成几个三角形它们都是什么三角形有什么关系生:是四个全等的直角三角形.师:如果已知菱形的对角线的长度,能求出一个三角形的面积吗?生:可以求出.师:进而就可以求出菱形的面积.试说明菱形的面积等于它的两条对角线线长的积的一半.已知:在菱形ABCD 中,对角线AC ,BD 相交于O 点. 求证:在菱形ABCD 中,S 四边形ABCD =12AC ×BD.证明:在菱形ABCD 中,AC ,BD 是对角线, ∴AC ⊥BD ,OB =OD =12BD ,S 四边形ABCD =S △ABC +S △ACD =12AC ×OB +12AC ×OD =12AC ×(OB +OD) =12AC ×BD. 即菱形的面积等于它的两条对角线长的积的一半. 师:菱形是特殊的平行四边形,所以它的面积公式有两个. 菱形的面积=底×高;菱形的面积=12ab(a ,b 是两条对角线的长度).四、例题讲解【例1】菱形ABCD 的两条对角线AC ,BD 的长度分别为4 cm ,3 cm ,求菱形ABCD 的面积和周长.分析:用勾股定理可求得边长,进而求得周长.解:如图,由题可知AO =2,BO =32,∴AB =AO 2+BO 2=52,∴菱形ABCD 的周长为4×52=10(cm),面积为12×4×3=6(cm 2).【例2】教材第56页例3 五、课堂练习。
八年级数学下册 第十八章《平行四边形》教学设计 (新版)新人教版-(新版)新人教版初中八年级下册数学

《平行四边形》一、内容和内容解析关于平行四边形的概念,在小学,学生已经学过,并不会感到生疏,但对于这个概念的本质属性,理解的并不是十分深刻,所以,本节课的学习,并不是简单的重复。
本节课,平行四边形的定义采用的是内涵定义法,即“种概念+属差=被定义的概念”.在平行四边形的定义中,大前提是“四边形(种概念)”,条件是“两组对边分别平行(属差)”.“两组对边分别平行”是平行四边形独有的、用以区别于一般四边形的本质属性,这也是平行四边形概念的核心之所在。
平行四边形的概念,揭示了平行四边形与四边形的隶属关系、区别与联系,反映了平行四边形的本质属性。
同时,它既是平行四边形的判定,又可以作为平行四边形的一个性质。
关于平行四边形边、角的性质,“平行四边形的对边相等”相对于定义中的“两组对边分别平行”,是由位置关系向数量关系的一种延伸;“平行四边形的对角相等”相对于“两组对边分别平行”,是由“相邻的角互补”产生的思维的一种深化。
同时,两条性质的探究,经历的是“感知、猜想、验证、概括、证明”的认知过程;两条性质的研究,先从边分析,再从角分析,再到下一节课的从对角线分析,提供的是研究几何图形性质的一般思路;两条性质的证明,渗透的是将四边形问题转化为三角形问题的一种转化思想,而添加对角线,介绍的是将四边形问题转化为三角形问题的一种常用的转化手段。
在本章的后续学习中,对于几种特殊的四边形,其定义均采用的是内涵定义法,并且矩形和菱形的定义,均以平行四边形作为种概念,所以平行四边形的概念作为“核心概念”当之无愧.关于平行四边形的性质,也是后续学习矩形、菱形、正方形等知识的基础,这些特殊平行四边形的性质,都是在平行四边形性质基础上扩充的,它们的探索方法,也都与平行四边形性质的探索方法一脉相承,因此,平行四边形的性质,在后续的学习中,也是处于核心地位。
二、教学目标1、使学生掌握平行四边形的概念,掌握平行四边形的对边相等,对角相等的性质,会根据概念或性质进行有关的计算和证明.2、通过有关的证明及应用,教给学生一些基本的数学思想方法.使学生逐步学会分别从题设或结论出发,寻求论证思路,学会用综合法证明问题,从而提高学生分析问题解决问题的能力.3、通过四边形与平行四边形的概念之间和性质之间的联系与区别,使学生认识特殊与一般的辩证关系,个性与共性之间的关系等.使学生体会到事物之间总是互相联系又相互区别的,进一步培养辩证唯物主义观点.4、通过对平行四边形性质的探究,使学生经历观察、分析、猜想、验证、归纳、概括的认知过程,培养学生良好的个性思维品质.三、教学重点平行四边形的概念和性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(十)平行四边形教学内容:教材第133~135页平行四边形和“练一练”,练习二十六第1~7题。
教学要求:1.使学生认识四边形和平行四边形,理解平行四边形概念的含义,掌握平行四边形的特征,能正确地判断一个四边形是不是平行四边形。
2.使学生知道平行四边形的特性,认识平行四边形的高,以及长方形、正方形、平行四边形的关系。
3.培养学生综合、概括等能力,以及空间观念。
教具学具准备:投影仪,4根小棒(每2根长度相等),木条钉的平行四边形,直尺和三角尺;学生每人准备4根小棒,硬纸平行四边形,直尺和三角尺,以及七巧板、钉子板和橡皮筋。
教学过程:一、引入新课1.复习。
下面哪些图形是三角形。
提问:第二个图形为什么不是三角形怎样的图形是三角形?谁来说一说,怎样作三角形的高?(画一个三角形的高)哪一条边是这个三角形的底?2.出示图形。
图见教科书第133页最上面一组。
三角形是由三条线段围成的图形。
这里的这些图形是怎样图形?(板书:四条线段围成的图形)指出:由四条线段围成的图形叫做四边形。
(板书出四边形的定义)3.引入新课。
我们学过的平面图形中,有哪些是四边形?我们以前学过的长方形、正方形都是四边形。
今天我们再来认识一种新的四边形,这就是平行四边形。
(板书课题)请同学们看里的图。
二、教学新课1.认识平行四边形。
(1)教学平行四边形的意义。
用投影仪投影教材第133页的插图。
这个图里有四边形吗?找出几个四边形来。
请看绿色边框的四边形。
(用复式片去掉其他部分,分别留下边框涂色的四边形)这样的四边形用图形来表示,可以怎样画出来呢?请大家看下面的图形。
(投影出示三个平行四边形) 这里的图形就是刚才那样的四边形。
我们课本上第133页也有这样的四边形。
请大家看第一个四边形。
我们把上下相对的两条边叫做一组对边,(板书:对边)左右相对的两条边也叫做一组对边。
第二个四边形里有几组对边?(板书:两组)哪两组?谁来指一指第三个四边形里的两组对边?现在请大家跟着老师一起,用直尺和三角尺检查一下书上的三个四边形,看一看每个四边形的两组对边是不是都分别平行。
指出:我们刚才发现,这里每个四边形的两组对边都分别平行。
(板书:分别平行)像这样的两组对边分别平行的四边形,叫做平行四边形。
(板书出乎行四边形定义) 提问:这里的每个四边形都是什么四边形?为什么都是平行四边形?提问:你发现每个四边形的两组对边有什么共同的特点?提问:你还见过哪些物体的面是平行四边形的?(2)组织练习。
①“练一练”第1题。
小黑板出示,指名学生口答。
提问:为什么第三个四边形不是平行四边形?②“练—练”第2题。
让学生在钉子板上围平行四边形,老师巡视检查。
③练习二十五第1题。
让学生在第149页的方格纸上画一个平行四边形,老师巡视检查。
2.教学平行四边形的性质。
(1)我们已经能围、能画平行四边形,现在请同学们拿出准备的4根小棒,来摆一个平行四边形。
比一比哪两根的长是相等的,把相等的两根作为平行四边形的一组对边。
另外两根的长相等吗?把它作为另一组对边。
摆出一个平行四边形。
提问:这个平行四边形的两组对边的长度分别相等吗?我们再量一量133页3个平行四边形的每一组对边,看看每个平行四边形中两组对边是不是分别相等。
提问:平行四边形的两组对边还有什么特点?(板书:平行四边形两组对边分别相等)(2)下面两个图形都是平行四边形。
请你在下面括号里填上数,并说明为什么这样填。
3.认识平行四边形的高。
(1)教学平行四边形的高和底。
我们认识过三角形的高和底,平行四边形也有高和底。
什么叫做平行四边形的底和高呢,请同学们看课本,然后向老师汇报。
画一个平行四边形,根据学生回答在平行四边形内画高,明图里的“高”和“底”。
提问:高是怎样画出来的?高与底这两条线段的位置有什么关系?说明:还可以在这一边上取不同的点向对边作高。
(画图)提问:这里海条高的长度都相等吗?为什么?说明:也可以作另一组对边上的高。
(画一个平行四边形,作一组对边上的高)提问:这条高和哪条边垂直?和这条高对应的底是哪条边?(注明“高”和“底”)指出:平行四边形的高和底也是互相垂直的关系,所以底和高也是互相对应的。
(2)组织练习。
①指出下面平行四边形的高和底。
指出:在确定“底”的时候,要注意它与高是对应的。
②“练—练”第3题。
用投影出示。
请同学们在“练一练”的第3题的三个平行四边形里分别画高,并根据高的位置,注明与高对应的底。
4.平行四边形、长方形、正方形的关系和平行四边形的可变性。
(1)投影平行四边形和长方形、正方形的图形。
请同学们观察,长方形、正方形和平行四边形比,两组对边与平行四边形有什么相同的特点?长方形和正方形是平行四边形吗?追问:长方形和正方形为什么也是平行四边形?与前面一个平行四边形比,有什么特殊的地方?指出:长方形和正方形也是平行四边形,是特殊的平行四边形。
再请大家看一看,正方形也是长方形吗,为什么?与长方形比,它特殊在哪里?指出:正方形又是特殊的长方形。
小结:现在我们可以看出,正方形是长方形中的特殊情况,长方形和正方形又都是平行四边形的特殊情况。
所以,平行四边形、长方形和正方形的关系可以用这样的图来表示。
(投影课本第134 页的集合图)谁能看着这个图,说一说平行四边形、长方形和正方形之间的关系。
(2)判断。
①长方形是平行四边形。
……………………………( )②平行四边形是长方形。
……………………………( )⑧长方形是正方形。
…………………………………( )④正方形是长方形。
…………………………………( )⑤长方形和正方形都是平行四边形。
………………( )(3)认识平行四边形的可变性。
请谁来拉一拉这个木条钉的平行四边形,看看它会不会变形(指名学生实验) 老师再演示一遍。
说明:用两只手拉对角,可以拉成不同的平行四边形,说明平行四边形有可变性。
(板书:可变性)提问:平行四边形的特性与三角形有什么不同?说明平行四边形这种特性在实践中的应用,并引导学生在生活里找一找。
三、课堂小结这节课学习了什么内容?你知道了些什么?指出:两组对边分别平行的四边形叫做平行四边形。
平行四边形的两组对边分别相等。
我们还认识了平行四边形的高,它与底互相垂直。
平行四边形的可变性,在日常生产、生活中有广泛的应用。
四、课堂练习1.练习二十六第2题。
请同学们任意用七巧板中的几块,拼成平行四边形。
大家试一试。
然后指名回答是怎样拼的。
拼图后,指名几位学生用不同的拼法,在投影仪上拼一拼。
2.练习二十六第3题。
请同学们像第3题那样拼一个平行四边形。
再移动一块拼成长方形。
你是怎样拼的呢,请谁到投影仪上拼一拼。
提问:这个长方形面的大小和原来平行四边形面的大小比,它们的大小相等吗?3.练习二十六第4题。
请大家在准备的平行四边形硬纸上画一条线段,剪成两个三角形。
比一比,这两个三角形完全一样吗?想一想,每个三角形面的大小,相当于原来平行四边形面的多少?4.练习二十六第5题。
让学生量一量长度,写在书里图上相应的位置上。
然后集体订正。
五、课堂作业1.练习二十六第6题。
要求画在书上,老师巡视、辅导。
2.练习二十六第?题。
先比一比第7题里的两组题,考虑各有什么相同和不同的地方。
再要求学生一组一组做在练习本上,并要求学生做完后比较每组里两道题的得数同不同。
板书扎记(十一)梯形教学内容:教材第135—136页梯形和“练一练”,练习二十六第8—14题和思考题。
教学要求:1.使学生认识梯形,知道梯形各部分的名称;认识等腰梯形。
2.培养学生的概括能力和比较、判断的能力,培养学生的空间观念。
教具学具准备:投影仪,直尺和三角尺,完全一样的硬纸梯形两个,完全一样的硬纸三角形两个;学生准备相应的学具。
教学过程:一、引入新课1.复习。
(1)提问:怎样检验两条直线是不是平行?(2)下面哪些四边形是平行四边形?提问:前三个图形为什么都是平行四边形?第四个为什么不是?指出:不管四边形的位置怎样,只要两组对边分别平行,就是平行四边形。
如果只有一组对边平行,另一组对边不平行,就不是平行四边形。
2.引入新课。
那么在四边形里,除了平行四边形外,还有怎样的四边形呢?我们今天就来认识和学习四边形中的另一种图形。
请同学们看这里的图。
二、教学新课1.认识梯形。
(1)投影出示教材第135页下面的实物图。
请同学们看这里的图形,像梯子的形状、跳箱的侧面、水渠的横截面,(用手比划着指出这些图形)都有几条边?是什么图形?这些四边形的形状,可以用这样的图形来表示。
(投影出示梯形)现在我们用直尺和三角尺来检查一下,这个四边形有没有一组对边平行。
(演示检验平行的一组对边)再请大家观察,另一组对边平行吗?提问:只有几组对边平行?(板书:只有一组对边平行)追问:为什么说“只有”一组对边平行?(在“只有”下点“.”)(2)课本第136页上也有这样的四边形。
请同学们自己用直尺和三角尺检验一下,这个四边形有几组对边平行。
提问:有几组对边平行?另一组平行吗?一组对边平行,另一组对边不平行,就可以用怎样的话来说?这两个四边形的边都有什么特点?(3)小结:只有一组对边平行的四边形叫做梯形。
(板书出梯形定义)大家一起说,上面这个图形叫做什么图形?老师手里这个图形(出示硬纸梯形)叫做什么图形?看一看你自己准备的硬纸板图形,是什么图形?为什么是梯形?梯形与平行四边形有什么不同?请大家指一指互相平行的一组对边。
2.认识梯形各部分的名称。
(1)梯形各部分的名称是什么呢?请同学们看课本第136页第三节和右边的图形。
(老师画出梯形)谁来说一说,互相平行的一组对边分别叫做什么?(板书:上底下底)不平行的一组对边叫做什么?(板书:腰腰)(2)提问:什么是梯形的高?(学生回答后,老师画出梯形的高)提问:高的画法和三角形、平行四边形的高的画法有什么相同的地方?高和底有什么关系?请同学们拿出自己的梯形,(老师同时出示硬纸梯形)请你们一边指着图形,一边说一说哪里是上底和下底,哪里是两条腰。
请大家在自己的硬纸梯形上画一条高。
(3)如果大家都把这个梯形横过来摆,(老师示范摆)还是不是梯形?为什么?请大家指一指,这个梯形的上底和下底在哪里?腰呢?大家指一指这个梯形的高。
(老师巡视)为什么这一条是高?3.认识等腰梯形。
请同学们量一量课本第136页上第三个梯形两条腰的长度,看看它们有什么特点。
提问:这个梯形腰的长度有什么特点?指出:两腰相等的梯形叫做等腰梯形。
(板书)三、巩固练习1.“练一练”第1题。
小黑板出示,让学生判断。
第1、4两个图形让学生说明理由。
指名学生画高,其余学生画在课本上。
集体订正。
2.“练—练”第2题。
让学生在钉子板上围出几个不同的梯形。
提问:围梯形时,要怎样才能围出来?3.练习二十六第8题。
请同学们在第149页的方格纸上画一个梯形。
4.练习二十六第9题。