【真卷】2016年江苏省苏州市立达中学中考数学二模试卷含参考答案

合集下载

【精选试卷】苏州立达中学中考数学专项练习习题(答案解析)

【精选试卷】苏州立达中学中考数学专项练习习题(答案解析)

一、选择题1.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A .14cmB .4cmC .15cmD .3cm 2.下列计算错误的是( )A .a 2÷a 0•a 2=a 4B .a 2÷(a 0•a 2)=1C .(﹣1.5)8÷(﹣1.5)7=﹣1.5D .﹣1.58÷(﹣1.5)7=﹣1.53.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=,CFD 40∠=,则E ∠为( )A .102B .112C .122D .92 4.下列二次根式中的最简二次根式是( ) A 30B 12 C 8D 0.55.已知直线y =kx ﹣2经过点(3,1),则这条直线还经过下面哪个点( )A .(2,0)B .(0,2)C .(1,3)D .(3,﹣1) 6.已知命题A :“若a 2a a =”.在下列选项中,可以作为“命题A 是假命题”的反例的是( )A .a =1B .a =0C .a =﹣1﹣k (k 为实数)D .a =﹣1﹣k 2(k 为实数)7.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若7,CD=1,则BE 的长是( )A.5B.6C.7D.88.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤9.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是()A.8%B.9%C.10%D.11%10.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是() A.B.C.D.11.如图所示,已知A(12,y1),B(2,y2)为反比例函数1yx图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(12,0)B.(1,0)C.(32,0)D.(52,0)12.直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A .B .C .D .13.-2的相反数是( )A .2B .12C .-12D .不存在 14.已知反比例函数 y =abx 的图象如图所示,则二次函数 y =a x 2-2x 和一次函数 y =bx+a在同一平面直角坐标系中的图象可能是( )A .B .C .D .15.在如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( )A .点AB .点BC .点CD .点D16.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为()A .()11362x x -=B .()11362x x += C .()136x x -= D .()136x x +=17.已知二次函数y =ax 2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c <0;②a ﹣b+c <0;③b+2a <0;④abc >0.其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③18.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为( )A .25B .4C .213D .4.819.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形20.下列图形是轴对称图形的有( )A .2个B .3个C .4个D .5个21.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( ) A . B . C .D . 22.如图,长宽高分别为2,1,1的长方体木块上有一只小虫从顶点A 出发沿着长方体的外表面爬到顶点B ,则它爬行的最短路程是( )A 10B 5C .22D .323.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A.7710⨯﹣B.80.710⨯﹣C.8710⨯﹣D.9710⨯﹣24.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的14,那么点B′的坐标是()A.(-2,3)B.(2,-3)C.(3,-2)或(-2,3)D.(-2,3)或(2,-3)25.黄金分割数512-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间26.估6√3−√27的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间27.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()A.13B.5C.22D.428.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是()A.B.C.D.29.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.30.下面的几何体中,主视图为圆的是()A.B.C.D.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.D3.B4.A5.A6.D7.B8.A9.C10.B11.D12.B13.A14.C15.B16.A17.C18.C19.B20.C21.D22.C23.D24.D25.B26.C27.A28.A29.B30.C2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】运用直角三角形的勾股定理,设正方形D 的边长为x ,则22222(65)(5)10x +++=,x =(负值已舍),故选A2.D解析:D【解析】分析:根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.详解:∵a 2÷a 0•a 2=a 4, ∴选项A 不符合题意;∵a 2÷(a 0•a 2)=1,∴选项B 不符合题意;∵(-1.5)8÷(-1.5)7=-1.5,∴选项C 不符合题意;∵-1.58÷(-1.5)7=1.5,∴选项D 符合题意.故选D .点睛:此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.3.B解析:B【解析】【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===,再由三角形内角和定理求出A ∠,即可得到结果.【详解】AD //BC ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠=,DBC BDF ADB 20∠∠∠∴===,又ABD 48∠=,ABD ∴中,A 1802048112∠=--=,E A 112∠∠∴==,故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.4.A解析:A【解析】【分析】根据最简二次根式的概念判断即可.【详解】ABC ,不是最简二次根式;D 2,不是最简二次根式; 故选:A .【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式. 5.A解析:A【解析】【分析】把点(3,1)代入直线y =kx ﹣2,得出k 值,然后逐个点代入,找出满足条件的答案.【详解】把点(3,1)代入直线y =kx ﹣2,得1=3k ﹣2,解得k =1,∴y =x ﹣2,把(2,0),(0,2),(1,3),(3,﹣1)代入y=x﹣2中,只有(2,0)满足条件.故选A.【点睛】本题考查了一次函数图象上点的坐标特点,熟悉一次函数图象上点的特点是解此题的关键.6.D解析:D【解析】【分析】a=可确定a的范围,排除掉在范围内的选项即可.【详解】解:当a≥0a=,当a<0a=-,∵a=1>0,故选项A不符合题意,∵a=0,故选项B不符合题意,∵a=﹣1﹣k,当k<﹣1时,a>0,故选项C不符合题意,∵a=﹣1﹣k2(k为实数)<0,故选项D符合题意,故选:D.【点睛】a aaa a≥⎧==⎨-≤⎩,正确理解该性质是解题的关键. 7.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径,根据三角形中位线定理计算即可.【详解】解:∵半径OC垂直于弦AB,∴AD=DB=12在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2 )2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键8.A解析:A【解析】【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴判定b 与0的关系以及2a+b=0;当x=﹣1时,y=a ﹣b+c ;然后由图象确定当x 取何值时,y >0.【详解】①∵对称轴在y 轴右侧,∴a 、b 异号,∴ab <0,故正确; ②∵对称轴1,2b x a=-= ∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a , ∵当x=﹣1时,y=a ﹣b+c <0,∴a ﹣(﹣2a )+c=3a+c <0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am 2+bm+c≤a+b+c ,所以a+b≥m (am+b )(m 为实数).故正确.⑤如图,当﹣1<x <3时,y 不只是大于0.故错误.故选A .【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定抛物线的开口方向,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(0,c ).9.C解析:C【解析】设月平均增长率为x,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.【详解】设该商店的每月盈利的平均增长率为x,根据题意得:240000(1+x)2=290400,解得:x1=0.1=10%,x2=-0.21(舍去),故选C.【点睛】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x)2=后来的量,其中增长用+,减少用-.10.B解析:B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.11.D解析:D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:122122k b k b ⎧+⎪⎪⎨⎪+⎪⎩==, 解得:k=-1,b=52, ∴直线AB 的解析式是y=-x+52, 当y=0时,x=52, 即P (52,0), 故选D .【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.12.B解析:B【解析】【分析】若y=kx 过第一、三象限,则k >0,所以y=-kx+k-3过第二、四象限,可对A 、D 进行判断;若y=kx 过第二、四象限,则k <0,-k >0,k-3<0,所以y=-kx+k-3过第一、三象限,与y 轴的交点在x 轴下方,则可对B 、C 进行判断.【详解】A 、y=kx 过第一、三象限,则k >0,所以y=-kx+k-3过第二、四象限,所以A 选项错误;B 、y=kx 过第二、四象限,则k <0,-k >0,k-3<0,所以y=-kx+k-3过第一、三象限,与y 轴的交点在x 轴下方,所以B 选项正确;C 、y=kx 过第二、四象限,则k <0,-k >0,k-3<0,所以y=-kx+k-3过第一、三象限,与y 轴的交点在x 轴下方,所以C 选项错误;D 、y=kx 过第一、三象限,则k >0,所以y=-kx+k-3过第二、四象限,所以D 选项错误. 故选B .【点睛】本题考查了一次函数的图象:一次函数y=kx+b (k≠0)的图象为一条直线,当k >0,图象过第一、三象限;当k <0,图象过第二、四象限;直线与y 轴的交点坐标为(0,b ).13.A解析:A【解析】试题分析:根据只有符号不同的两数互为相反数,可知-2的相反数为2.故选:A.点睛:此题考查了相反数的意义,解题关键是明确相反数的概念,只有符号不同的两数互为相反数,可直接求解.14.C解析:C【解析】【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【详解】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;的图象在第一、三象限,∵反比例函数y=abx∴ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=1<0,对称轴在y轴左边,故D错误;a当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.15.B解析:B【解析】【分析】根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到.【详解】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.16.A解析:A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:1x(x﹣1)=36,2故选:A.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系. 17.C解析:C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=0,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故本选项正确;③由抛物线的开口向下知a<0,∵对称轴为1>x=﹣>0,∴2a+b<0,故本选项正确;④对称轴为x=﹣>0,∴a、b异号,即b>0,∴abc<0,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.18.C解析:C【解析】【分析】先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到142CD AD AC ===,然后利用勾股定理计算BD 的长. 【详解】 ∵AB 为直径,∴90ACB ︒∠=,∴6BC ==,∵OD AC ⊥, ∴142CD AD AC ===,在Rt CBD ∆中,BD ==故选C .【点睛】 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.19.B解析:B【解析】【分析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B .【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.20.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C .考点:轴对称图形.21.D解析:D【解析】【分析】【详解】解:A 选项中,根据对顶角相等,得1∠与2∠一定相等;B 、C 项中无法确定1∠与2∠是否相等;D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1.故选:D22.C解析:C【解析】【分析】蚂蚁有两种爬法,就是把正视和俯视(或正视和侧视)二个面展平成一个长方形,然后求其对角线,比较大小即可求得最短路程.【详解】如图所示,路径一:AB 22211=++=()22;路径二:AB 2221110=++=().∵2210<,∴蚂蚁爬行的最短路程为22.故选C .【点睛】本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.23.D解析:D【解析】【分析】由科学记数法知90.000000007710-=⨯;【详解】解:90.000000007710-=⨯;故选:D .【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.24.D解析:D【解析】如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一 条直线上,那么这两个图形叫做位似图形。

【精编】2016年江苏省苏州市立达中学数学中考二模试卷及解析

【精编】2016年江苏省苏州市立达中学数学中考二模试卷及解析

2016年江苏省苏州市立达中学中考数学二模试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)|﹣2|=()A.2 B.﹣2 C.±2 D.2.(3分)下列运算结果为a6的是()A.a2+a3B.a2•a3C.(﹣a2)3D.a8÷a23.(3分)据报道英国和新加坡研究人员制造出观测极限为0.00000005米的光学显微镜,其中0.00000005用科学记数法表示正确的是()A.0.5×10﹣9B.5×10﹣8C.5×10﹣9D.5×10﹣74.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(3分)如图,已知数轴上的点A,B,C,D分别表示数﹣2,1,2,3,则表示数5﹣的点P应落在线段()A.AO上B.OB上C.BC上D.CD上6.(3分)由一些大小相同的小正方体组成的几何体的三种视图如图所示,那么组成几何体的小正方体有()个.A.4 B.5 C.6 D.77.(3分)某市5月份日平均气温统计如下表,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21.5 C.21,22 D.22,228.(3分)一个底面半径是40cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为()A.80°B.160°C.320° D.100°9.(3分)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2 B.4 C.6 D.810.(3分)如图,在Rt△ABC中,∠C=90°,∠B=75°,将△ABC沿CD翻折,使点B落在边AC上的B′处,则BC:BD=()A.:2 B.3:2 C.:3 D.5:3二、填空题(共8小题,每小题3分,满分24分)11.(3分)若式子在实数范围内有意义,则x的取值范围是.12.(3分)如图,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为.13.(3分)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为.14.(3分)如图,OA,OB是⊙O的半径,C是⊙O上一点,∠ACB=20°,则∠OAB的度数为.15.(3分)如图,在Rt△ABC中,∠B=30°,AC=1,将△ABC绕着点A按顺时针方向旋转到△AB′C′,使得B′落在CA的延长线上,则在旋转过程中,线段AB所扫过的面积为.16.(3分)如图是二次函数y=ax2+bx﹣1图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0),则(a+b+1)(2﹣a﹣b)=.17.(3分)如图,已知一次函数y=kx+b的图象经过点P(3,2),与反比例函数y=(x>0)的图象交于点Q(m,n).当一次函数y的值随x值的增大而增大时,m的取值范围是.18.(3分)如图,在平面直角坐标系中,点A(1,),点B(2,0),P为边OB上一点,过点P作PQ∥OA,交AB于点Q,连接AP,则△APQ面积的最大值是.三、解答题(共10小题,满分76分)19.(5分)计算:﹣22+﹣()0.20.(5分)解不等式组.21.(6分)先化简,再求值:()÷,其中x=﹣2.22.(6分)初三(1)班和(2)班各花900元统一为班级同学购买纪念册.已知(2)班购买的纪念册比(1)班购买的纪念册每本贵5元,且(1)班人数比(2)班人数多20%.问:(1)班、(2)班各有多少人?23.(8分)小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.24.(8分)如图,在▱ABCD中,过点A作AE⊥DC交DC的延长线于点E过点D 作DF⊥BA,交BA的延长线于点F.(1)求证:四边形AEDF是矩形;(2)连接BD,若AB=AE=2,tan∠FAD=,求BD的长.25.(8分)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.26.(10分)如图,在平面直角坐标系xOy中,四边形OABC是正方形,点A,C 的坐标分别为(2,0),(0,2),D是x轴正半轴上的一点(点D在点A的右边),以BD为边向外作正方形BDEF(E,F两点在第一象限),连接FC交AB的延长线于点G.(1)若AD=1,求点F的坐标.(2)若反比例函数y=的图象经过点E,G两点,求k值.27.(10分)如图,O是坐标原点,过点A(﹣1,0)的抛物线y=x2﹣bx﹣3与x 轴的另一个交点为B,与y轴交于点C,其顶点为D点.(1)求b的值以及D点坐标.(2)在x轴上是否存在点P,能使得△ACP与△BCD相似,若存在,求出点P 的坐标,若不存在,说明理由.(3)连结BD、CD,动点Q的坐标为(m,1).①当四边形BQCD是平行四边形时,求m的值;②连结OQ、CQ,求△CQO的外接圆半径的最小值,并求出点Q的坐标.28.(10分)如图1,在矩形ABCD中,AB=4,BC=5,点E在AD上,ED=3,动点P从点B出发沿BC方向以每秒3个单位的速度向点C运动,过点P作PF∥CE,与边BA交于点F,过点F作FG∥BC,与CE交于点G,当点F与点A重合时,点P停止运动,设点P运动的时间为t秒.(1)BF=,PF=(用含t的代数式分别表示);(2)作点D关于CE的对称点D′,当D′落在FG上时,求t的值;(3)如图2,作△FGP的外接圆⊙O,当点P在运动过程中,是否存在⊙O与四边形ABCE的一边(AE边除外)相切?若存在,请直接写出所有符合要求的t值,若不存在,说明理由.2016年江苏省苏州市立达中学中考数学二模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)|﹣2|=()A.2 B.﹣2 C.±2 D.【解答】解:∵﹣2<0,∴|﹣2|=2,故选A.2.(3分)下列运算结果为a6的是()A.a2+a3B.a2•a3C.(﹣a2)3D.a8÷a2【解答】解:A、a3÷a2不能合并,故A错误;B、a2•a3=a5,故B错误;C、(﹣a2•)3=﹣a6,故C错误;D、a8÷a2=a6,故D正确;故选D.3.(3分)据报道英国和新加坡研究人员制造出观测极限为0.00000005米的光学显微镜,其中0.00000005用科学记数法表示正确的是()A.0.5×10﹣9B.5×10﹣8C.5×10﹣9D.5×10﹣7【解答】解:0.00000005=5×10﹣8,故选:B.4.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.5.(3分)如图,已知数轴上的点A,B,C,D分别表示数﹣2,1,2,3,则表示数5﹣的点P应落在线段()A.AO上B.OB上C.BC上D.CD上【解答】解:∵2<<3,∴2<5﹣<3,∴数5﹣的点P应落在线段DC上,故选:D.6.(3分)由一些大小相同的小正方体组成的几何体的三种视图如图所示,那么组成几何体的小正方体有()个.A.4 B.5 C.6 D.7【解答】解:第一行第1,2,3列各有1个;第二行第2列有2个;第三行第3列有1个.所以一共有1+1+1+2+1=6(个),故选C.7.(3分)某市5月份日平均气温统计如下表,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21.5 C.21,22 D.22,22【解答】解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是22,所以中位数是22.故选C.8.(3分)一个底面半径是40cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为()A.80°B.160°C.320° D.100°【解答】解:∵圆锥的底面半径是40cm,∴圆锥的侧面展开扇形的弧长为:2πr=80π,∵母线长90cm,∴圆锥的侧面展开扇形的面积为:lr=×80π×90=3600π,∴=3600π,解得:n=160.故选B.9.(3分)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2 B.4 C.6 D.8【解答】解:∵根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是菱形,∴AE=DE=DF=AF,∵AF=4,∴AE=DE=DF=AF=4,∵DE∥AC,∴=,∵BD=6,AE=4,CD=3,∴=,∴BE=8,故选D.10.(3分)如图,在Rt△ABC中,∠C=90°,∠B=75°,将△ABC沿CD翻折,使点B落在边AC上的B′处,则BC:BD=()A.:2 B.3:2 C.:3 D.5:3【解答】解:∵将△ABC沿CD翻折,使点B落在边AC上的B′处,∠C=90°,∴∠ACB=∠DCB=45°,∵∠B=75°,∴∠BDC=60°,作BE⊥CD,设ED长为x,∵∠BDC=60°,∴BE=x,BD=2x,∵∠DCB=45°,∴BE=EC=x,∴BC=x,∴BC:BD=x:x=:.故选:A.二、填空题(共8小题,每小题3分,满分24分)11.(3分)若式子在实数范围内有意义,则x的取值范围是x≥﹣3.【解答】解:若式子在实数范围内有意义,则x+3≥0,解得:x≥﹣3,则x的取值范围是:x≥﹣3.故答案为:x≥﹣3.12.(3分)如图,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为40°.【解答】解:∵AB∥CD,∴∠BEF=∠C=70°,∵∠BEF=∠A+∠F,∴∠A=70°﹣30°=40°.故答案是:40°.13.(3分)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为18.【解答】解:∵四边形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴AC==10,∵AO=OC,∴BO=AC=5,∵AO=OC,AM=MD=4,∴OM=CD=3,∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=18.故答案为18.14.(3分)如图,OA,OB是⊙O的半径,C是⊙O上一点,∠ACB=20°,则∠OAB的度数为70°.【解答】解:∵∠ACB=20°,∴∠AOB=2∠ACB=40°.∵OA=OB,∴∠OAB==70°.故答案为:70°.15.(3分)如图,在Rt△ABC中,∠B=30°,AC=1,将△ABC绕着点A按顺时针方向旋转到△AB′C′,使得B′落在CA的延长线上,则在旋转过程中,线段AB所扫过的面积为π.【解答】解:∵∠B=30°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣30°=60°,AB=2AC=2,∵△ABC绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,∴旋转角∠BAB1=180°﹣∠BAC=180°﹣60°=120°,∴线段AB所扫过的面积为==π,故答案为π.16.(3分)如图是二次函数y=ax2+bx﹣1图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0),则(a+b+1)(2﹣a﹣b)=2.【解答】解:∵二次函数的对称轴为x=﹣1,且过点(﹣3,0),∴二次函数与x轴的另一个交点坐标为:(1,0),∴a+b﹣1=0,故a+b=1,则a+b+1=2,2﹣a﹣b=2﹣(a+b)=2﹣1=1,故(a+b+1)(2﹣a﹣b)=2×1=2.故答案为:2.17.(3分)如图,已知一次函数y=kx+b的图象经过点P(3,2),与反比例函数y=(x>0)的图象交于点Q(m,n).当一次函数y的值随x值的增大而增大时,m的取值范围是1<m<3.【解答】解:过点P分别作y轴与x轴的垂线,分别交反比例函数图象于A点和B点,如图,把y=2代入y=得x=1;把x=3代入y=得y=,所以A点坐标为(1,2),B点坐标为(3,),因为一次函数y的值随x值的增大而增大,所以Q点只能在A点与B点之间,所以m的取值范围是1<m<3.故答案为1<m<3.18.(3分)如图,在平面直角坐标系中,点A(1,),点B(2,0),P为边OB上一点,过点P作PQ∥OA,交AB于点Q,连接AP,则△APQ面积的最大值是.【解答】解:如图,作AF⊥OB于F,QE⊥IB于E.设OP=x.∵A(1,),B(2,0),∴OF=1,AF=,OB=2,∵OF=FB,AF⊥OB,∴AO=AB,在Rt△OAF中,∵∠AFO=90°,OF=1,AF=,∴OA=AB==2,∵OA=OB=AB=2,∴△AOB是等边三角形,∴∠BOA=∠BAO=∠ABO=60°∵PQ∥OA,∴∠QPB=∠AOB=60°,∴△PQB是等边三角形,∴QP=PB=QB=2﹣x,=(2﹣x)2,∴S△PQB=S△AOB﹣S△AOP﹣S△PQB=×22﹣•x•﹣(2﹣x)2=﹣(x﹣1)∴S△APQ2+,∵﹣<0,∴当x=1时,△APQ的面积最大值为.故答案为.三、解答题(共10小题,满分76分)19.(5分)计算:﹣22+﹣()0.【解答】解:﹣22+﹣()0=﹣4+2﹣1=﹣2﹣1=﹣320.(5分)解不等式组.【解答】解:解第一个不等式得,x>﹣3,解第二个不等式得,x≤1,∴﹣3<x≤1.21.(6分)先化简,再求值:()÷,其中x=﹣2.【解答】解:原式=[﹣]•=•=,当x=﹣2时,原式==.22.(6分)初三(1)班和(2)班各花900元统一为班级同学购买纪念册.已知(2)班购买的纪念册比(1)班购买的纪念册每本贵5元,且(1)班人数比(2)班人数多20%.问:(1)班、(2)班各有多少人?【解答】解:设(1)班有x人,(2)班有y人,根据题意可得,解得,答:(1)班36人,(2)班30人.23.(8分)小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.【解答】解:(1)调查的总数是:2÷4%=50(户),则6≤x<7部分调查的户数是:50×12%=6(户),则4≤x<5的户数是:50﹣2﹣12﹣10﹣6﹣3﹣2=15(户),所占的百分比是:×100%=30%.故答案为:15,30%,6;补全频数分布表和频数分布直方图,如图所示:(2)中等用水量家庭大约有450×(30%+20%+12%)=279(户);(3)在2≤x<3范围的两户用a、b表示,8≤x<9这两个范围内的两户用1,2表示.画树状图:则抽取出的2个家庭来自不同范围的概率是:=.24.(8分)如图,在▱ABCD中,过点A作AE⊥DC交DC的延长线于点E过点D 作DF⊥BA,交BA的延长线于点F.(1)求证:四边形AEDF是矩形;(2)连接BD,若AB=AE=2,tan∠FAD=,求BD的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥DC,AF∥ED,∵AE⊥DC,DF⊥BA,∴DF∥EA,∴四边形AEDF是平行四边形,∵AE⊥DE,∴∠E=90°,∴四边形AEDF是矩形;(2)如图,连接BD,∵四边形AEDF是矩形,∴FD=AE=2,∠F=90°,∵在Rt△AFD中,tan∠FAD==,∵AF=5,∴AB=2,∴BF=AB+AF=7,在Rt△BFD中,BD==.25.(8分)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.【解答】解:(1)∵AB是⊙O的直径,∴∠ADB=∠ADC=90°,∵∠B=∠CAD,∠C=∠C,∴△ADC∽△BAC,∴∠BAC=∠ADC=90°,∴BA⊥AC,∴AC是⊙O的切线.(2)∵BD=5,CD=4,∴BC=9,∵△ADC∽△BAC(已证),∴=,即AC2=BC×CD=36,解得:AC=6,在Rt△ACD中,AD==2,∵∠CAF=∠CAD+∠DAE=∠ABF+∠BAE=∠AFD,∴CA=CF=6,∴DF=CA﹣CD=2,在Rt△AFD中,AF==2.26.(10分)如图,在平面直角坐标系xOy中,四边形OABC是正方形,点A,C 的坐标分别为(2,0),(0,2),D是x轴正半轴上的一点(点D在点A的右边),以BD为边向外作正方形BDEF(E,F两点在第一象限),连接FC交AB的延长线于点G.(1)若AD=1,求点F的坐标.(2)若反比例函数y=的图象经过点E,G两点,求k值.【解答】解:(1)过F作FN⊥x轴,交CB的延长线于点M,∵∠FBM+∠MBD=90°∠MBD+∠ABD=90°,∴∠FBM=∠ABD,∵四边形OABC是正方形,∴BF=BD,在△ABD和△BMF中,,∴ABD≌△BMF,∴BM=AB=2,FM=AD=1,∴F(4,3);(2)过E作EH⊥x轴,交x轴于点H,∵∠FBM+∠MBD=90°,∠MBD+∠ABD=90°,∴∠FBM=∠ABD,∵四边形BDEF为正方形,∴BF=BD,在△ABD和△BMF中,,∴△ABD≌△BMF(AAS),设AD=FM=a,则有F(4,2+a),C(0,2),由三角形中位线可得G为CF的中点,∴G(2,2+a),同理得到△DHE≌△BAD,∴EH=AD=a,OH=OA+AD+DH=4+a,∴E(4+a,a),∴2(2+a)=a(4+a),即a2+3a﹣4=0,解得:a=1或a=﹣4(舍去),∴E(5,1),把F代入反比例解析式得:k=5.27.(10分)如图,O是坐标原点,过点A(﹣1,0)的抛物线y=x2﹣bx﹣3与x 轴的另一个交点为B,与y轴交于点C,其顶点为D点.(1)求b的值以及D点坐标.(2)在x轴上是否存在点P,能使得△ACP与△BCD相似,若存在,求出点P 的坐标,若不存在,说明理由.(3)连结BD、CD,动点Q的坐标为(m,1).①当四边形BQCD是平行四边形时,求m的值;②连结OQ、CQ,求△CQO的外接圆半径的最小值,并求出点Q的坐标.【解答】解:(1)把A(﹣1,0)代入y=x2﹣bx﹣3,得1+b﹣3=0,解得b=2.y=x2﹣2x﹣3=(x﹣1)2﹣4,∴D(1,﹣4).(2)如图1,当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,即A(﹣1,0),B(3,0),D(1,﹣4).由勾股定理,得BC2=18,CD2=1+1=2,BD2=22+16=20,BC2+CD2=BD2,∠BCD=90°,①当△APC△DCB时,=,即=,解得AP=1,即P(0,0);②当△ACP∽△DCB时,=,即=,解得AP=10,即P′(9,0),综上所述:点P的坐标(0,0)(9,0);(3)①如图2,设抛物线的对称轴与x轴交于E点,则OE=1,DE=4.当x=0时,y=﹣3,即C(0,﹣3).当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,OB=3,OC=3,BE=2.设直线y=1与y轴交于点F,CF=4,BD==2.当四边形BQCD是平行四边形时,CQ=BD=2,∵CF=OF+OC=1+3=4,∴FQ==2,m=FQ=2;②如图3,记△OQC的外心为M,则M在OC的垂直平分线MN上(MN与y轴交与点N).∵当MQ取最小值时,⊙M与直线y=1相切,MQ=FN=OM=2.5,MN===2,FQ=MN=2,∴Q(2,1).28.(10分)如图1,在矩形ABCD中,AB=4,BC=5,点E在AD上,ED=3,动点P从点B出发沿BC方向以每秒3个单位的速度向点C运动,过点P作PF∥CE,与边BA交于点F,过点F作FG∥BC,与CE交于点G,当点F与点A重合时,点P停止运动,设点P运动的时间为t秒.(1)BF=4t,PF=5t(用含t的代数式分别表示);(2)作点D关于CE的对称点D′,当D′落在FG上时,求t的值;(3)如图2,作△FGP的外接圆⊙O,当点P在运动过程中,是否存在⊙O与四边形ABCE的一边(AE边除外)相切?若存在,请直接写出所有符合要求的t值,若不存在,说明理由.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴AB=CD=4,BC=AD=5,∠B=∠D=90°,AD∥BC,在Rt△ECD中,∵∠D=90°,ED=3.CD=4,∴EC==5,∵PF∥CE,FG∥BC,∴四边形PFGC是平行四边形,∴∠FPB=∠ECB=∠DEC,∴△PFB∽△ECD,∴==,∴==,∴BF=4t,PF=5t,故答案为4t,5t.(2)如图2中,∴D、D′关于CE对称,∴DD′⊥CE,DM=MD′,∵•DE•DC=•EC•DM,∴DM=D′M=,CM==,由△D′MG∽△CDE,得=,∴=,∴MG=,∴PF=CG=CM﹣MG,∴5t=﹣,∴t=.∴t=时,D′落在FG上.(3)存在.①如图3中,当⊙O与AB相切时,FG是直径.∴∠FPG=90°,∵FG∥BC,∴∠PFG=∠FPB,∵∠FPG=∠B=90°,∴△PFB∽△FGP,∴=,∴=,解得t=.②如图4中,当⊙O与BC相切时,连接OP延长PO交FG于M,连接OF、OG.∵OP⊥BC,BC∥FG,∴PO⊥FG,∴FM=MG由PB=MF=MG=FG=PC,得到3t=(5﹣3t),解得t=.③如图5中,当⊙O与EC相切时,连接GO,延长GO交PF于M,连接OF、OP.∵OG⊥EC,BF∥EC,∴GO⊥PF,∴MF=MP=t,∵△FGM∽△PFB,∴=,∴=,解得t=.综上所述t=或或时,⊙O与四边形ABCE的一边(AE边除外)相切.。

最新江苏省苏州市中考数学第二次模拟考试试卷附解析

最新江苏省苏州市中考数学第二次模拟考试试卷附解析

江苏省苏州市中考数学第二次模拟考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列命题中,是真命题的为( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形2.如果函数y=ax+b (a<0,b<O )和y=kx (k>0)的图象交于点P ,那么点P 应该位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.下列判断中,正确的是( )A .顶角相等的两个等腰三角形全等B .腰相等的两个等腰三角形全等C .有一边及锐角相等的两个直角三角形全等D .顶角和底边分别相等的两个等腰三角形全等4. 已知50ax by bx ay +=⎧⎨-=⎩的解是21x y =⎧⎨=⎩,则( ) A .21a b =⎧⎨=⎩ B .21a b =⎧⎨=-⎩ C .21a b =-⎧⎨=⎩ D .21a b =-⎧⎨=-⎩5.如图,在△ABC 中,已知∠ACB=90°,∠CAD 的角平分线交BC 的延长线于点E ,若∠B=50°,则∠AEB 的度数为( )A .70°B .20°C .45°D .50° 6.下列合并同类项正确的是( ) A .22523x x -= B .6713x y xy += C .2222a b a b a b -+=D .523x x -= 二、填空题7.音速表示声音在空气中传播的速度,实验测得音速与气温的一些数据如下表:(1)此表反映的是变量 随 而变化;(2)当气温为25℃时,某人看到烟花燃放6秒后才听到声响,那么此人与燃放烟花所在地约相距 m .8.在四边形ABCD 中.给出下列论断:①AB ∥DC ;②AD=BC ;③∠A=∠C.以其中两个作为题设,另外一个作为结论,用“如果…,那么…”的形式,写出一个你认为正确的命题 .9.写出一个以23xy=⎧⎨=⎩为解的二元一次方程组 .10.若3x y-=,则5x y-++= .11.在数轴上,在原点的左边与表示1-的点的距离是2的点所表示的数是.12.福顺路交通拥堵现象十分严重.上周末,陈新同学在福顺人行天桥处对3 000名过往行人作了问卷调查,问题是:从这里横过福顺路时,你是否自觉走人行天桥?供选择的答案有:A.是;(B)否;(C)无所谓.他将得到的数据处理后,画出了扇形统计图(如图).根据这个扇形统计图,可知被调查者中自觉走人行天桥的有人.13.一年期存款的年利率为 p,利息个人所得税的税率为 20%. 某人存入的本金为 a元,则到期支出时实得本利和为元.14.用计算器计算下列各题,并用图表示程序.5≈ (结果保留 4 个有效数字).程序显示(2)3131≈结果保留 3 个有效数字).程序显示(3)23≈ (结果保留 4 个有效数字).程序显示15.绝对值小于4的所有负整数的和是,积是.16.一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有个黑球.三、解答题17.在△ABC 中,∠C=900,∠A=300, BD是∠B的平分线,如图所示.(1)如果AD=2,试求BD和BC的长;(2)你能猜想AB与DC的数量关系吗,请说明理由.18.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E是BC边的中点,EM⊥AB,EN ⊥CD,垂足分别为M、N.求证:EM=EN.19.分别用公式法和配方法解方程:2322=-xx.20.已知方程260x kx+-=的一个根是2,求它的另一个根及k的值.21.阅读下列解题过程,再回答问题:解方程:(2)(3)6x x-+=.解:26x-=,36x+=,得18x=,23x=.请你判断上述解题过程是否正确?.若不正确,请写出正确的解题过程.22.如图,已知△ABC的三个顶点分别是A(-1,4),B(-4,-l.5),C(1,1).(1)小明在画好图后,发现BC边上有一点D(-1,0),请你帮助小明计算△ABC的面积;(2)小王将△ABC的图形向左平移1个单位,得到△A′B′C′,发现原点0在B′C′边上,请你帮助小王写出△A′B′C′的三个顶点的坐标并计算△A′B′C′的面积.23.设4个连续正整数的和s满足30<s<37,求这些连续正整数中的最小的数和最大的数. 24.如图,画出△ABO绕点O逆时针旋转90°后的图形.25.当y=-1时,你能确定代数式[(x+2y)2-(x+y)(x-y)-5y2]÷(2x)的值吗?如果可以的话,请写出结果.26.如图,在△ABC中,∠A=110°,∠B=35°,请你应用变换的方法得到一个三角形使它与△ABC全等,且要求得到的三角形与原△ABC组成一个四边形.请角两种变换方法解决上述问题.27.在方程38x ay-=中,若32xy=⎧⎨=⎩是它的一个解,求a的值.12a=28.2004年7月至lO月间哈尔滨市和南京市的月平均气温如下表:月份78910哈尔滨(℃)2321146南京(℃)27292418(1)两市平均气温谁高?两市的气温哪个月最高?哪个月最低?(2)两市中哪个市的气温下降更快?29.不改变分式的值,把下列各式的分子与分母中的各项系数化为整数:(1)0.030.20.070.5x yx y-+;(2)23125m nm n+-30.某日小明在一条东西方向的公路上跑步;他从A地出发,每隔 10 分钟记录下自己的跑步情况( 向东为正方向,单位:米):- l008, 1100 , -976 , 1010 , -827 , 9461小时后他停下来,此时他在A地的什么方向?离A地有多远?这 1小时内小明共跑了多远?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.D4.A5.B6.C二、填空题7.(1)音速,气温;(2)20768.略9.答案不唯一,如521x yx y+=⎧⎨-=⎩等10.211.-312.165913.125ap a +14. 略15.-6,-616.48三、解答题17.(1)BD=2,BC=3; (2)AB=32DC .18.∵AD ∥BC ,AB=DC ,∴B C ∠=∠,∵,,EM AB EN CD ⊥⊥∴90BME CNE ∠=∠=︒,在Rt △BME 和Rt △CNE 中,BME CNE B CBE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴Rt △BME ≌ Rt △CNE ,∴EM =EN . 19.2,2121=-=x x . 20.1k =,3x =-21.错误,正确答案为14x =-,23x =,22.(1)10;(2)1023.设最小的正整数为x ,则30(1)(2)(3)37x x x x <++++++<,∴3164x <<∵x为正整数,∴7x=.∴这四个数中最小的整数是7,最大的整数是10.24.略25.-2.26.略.27.12a=28.(1)平均气温南京高.哈尔滨7月份最高,10月份最低;南京8月份最高,10月份最低.(2)两市中哈尔滨市的气温下降更快29.(1)320750x yx y-+;(2)150330m l nm n+-30.他在A地的东面,离A地245 米远,共跑了 5867 米。

【6套打包】苏州市中考第二次模拟考试数学试卷含答案

【6套打包】苏州市中考第二次模拟考试数学试卷含答案

【6套打包】苏州市中考第二次模拟考试数学试卷含答案中学数学二模模拟试卷一、选择题(本大题共12小题,共48.0分)1.下面调查方式中,合适的是()A. 调查你所在班级同学的体重,采用抽样调查方式B. 调查乌金塘水库的水质情况,采用抽样调査的方式C. 调查《联赛》栏目在我市的收视率,采用普查的方式D. 要了解全市初中学生的业余爱好,采用普查的方式2.-1的相反数是()A. 1B. 0C.D. 23.某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用的时间的数据,结果如图所示,根据此条形统计图估计这一天该校学生平均课外阅读时间约为()A. 时B. 时C. 时D. 时4.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A. 2B. 3C. 4D.55.班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔()A. 20支B. 14支C. 13支D. 10支6.如图,一束光线从y轴的点A(0,2)出发,经过x轴上的点C反射后经过点B(6,6),则光线从点A到点B所经过的路程是()A. 10B. 8C. 6D. 47.如图,甲为四等分数字转盘,乙为三等分数字转盘.同时自由转动两个转盘,当转盘停止转动后(若指针指在边界处则重转),两个转盘指针指向数字之和不超过4的概率是()A. B. C. D.8.如图,△ABC中,∠ABC=∠BAC,D是AB的中点,EC∥AB,DE∥BC,AC与DE交于点O.下列结论中,不一定成立的是()A.B.C.D.9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l′的解析式为()A. B. C. D.10.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A. 最高分B. 中位数C. 方差D. 平均数11.在直角坐标系中,O为坐标原点,A(1,1),在x轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P共有()A. 1个B. 2个C. 3个D. 4个12.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B-D-E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是()A. B.C. D.二、填空题(本大题共6小题,共24.0分)13.35989.76用科学记数法表示为______.14.方程x2-4x-3=0的解为______.15.已知等腰△ABC内接于半径为5的⊙O,如果底边BC的长为8,那么BC边上的高为______.16.100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为______个.17.如图,在四边形ABCD中,AB∥CD,2AB=2BC=CD=10,tan B=,则AD=______.18.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,AD=2AB,以点B为圆心,BE为半径画弧,交BC于点F,则图中阴影部分的面积是______.三、计算题(本大题共2小题,共20.0分)19.已知x=+1,求的值.20.如图1,二次函数y=ax2-2ax-3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.四、解答题(本大题共6小题,共58.0分)21.为了从甲、乙两名学生中选择一人参加电脑知识竞赛,在相同条件下对他们的电脑知识进行了10次测验,成绩如下:(单位:分)(1)请填写下表.(2)利用以上信息,请从三个不同的角度对甲、乙两名同学的成绩进行分析.22.如图,在⊙O中,弦AB与DC相交于点E,AB=CD.(1)求证:△AEC≌△DEB;(2)点B与点C关于直线OE对称吗?试说明理由.23.已知抛物线y=(1-a)x2+8x+b的图象的一部分如图所示,抛物线的顶点在第一象限,且经过点A(0,-7)和点B.(1)求a的取值范围;(2)若OA=2OB,求抛物线的解析式.24.张强两次共购买香蕉(第二次多于第一次),共付出元,请问张强第一次,第二次分别购买香蕉多少千克?25.如图,在平面直角坐标系中,已知△AOB,A(0,-3),B(-2,0).将△OAB先绕点B逆时针旋转90°得到△BO1A1,再把所得三角形向上平移2个单位得到△B1A2O2;(1)在图中画出上述变换的图形,并涂黑;(2)求△OAB在上述变换过程所扫过的面积.26.如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?答案和解析1.【答案】B【解析】解:A、调查你所在班级同学的体重,采用普查,故A不符合题意;B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;C、调查《CBA联赛》栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;故选:B.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.【答案】A【解析】解:-1的相反数是1.故选:A.只有符号不同的两个数叫做互为相反数.本题考查了相反数,在一个数的前面加上符号就是这个数的相反数.3.【答案】B【解析】解:这一天该校学生平均课外阅读时间== =1.07(小时).故选:B.求出总的阅读时间与总人数的商即可.本题考查的是条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.4.【答案】C【解析】解:若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选:C.若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,据此可得.本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.5.【答案】C【解析】解:设小明最多能买钢笔x支,则小明买笔记本(30-x)本,故5x+2(30-x)≤100,解得x≤13.因为钢笔的支数应为整数,故小明最多能买钢笔13支.故选:C.先设小明最多能买钢笔x支,则小明买笔记本(30-x)本,再根据题意列出不等式求解即可.此题是一元一次不等式在实际生活中的运用,解答此题的关键是熟知不等式的性质,找到关键描述语,进而找到所求的量的等量关系.6.【答案】A【解析】解:法1:B点作x轴的垂线与x轴相交于点D,则BD⊥CD,∵A点经过点C反射后经过B点,∴∠OCA=∠DCB,∴△OAC∽△DBC,又∵BD⊥CD,AO⊥OC,根据勾股定理得出==,OA=2,BD=6,===∵OD=OC+CD=6∴OC=6×=1.5.AC===2.5,BC=2.5×3=7.5,AC+BC=2.5+7.5=10;法2:延长BC,与y轴交于E点,过B作BF⊥y轴,交y轴于F点,由题意得到A与E关于x轴对称,可得E(0,-2),AC=CE,∴BF=6,EF=OE+OF=6+2=8,在Rt△BEF中,根据勾股定理得:BE==10,则光线从A到B所经过的路程为AC+CB=EC+CB=BE=10.故选:A.法1:B点作x轴的垂线与X轴相交于点D,由已知条件可以得到△OAC∽△DBC,从而得到OA与BD、OC与CD、AC与BC的关系,然后求的A点到B点所经过的路程为AC+BC;法2:延长BC,交y轴与E,由题意得到A与E关于x轴对称,得到E(0,-2),过B作BF垂直于y轴,利用勾股定理求出BE的距离,即为光线从点A到点B所经过的路程.本题考查镜面反射的原理与性质、三角形相似的性质以及勾股定理的应用.7.【答案】D【解析】解:由树状图可知共有4×3=12种可能,两个转盘指针指向数字之和不超过4的有6种,∴两个转盘指针指向数字之和不超过4的概率是,故选:D.列举出所有情况,看两个转盘指针指向数字之和不超过4的情况占总情况的多少即可.本题主要考查列表法与树状图法,画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.8.【答案】B【解析】解:∵EC∥AB,DE∥BC,∴四边形DBCE为平行四边形,∴BC=DE,DB=EC,∵∠ABC=∠BAC,∴CB=CA,∴AC=DE,A结论正确,不符合题意;∵∠ABC与∠ACB不一定相等,∴AB与AC不一定相等,B结论错误,符合题意;∵AD=DB,DB=EC,∴AD=EC,C结论正确,不符合题意;∵DE∥BC,∴∠ADO=∠ABC,∴∠ADO=∠A,∴OA=OD,∵DE∥BC,D是AB的中点,∴OD=BC=DE=OE,∴OA=OE,D结论正确,不符合题意;故选:B.根据平行四边形的性质判定定理和性质定理判断A;根据等腰三角形的判定定理判断B;根据平行四边形的性质判断C,根据等腰三角形的性质判断D.本题考查的是三角形中位线定理、平行四边形的判定和性质、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.9.【答案】C【解析】解:∵直线L经过(0,0)、(1,2),∴直线l为y=2x,∵直线l沿x轴正方向向右平移2个单位得到直线l′,∴直线l′为y=2(x-2),即y=2x-4,故选:C.先确定直线l的解析式,然后根据平移的规律即可求得.本题考查了一次函数图象与几何变换,解决本题的关键是求直线解析式和熟练掌握平移的规律.10.【答案】B【解析】解:某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的中位数.故选:B.根据中位数的意义分析.此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.11.【答案】D【解析】解:如图,观察图象可知,满足条件的点P有4个.故选:D.根据等腰三角形的定义画出图形即可.本题考查等腰三角形的判定,坐标与图形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.12.【答案】A【解析】解:∵BD=2,∠B=60°∴点D到AB距离为当0≤x≤2时,y=当2≤x≤4时,y=根据函数解析式,A符合条件故选:A.根据题意,将运动过程分成两段.分段讨论求出解析式即可.本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式.13.【答案】3.598976×104【解析】解:将35989.76用科学记数法表示为:3.598976×104.故答案为:3.598976×104.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【答案】x1=2+,x2=2-【解析】解:x==2所以x1=2+,x2=2-.本题可用公式法对方程进行求解,公式为:x=,由此可解此题.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是公式法.15.【答案】2或8【解析】解:①当圆心在三角形内部时,BC边上的高AD=+5=8;②当圆心在三角形外部时,BC边上的高AD=5-=2.因此BC边上的高为2或8.分两种情况讨论:当圆心在三角形内部时和当圆心在三角形的外部时.本题利用了勾股定理和垂径定理求解,注意要分两种情况讨论求解.16.【答案】33【解析】解:设这100个数为:1,0,-1,-1,0,1,1,0,-1,-1…,∴通过观察得:第1个数开始6个数一循环,∴100÷6=16 (4)又每组的6个数中有两个0,则这100个数中“0”的个数为:16×2+1=33个故这100个数中“0”的个数为33个.根据题意可知数列为:1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0…从第1个数开始6个数一循环,所以100÷6=16…4,所以100个数中“0”的个数为33个.主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.17.【答案】3【解析】解:∵2AB=2BC=CD=10,∴AB=BC=5,过A作AF⊥CD于F,过C作CE⊥AB于E,则∠AEC=∠AFD=∠BEC=90°,AF∥CE,∵AB∥CD,∴四边形AECF是矩形,∴AE=CF,AF=CE,∵在Rt△BEC中,tanB==,又∵BC=5,CE=3,BE=4,∴AE=CF=5-4=1,AF=CE=3,∵CD=10,∴DF=10-1=9,在Rt△AFD中,由勾股定理得:AD===3,故答案为:.过A作AF⊥CD于F,过C作CE⊥AB于E,根据矩形的性质得出AF=CE,AE=CF,求出AF和DF长,再根据勾股定理求出即可.本题考查了解直角三角形和矩形的性质和判定、平行线的性质等知识点,能构造直角三角形是解此题的关键.18.【答案】-【解析】解:∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S矩形ABCD -S△ABE-S扇形EBF=1×2-×1×1-=-.故答案为:-.利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S矩形ABCD -S△ABE-S扇形EBF,求出答案.此题主要考查了扇形面积求法以及矩形的性质等知识,正确得出BE的长以及∠EBC的度数是解题关键.19.【答案】解:原式===;当x=+1时,原式=.【解析】先将所求的代数式化简,再将未知数的值代入计算求解.此题考查分式的计算与化简,解决这类题目关键是把握好通分与约分:分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.20.【答案】解:(1)∵y=ax2-2ax-3a=a(x-1)2-4a,∴D(1,-4a).(2)①∵以AD为直径的圆经过点C,∴△ACD为直角三角形,且∠ACD=90°;由y=ax2-2ax-3a=a(x-3)(x+1)知,A(3,0)、B(-1,0)、C(0,-3a),则:AC2=(0-3)2+(-3a-0)2=9a2+9、CD2=(0-1)2+(-3a+4a)2=a2+1、AD2=(3-1)2+(0+4a)2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化简,得:a2=1,由a<0,得:a=-1即,抛物线的解析式:y=-x2+2x+3.②∵将△OBE绕平面内某一点旋转180°得到△PMN,∴PM∥x轴,且PM=OB=1;设M(x,-x2+2x+3),则OF=x,MF=-x2+2x+3,BF=OF+OB=x+1;∵MF:BF=1:2,即BF=2MF,∴2(-x2+2x+3)=x+1,化简,得:2x2-3x-5=0解得:x1=-1、x2=∴M(,)、N(,).③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如右图;设Q(1,b),则QD=4-b,QB2=QG2=(1+1)2+(b-0)2=b2+4;∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;代入数据,得:(4-b)2=2(b2+4),化简,得:b2+8b-8=0,解得:b=-4±2;即点Q的坐标为(1,-4+2)或(1,-4-2).【解析】(1)将二次函数的解析式进行配方即可得到顶点D的坐标.(2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值,由此得出抛物线的解析式.②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N的坐标关键是求出点M的坐标;首先根据①的函数解析式设出M点的坐标,然后根据题干条件:BF=2MF作为等量关系进行解答即可.③设⊙Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出∠CDQ=45°,那么△QGD为等腰直角三角形,即QD2=2QG2=2QB2,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标.此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD和⊙Q半径间的数量关系是解题题目的关键.21.【答案】解:(1)(2)甲成绩的众数是84,乙成绩的众数是90,从两人成绩的众数看,乙的成绩较好;甲成绩的方差是14.4,乙成绩的方差是34,从成绩的方差看,甲的成绩相对稳定;甲成绩、乙成绩的中位数、平均数都是84,但从(85分)以上的频率看,乙的成绩较好.【解析】(1)根据中位数、众数、频率的计算方法,求得甲成绩的中位数,乙成绩的众数,85分以上的频率.(2)可分别从众数、方差、频率三方面进行比较.本题重点考查平均数,中位数,众数及方差、频率的概念及求法,以及会用这些知识来评价这组数据.22.【答案】(1)证明:∵AB =CD ,∴= . ∴- = - . ∴= . ∴BD =CA .在△AEC 与△DEB 中, ∠∠ ∠,∴△AEC ≌△DEB (AAS ).(2)解:点B 与点C 关于直线OE 对称.理由如下:如图,连接OB 、OC 、BC .由(1)得BE =CE .∴点E 在线段BC 的中垂线上,∵BO =CO ,∴点O 在线段BC 的中垂线上,∴直线EO 是线段BC 的中垂线,∴点B 与点C 关于直线OE 对称.【解析】(1)要证△AEC ≌△DEB ,由于AB=CD ,根据等弦所对的弧相等得=,根据等量减等量还是等量,得=,由等弧对等弦得BD=CA ,由圆周角定理得,∠ACE=∠DBE ,∠AEC=∠DEB ,即可根据AAS 判定;(2)由△AEC ≌△DEB 得,BE=CE ,得到点E 在直线BC 的中垂线上,连接BO ,CO ,BO 和CO 是半径,则BO 和CO 相等,即点O 在线段BC 的中垂线上,亦即直线EO 是线段BC 的中垂线,所以点B 与点C 关于直线OE 对称.本题利用了圆周角定理、等弦所对的弧相等,等弧对等弦、全等三角形的判定和性质求解.23.【答案】解:(1)由图可知,b =-7.(1分)故抛物线为y=(1-a)x2+8x-7.又因抛物线的顶点在第一象限,开口向下,所以抛物线与x轴有两个不同的交点.∴ ,解之,得1<a<.(3分)即a的取值范围是1<a<.(6分)(2)设B(x1,0),由OA=20B,得7=2x1,即x1=.(7分)由于x1=,方程(1-a)x2+8x-7=0的一个根,∴(1-a)()2+8×-7=0∴.(9分)故所求所抛物线解析式为y=-x2+8x-7.(10分)【解析】(1)因为二次函数过点A,所以可以确定b的值,又因为抛物线为y=(1-a)x2+8x-7又抛物线的顶点在第一象限,开口向下,所以抛物线与x轴有两个不同的交点,所以可以确定1-a<0,△>0,解不等式组即可求得a的取值范围;(2)因为OA=2OB,可求得点B的坐标,将点A,B的坐标代入二次函数的解析式即可求得a,b的值,即可求得二次函数的解析式.此题考查了二次函数的图象的性质,开口方向,与x轴的交点个数与△的关系,待定系数法求函数解析式等;解题的关键是数形结合思想的应用.24.【答案】解:设张强第一次购买香蕉xkg,第二次购买香蕉ykg,由题意可得0<x<25.则①当0<x≤20,y≤40,则题意可得.解得.②当0<x≤20,y>40时,由题意可得.解得.(不合题意,舍去)③当20<x<25时,则25<y<30,此时张强用去的款项为5x+5y=5(x+y)=5×50=250<264(不合题意,舍去);④当20<x≤40 y>40时,总质量将大于60kg,不符合题意,答:张强第一次购买香蕉14kg,第二次购买香蕉36kg.【解析】本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+第二次出的钱数=264.对张强买的香蕉的千克数,应分情况讨论:①当0<x≤20,y≤40;②当0<x≤20,y>40③当20<x<25时,则25<y<30.本题主要考查学生分类讨论的思想.找到两个基本的等量关系后,应根据讨论的千克数找到相应的价格进行作答.25.【答案】解:(1)如图所示;(2)在Rt△AOB中,AB===,∴扇形BAA1的面积==π,梯形A1A2O2B的面积=×(2+4)×3=9,∴变换过程所扫过的面积=扇形BAA1的面积+梯形A1A2O2B的面积=π+9.【解析】(1)根据旋转的性质,结合网格结构找出点A、O的对应点A1、O1,再与点B顺次连接即可得到△BO1A1;再根据中学数学二模模拟试卷一、选择题(本大题共12小题,共48.0分)27.下面调查方式中,合适的是()A. 调查你所在班级同学的体重,采用抽样调查方式B. 调查乌金塘水库的水质情况,采用抽样调査的方式C. 调查《联赛》栏目在我市的收视率,采用普查的方式D. 要了解全市初中学生的业余爱好,采用普查的方式28.-1的相反数是()A. 1B. 0C.D. 229.某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用的时间的数据,结果如图所示,根据此条形统计图估计这一天该校学生平均课外阅读时间约为()A. 时B. 时C. 时D. 时30.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A. 2B. 3C. 4D.531.班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔()A. 20支B. 14支C. 13支D. 10支32.如图,一束光线从y轴的点A(0,2)出发,经过x轴上的点C反射后经过点B(6,6),则光线从点A到点B所经过的路程是()A. 10B. 8C. 6D. 433.如图,甲为四等分数字转盘,乙为三等分数字转盘.同时自由转动两个转盘,当转盘停止转动后(若指针指在边界处则重转),两个转盘指针指向数字之和不超过4的概率是()A. B. C. D.34.如图,△ABC中,∠ABC=∠BAC,D是AB的中点,EC∥AB,DE∥BC,AC与DE交于点O.下列结论中,不一定成立的是()A.B.C.D.35.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l′的解析式为()A. B. C. D.36.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A. 最高分B. 中位数C. 方差D. 平均数37.在直角坐标系中,O为坐标原点,A(1,1),在x轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P共有()A. 1个B. 2个C. 3个D. 4个38.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B-D-E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是()A. B.C. D.二、填空题(本大题共6小题,共24.0分)39.35989.76用科学记数法表示为______.40.方程x2-4x-3=0的解为______.41.已知等腰△ABC内接于半径为5的⊙O,如果底边BC的长为8,那么BC边上的高为______.42.100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为______个.43.如图,在四边形ABCD中,AB∥CD,2AB=2BC=CD=10,tan B=,则AD=______.44.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,AD=2AB,以点B为圆心,BE为半径画弧,交BC于点F,则图中阴影部分的面积是______.三、计算题(本大题共2小题,共20.0分)45.已知x=+1,求的值.46.如图1,二次函数y=ax2-2ax-3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.四、解答题(本大题共6小题,共58.0分)47.为了从甲、乙两名学生中选择一人参加电脑知识竞赛,在相同条件下对他们的电脑知识10()请填写下表.(2)利用以上信息,请从三个不同的角度对甲、乙两名同学的成绩进行分析.48.如图,在⊙O中,弦AB与DC相交于点E,AB=CD.(1)求证:△AEC≌△DEB;(2)点B与点C关于直线OE对称吗?试说明理由.49.已知抛物线y=(1-a)x2+8x+b的图象的一部分如图所示,抛物线的顶点在第一象限,且经过点A(0,-7)和点B.(1)求a的取值范围;(2)若OA=2OB,求抛物线的解析式.50.第二次分别购买香蕉多少千克?51.如图,在平面直角坐标系中,已知△AOB,A(0,-3),B(-2,0).将△OAB先绕点B逆时针旋转90°得到△BO1A1,再把所得三角形向上平移2个单位得到△B1A2O2;(1)在图中画出上述变换的图形,并涂黑;(2)求△OAB在上述变换过程所扫过的面积.52.如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?答案和解析1.【答案】B【解析】解:A、调查你所在班级同学的体重,采用普查,故A不符合题意;B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;C、调查《CBA联赛》栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;故选:B.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.【答案】A【解析】解:-1的相反数是1.故选:A.只有符号不同的两个数叫做互为相反数.本题考查了相反数,在一个数的前面加上符号就是这个数的相反数.3.【答案】B【解析】解:这一天该校学生平均课外阅读时间== =1.07(小时).。

江苏省苏州市2016年中考数学模拟试卷(二)带答案

江苏省苏州市2016年中考数学模拟试卷(二)带答案

2016年苏州市中考数学模拟试卷(二)(满分:130分 考试时间:120分钟)一、选择题(本大题共10小题,每小题3分,共30分)1. 在2-,02,12-, 最大的数是 ( ) A. 2- B. 02 C. 12-D.2. 下列图形是中心对称图形的是 ( )A .B .C .D .3. 下列运算正确的是 ( )A. ()32626aa = B. 2232533ab ab a b -=-C.21111a a a -=-+ D. 1b a a b b a +=--- 4. 如图,在数轴上标注了四段范围,则表示的点落在 ( )(第4题)A. ①段B. ②段C. ③段D. ④段 5.函数y =x 的取值范围是 ( )A. 1x ≥-B. 1x ≤-C. 1x >-D. 1x <-6. 如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为 ( )A. B. C. D.7. 在数轴上表示5±的两点以及它们之间的所有整数点中,任意取一点P ,则点P 表示的数大于3的概率是 ( )A.14 B. 29 C. 15 D. 2118. 已知一次函数y kx b =+的图像如图所示,则关于x 的不等式()420k x b -->的解集为 ( ) A. 2x >- B. 2x <- C. 2x > D. 3x <9. 如图,在平面直角坐标系中,x 轴上一点A 从点(-3,0)出发沿x 轴向右平移,当以A 为圆心,半径为1的圆与函数y x =的图像相切时,点A 的坐标变为 ( ) A. (-2,0) B. () C. (D. (-2,0)或(2,0)(第8题) (第9题) (第10题) 10. 如图,ABC ∆和EFG ∆均是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、FC 相交于点M .当EFG ∆绕点D 旋转时,线段BM 长的最小值是 ( )A. 2B.1C.D. 1二、填空题(本大题共8小题,每小题3分,共24分) 11. ()()2222--+-= .12. 计算773.810 3.710⨯-⨯,结果用科学记数法表示为 . 13. 分解因式:22242x xy y -+= .14.则全体参赛选手年龄的中位数是 岁.15. 如图,在正六边形ABCDEF 中,连接AE ,则tan 1∠= .(第15题) (第16题) (第17题)16. 如图,点A 、B在反比例函数(0,0)ky k x x=>>的图像上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM MN NC ==,AOC ∆的面积为6,则k 的值为 .17. 如图,将矩形纸片的两个直角分别沿EF 、DF 翻折,点B 恰好落在AD 边上的点B '处,点C 恰好落在边B F '上.若AE =3,BE =5,则FC = .18. 某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款 元. 三、解答题(本大题共10小题,共76分) 19. (本小题满分5分)计算: 021153)6()(1)32--+⨯-+-.20. (本小题满分5分)计算:2222()a b ab b a a a--÷- .21. (本小题满分6分)解不等式组253(2),x x+≤+① 并写出它的整数解.123x x-<, ②22. (本小题满分8分)为增强学生环保意识,某中学组织全校2 000名学生参加环保知识大赛,比赛成绩均为整数.从中抽取部分同学的成绩进行统计,并绘制成如下统计图. (第22题)请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79. 5~ 89. 5 )”的扇形的圆心角为 °;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖; (3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传.则选出的同学恰好是1男1女的概率为 .23. (本小题满分8分)如图,在ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,DE =12CD . (1)求证:ABF ∆∽CEB ∆;(2)若DEF ∆的面积为2,求ABCD 的面积.(第23题)24. (本小题满分8分)如图,把一张长方形卡片ABCD 放在每格宽度为12 mm 的横格纸中,恰好四个顶点都在横格线上,已知α=36°,求长方形卡片的周长.(精确到 1 mm ,参考数据:sin360.60,cos360.80,tan360.75︒≈︒≈︒≈)(第24题)如图,每个网格都是边长为1个单位长度的小正方形,ABC ∆的每个顶点都在网格的格点上,且90C ∠=︒,AC =3,BC =4.(1)试在图中作出ABC ∆以点A 为旋转中心,按顺时针方向旋转90°后得到的图形AB C ''∆;(2)试在图中建立直角坐标系,使x 轴//AC ,且点B 的坐标为 (-3,5);(3)在(1)与(2)的基础上,若点P 、Q 是x 轴上两点(点P 在点Q 左侧),PQ 长为2个单位长度,则当点P 的坐标为 时,AP PQ QB '++最小,最小值是 个单位长度.(第25题)26. (本小题满分8分)如图,AB 是⊙O 的直径、C 是AB 延长线上一点,CD 与⊙O 相切于点E ,AD CD ⊥于点D .(1)求证:AE 平分DAC ∠; (2)若AB =4,60ABE ∠=︒. ①求AD 的长;②求出图中阴影部分的面积.(第26题)如图,在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为 (4,3).平行于对角线AC 的直线m 从原点O 出发.沿x 轴正方向 以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边 分别交于点M 、N ,直线m 运动的时间为t s.(1)点A 的坐标是 ,点C 的坐标是 ;(2)当t = s 或 s 时,12MN AC =; (3)设OMN ∆的面积为S ,求S 与t 的函数关系式;(4)探求(3)中得到的函数S 有没有最大值? 若有,求出最大值: 若没有,请说明理由.(第27题)28. (本小题满分10分)如图,抛物线2(0)y ax bx c a =++<与双曲线ky x=全相交于点A 、B ,且抛物线经过坐标原点,点A 的坐标为(一2,2),点B 在第四象限内.过点B 作直线BC //x 轴,点C为直线BC 与抛物线的另一交点,已知直线BC 与x 轴之间的距离是点B 到y 轴的距离的4倍.记抛物线顶点为E . (1)求双曲线和抛物线的解析式; (2)计算ABC ∆与ABE ∆的面积;(3)在抛物线上是否存在点D ,使ABD ∆的面积等于ABE ∆的面积的8倍?若存在,请求出点D 的坐标;若不存在,请说明理由.(第28题)参考答案二、填空题 11.17412. 6110⨯ 13. 22()x y - 14. 15 15.16. 4 17. 4 18. 838或910 三、解答题19. 解:原式=4 . 20.解:原式=a ba b+- . 21. 解:不等式组的整数解是-1,0,1,2 . 22. 解: (1) 144 ;(2) 640名同学获奖; (3)2323. 解:(1) 因ABCD ,所以,A C AB ∠=∠∥CD ,ABF CEB ∠=∠;所以ABF∆∽CEB ∆ (2)ABCD 的面积为24. 24. 解:长方形卡片周长为200mm. 25. 解:(1)(2)如下图:(3) P 点坐标为2(,0)5P 2. 26. 解: (1)如图,连接OE ,90,90,OEC ADC OE ∠=︒∠=︒∥AD ,所以AE 平分DAC ∠.(2)AD =cos303AE ︒=. 43OAE S S S π∆=-=阴影扇OAE . 27. 解: (1)A (4,0) ,C (0,3);(2)t =2或6;(3)当04t <≤时,21328S OM ON t == . 当4t <<8时,如图①,2338S t t =-+.(4)有最大值.如图②,当04t <≤时,当t =4时,S 可取到最大值=6.当48t <<时,抛物线2338S t t =-+的开口向下,所以6S <,综上,4t =时,S 有最大值为6.28. 解: (1)因为点A (-2,2)在双曲线ky x=上,4k =-,所以双曲线的解析式为4y x=-.设B 的坐标为(,4m m -)(m >0),代入双曲线解析式,得1m =,抛物线的解析式为23y x x =--.(2)15ABC S ∆=.ABE AEF BEF S S S ∆∆∆=+=158. (3)存在点D (3,-18)满足条件.。

2016年江苏省苏州市中考数学试卷(含答案解析)

2016年江苏省苏州市中考数学试卷(含答案解析)

2016年江苏省苏州市中考数学试卷(含答案解析)2016年江苏省苏州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)的倒数是()A.B. C.D.2.(3分)肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3 C.7×10﹣4 D.7×10﹣53.(3分)下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8 D.(﹣a2b)3÷(a3b)2=﹣b4.(3分)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.45.(3分)如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58°B.42°C.32°D.28°6.(3分)已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定7.(3分)根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)1520253035户数36795则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,258.(3分)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m9.(3分)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)10.(3分)如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3二、填空题(共8小题,每小题3分,满分24分)11.(3分)分解因式:x2﹣1= .12.(3分)当x= 时,分式的值为0.13.(3分)要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是运动员.(填“甲”或“乙”)14.(3分)某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是度.15.(3分)不等式组的最大整数解是.16.(3分)如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.17.(3分)如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为.18.(3分)如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为.三、解答题(共10小题,满分76分)19.(5分)计算:()2+|﹣3|﹣(π+)0.20.(5分)解不等式2x﹣1>,并把它的解集在数轴上表示出来.21.(6分)先化简,再求值:÷(1﹣),其中x=.22.(6分)某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?23.(8分)在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M 的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.24.(8分)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.25.(8分)如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.26.(10分)如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.27.(10分)如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ 为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.28.(10分)如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).2016年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)的倒数是()A.B. C.D.【分析】直接根据倒数的定义进行解答即可.【解答】解:∵×=1,∴的倒数是.故选A.【点评】本题考查的是倒数的定义,即如果两个数的乘积等于1,那么这两个数互为倒数.(3分)肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()2.A.0.7×10﹣3B.7×10﹣3 C.7×10﹣4 D.7×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8 D.(﹣a2b)3÷(a3b)2=﹣b【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、积的乘方运算法则分别计算得出答案.【解答】解:A、a+2b,无法计算,故此选项错误;B、3a2﹣2a2=a2,故此选项错误;C、a2•a4=a6,故此选项错误;D、(﹣a2b)3÷(a3b)2=﹣b,故此选项正确;故选:D.【点评】此题主要考查了同底数幂的乘法运算以及合并同类项、积的乘方运算等知识,正确把握相关定义是解题关键.4.(3分)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4【分析】根据第1~4组的频数,求出第5组的频数,即可确定出其频率.【解答】解:根据题意得:40﹣(12+10+6+8)=40﹣36=4,则第5组的频率为4÷40=0.1,故选A.【点评】此题考查了频数与频率,弄清题中的数据是解本题的关键.5.(3分)如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58°B.42°C.32°D.28°【分析】根据平行线的性质得出∠ACB=∠2,根据三角形内角和定理求出即可.【解答】解:∵直线a∥b,∴∠ACB=∠2,∵AC⊥BA,∴∠BAC=90°,∴∠2=∠ACB=180°﹣∠1﹣∠BAC=180°﹣90°﹣58°=32°,故选C.【点评】本题考查了对平行线的性质和三角形内角和定理的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补6.(3分)已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定【分析】直接利用反比例函数的增减性分析得出答案.【解答】解:∵点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,∴每个象限内,y随x的增大而增大,∴y1<y2,故选:B.【点评】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.7.(3分)根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)1520253035户数36795则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,25【分析】根据众数、中位数的定义即可解决问题.【解答】解:因为30出现了9次,所以30是这组数据的众数,将这30个数据从小到大排列,第15、16个数据的平均数就是中位数,所以中位数是25,故选D.【点评】本题考查众数、中位数的定义,解题的关键是记住众数、中位数的定义,属于基础题,中考常考题型.8.(3分)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC即可.【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC==2(m).故选B.【点评】本题考查了解直角三角形的应用﹣坡度坡角:坡度是坡面的铅直高度h 和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=tanα.9.(3分)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.【点评】本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.10.(3分)如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3【分析】连接AC,过B作EF的垂线,利用勾股定理可得AC,易得△ABC的面积,可得BG和△ADC的面积,三角形ABC与三角形ACD同底,利用面积比可得它们高的比,而GH又是△ACD以AC为底的高的一半,可得GH,易得BH,由中位线的性质可得EF的长,利用三角形的面积公式可得结果.【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2∵S△ABC=•AB•BC=×2×2=4,∴S△ADC=2,∵=2,∵△DEF∽△DAC,∴GH=BG=,∴BH=,又∵EF=AC=2,∴S△BEF=•EF•BH=×2×=,故选C.方法二:S△BEF =S四边形ABCD﹣S△ABE﹣S△BCF﹣S△FED,易知S△ABE +S△BCF=S四边形ABCD=3,S△EDF=,∴S△BEF =S四边形ABCD﹣S△ABE﹣S△BCF﹣S△FED=6﹣3﹣=.故选C.【点评】此题主要考查了三角形面积的运算,作出恰当的辅助线得到三角形的底和高是解答此题的关键.二、填空题(共8小题,每小题3分,满分24分)11.(3分)分解因式:x2﹣1= (x+1)(x﹣1).【分析】利用平方差公式分解即可求得答案.【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了平方差公式分解因式的知识.题目比较简单,解题需细心.12.(3分)当x= 2 时,分式的值为0.【分析】直接利用分式的值为0,则分子为0,进而求出答案.【解答】解:∵分式的值为0,∴x﹣2=0,解得:x=2.故答案为:2.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.13.(3分)要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是乙运动员.(填“甲”或“乙”)【分析】根据方差的定义,方差越小数据越稳定.【解答】解:因为S甲2=0.024>S乙2=0.008,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为乙.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.(3分)某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是72 度.【分析】根据文学类人数和所占百分比,求出总人数,然后用360乘以艺术类读物所占的百分比即可得出答案.【解答】解:根据条形图得出文学类人数为90,利用扇形图得出文学类所占百分比为:30%,则本次调查中,一共调查了:90÷30%=300(人),则艺术类读物所在扇形的圆心角是的圆心角是360°×=72°;故答案为:72.【点评】此题主要考查了条形图表和扇形统计图综合应用,将条形图与扇形图结合得出正确信息求出调查的总人数是解题关键.15.(3分)不等式组的最大整数解是 3 .【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,最后求其整数解即可.【解答】解:解不等式x+2>1,得:x>﹣1,解不等式2x﹣1≤8﹣x,得:x≤3,则不等式组的解集为:﹣1<x≤3,则不等式组的最大整数解为3,故答案为:3.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.(3分)如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.【分析】连接OC,可求得△OCD和扇形OCB的面积,进而可求出图中阴影部分的面积.【解答】解:连接OC,∵过点C的切线交AB的延长线于点D,∴OC⊥CD,∴∠OCD=90°,即∠D+∠COD=90°,∵AO=CO,∴∠A=∠ACO,∴∠COD=2∠A,∵∠A=∠D,∴∠COD=2∠D,∴3∠D=90°,∴∠D=30°,∴∠COD=60°∵CD=3,∴OC=3×=,∴阴影部分的面积=×3×﹣=,故答案为:.【点评】本题主要考查切线的性质及扇形面积的计算,掌握过切点的半径与切线垂直是解题的关键.求出∠D=30°是解题的突破口.17.(3分)如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为2.【分析】作DF⊥B′E于点F,作B′G⊥AD于点G,首先根据有一个角为60°的等腰三角形是等边三角形判定△BDE是边长为4的等边三角形,从而根据翻折的性质得到△B′DE也是边长为4的等边三角形,从而GD=B′F=2,然后根据勾股定理得到B′G=2,然后再次利用勾股定理求得答案即可.【解答】解:如图,作DF⊥B′E于点F,作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是边长为4的等边三角形,∵将△BDE沿DE所在直线折叠得到△B′DE,∴△B′DE也是边长为4的等边三角形,∴GD=B′F=2,∵B′D=4,∴B′G===2,∵AB=10,∴AG=10﹣6=4,∴AB′===2.故答案为:2.【点评】本题考查了翻折变换的性质,解题的关键是根据等边三角形的判定定理判定等边三角形,难度不大.18.(3分)如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为(1,).【分析】先根据题意求得CD和PE的长,再判定△EPC∽△PDB,列出相关的比例式,求得DP的长,最后根据PE、DP的长得到点P的坐标.【解答】解:∵点A、B的坐标分别为(8,0),(0,2)∴BO=,AO=8由CD⊥BO,C是AB的中点,可得BD=DO=BO==PE,CD=AO=4设DP=a,则CP=4﹣a当BP所在直线与EC所在直线第一次垂直时,设BP与CE交于点F,则∠FCP=∠DBP又∵EP⊥CP,PD⊥BD∴∠EPC=∠PDB=90°∴△EPC∽△PDB∴,即解得a1=1,a2=3(舍去)∴DP=1又∵PE=∴P(1,)故答案为:(1,)【点评】本题主要考查了坐标与图形性质,解决问题的关键是掌握平行线分线段成比例定理以及相似三角形的判定与性质.解题时注意:有两个角对应相等的两个三角形相似.三、解答题(共10小题,满分76分)19.(5分)计算:()2+|﹣3|﹣(π+)0.【分析】直接利用二次根式的性质以及结合绝对值、零指数幂的性质分析得出答案.【解答】解:原式=5+3﹣1=7.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(5分)解不等式2x﹣1>,并把它的解集在数轴上表示出来.【分析】根据不等式的基本性质去分母、去括号、移项可得不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.【解答】解:去分母,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>2﹣1,合并同类项,得:x>1,将不等式解集表示在数轴上如图:【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.21.(6分)先化简,再求值:÷(1﹣),其中x=.【分析】先括号内通分,然后计算除法,最后代入化简即可.【解答】解:原式=÷=•=,当x=时,原式==.【点评】本题考查分式的化简求值,解题的关键熟练掌握分式的混合运算法则,注意运算顺序,属于基础题,中考常考题型.22.(6分)某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?【分析】先设中型车有x辆,小型车有y辆,再根据题中两个等量关系,列出二元一次方程组进行求解.【解答】解:设中型车有x辆,小型车有y辆,根据题意,得解得答:中型车有20辆,小型车有30辆.【点评】本题主要考查了二元一次方程组,解决问题的关键是找出等量关系列出方程.本题也可以运用一元一次方程进行解答.23.(8分)在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M 的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,然后根据概率公式求解.【解答】解:(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率=;故答案为;(2)画树状图为:共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,所以点M落在如图所示的正方形网格内(包括边界)的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.24.(8分)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.【点评】此题考查平行四边形的性质和判定问题,关键是根据平行四边形的判定解答即可.25.(8分)如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.【分析】将点B(2,n)、P(3n﹣4,1)代入反比例函数的解析式可求得m、n 的值,从而求得反比例函数的解析式以及点B和点P的坐标,过点P作PD⊥BC,垂足为D,并延长交AB与点P′.接下来证明△BDP≌△BDP′,从而得到点P′的坐标,最后将点P′和点B的坐标代入一次函数的解析式即可求得一次函数的表达式.【解答】解:∵点B(2,n)、P(3n﹣4,1)在反比例函数y=(x>0)的图象上,∴.解得:m=8,n=4.∴反比例函数的表达式为y=.∵m=8,n=4,∴点B(2,4),P(8,1).过点P作PD⊥BC,垂足为D,并延长交AB与点P′.在△BDP和△BDP′中,∴△BDP≌△BDP′.∴DP′=DP=6.∴点P′(﹣4,1).将点P′(﹣4,1),B(2,4)代入直线的解析式得:,解得:.∴一次函数的表达式为y=x+3.【点评】本题主要考查的是一次函数和反比例函数的综合应用,根据题意列出方程组是解题的关键.26.(10分)如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.【分析】(1)直接利用圆周角定理得出AD⊥BC,再利用线段垂直平分线的性质得出AB=AC,即可得出∠E=∠C;(2)利用圆内接四边形的性质得出∠AFD=180°﹣∠E,进而得出∠BDF=∠C+∠CFD,即可得出答案;(3)根据cosB=,得出AB的长,即可求出AE的长,再判断△AEG∽△DEA,求出EG•ED的值.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,又∵∠B=∠E,∴∠E=∠C;(2)解:∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°﹣∠E,又∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,又∵∠E=∠C=55°,∴∠BDF=∠C+∠CFD=110°;(3)解:连接OE,∵∠CFD=∠E=∠C,∴FD=CD=BD=4,在Rt△ABD中,cosB=,BD=4,∴AB=6,∵E是的中点,AB是⊙O的直径,∴∠AOE=90°,∵AO=OE=3,∴AE=3,∵E是的中点,∴∠ADE=∠EAB,∴△AEG∽△DEA,∴=,即EG•ED=AE2=18.【点评】此题主要考查了圆的综合题、圆周角定理以及相似三角形的判定与性质以及圆内接四边形的性质等知识,根据题意得出AE,AB的长是解题关键.27.(10分)如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ 为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为 1 ;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.【分析】(1)先利用△PBQ∽△CBD求出PQ、BQ,再根据角平分线性质,列出方程解决问题.(2)由△QTM∽△BCD,得=列出方程即可解决.(3)①如图2中,延长QM交CD于E,求出DE、DO利用差值比较即可解决问题.②如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.由△OHE∽△BCD,得=,列出方程即可解决问题.利用反证法证明直线PM不可能由⊙O相切.【解答】(1)解:如图1中,∵四边形ABCD是矩形,∴∠A=∠C=∠ADC=∠ABC=90°,AB=CD=6.AD=BC=8,∴BD===10,∵PQ⊥BD,∴∠BPQ=90°=∠C,∵∠PBQ=∠DBC,∴△PBQ∽△CBD,∴==,∴==,∴PQ=3t,BQ=5t,∵DQ平分∠BDC,QP⊥DB,QC⊥DC,∴QP=QC,∴3t=8﹣5t,∴t=1,故答案为:1.(补充:直接利用角平分线的性质得到DP=DC=6,BP=4,从而t=1)(2)解:如图2中,作MT⊥BC于T.∵MC=MQ,MT⊥CQ,∴TC=TQ,由(1)可知TQ=(8﹣5t),QM=3t,∵MQ∥BD,∴∠MQT=∠DBC,∵∠MTQ=∠BCD=90°,∴△QTM∽△BCD,∴=,∴=,∴t=(s),∴t=s时,△CMQ是以CQ为底的等腰三角形.(3)①证明:如图2中,延长QM交CD于E,∵EQ∥BD,∴=,∴EC=(8﹣5t),ED=DC﹣EC=6﹣(8﹣5t)=t,∵DO=3t,∴DE﹣DO=t﹣3t=t>0,∴点O在直线QM左侧.②解:如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.∵EC=(8﹣5t),DO=3t,∴OE=6﹣3t﹣(8﹣5t)=t,∵OH⊥MQ,∴∠OHE=90°,∵∠HEO=∠CEQ,∴∠HOE=∠CQE=∠CBD,∵∠OHE=∠C=90°,∴△OHE∽△BCD,∴=,∴=,∴t=.∴t=s时,⊙O与直线QM相切.连接PM,假设PM与⊙O相切,则∠OMH=PMQ=22.5°,在MH上取一点F,使得MF=FO,则∠FMO=∠FOM=22.5°,∴∠OFH=∠FOH=45°,∴OH=FH=,FO=FM=,∴MH=(+1),由=得到HE=,由=得到EQ=,∴MH=MQ﹣HE﹣EQ=4﹣﹣=,∴(+1)≠,矛盾,∴假设不成立.∴直线PM与⊙O不相切.【点评】本题考查圆综合题、正方形的性质、相似三角形的判定和性质、切线的判定和性质、勾股定理、角平分线的性质等知识,解题的关键灵活运用这些知识解决问题,学会利用方程的思想思考问题,充分利用相似三角形的性质构建方程,在最后一个问题证明中利用了反证法,属于中考压轴题.。

江苏省苏州市立达中学2016年中考化学二模试卷(解析版)

江苏省苏州市立达中学2016年中考化学二模试卷(解析版)

江苏省苏州市立达中学2016年中考化学二模试卷(解析版)一、选择题(共25小题,每小题2分,满分50分)1.“一园江南梦”第九届江苏省园艺博览会在苏州临湖美丽绽放.“飞鸟与鱼”﹣太湖水保护展馆提示我们保护赖以生存的母亲湖.下列关于保护水资源的说法正确的是()A.城市浇花,使用喷灌、滴灌技术B.保护水资源,禁止使用化肥、农药C.工业废水的任意排放,不会污染水体D.大力发展太湖围网养殖,促进经济发展2.以下资源的利用过程中发生化学变化的是()A.铁矿石炼铁B.干冰致冷 C.海水晒盐 D.风能发电3.下列物质中,不属于糖类的是()A.葡萄糖B.淀粉 C.蛋白质D.纤维素4.下列化学用语书写正确的是()A.五个氢原子:H5B.三个水分子:3H2OC.两个钙离子:2Ca+2D.四个铵根离子:4NH3+5.著名科学家张存浩获“国家最高科学技术奖”,他研究的火箭燃料常用的氧化剂是高氯酸铵(NH4C1O4).其中氮元素的化合价为﹣3价,则氯元素的化合价是()A.﹣1 B.+3 C.+5 D.+76.实验是学习化学的一条重要途径.下列化学实验操作正确的是()A.检查装置气密性B.测溶液pHC.塞紧橡皮塞D.加热固体物质7.分类是学习化学的方法之一,下列物质是按单质、盐、混合物的顺序排列的是A.甲烷、食盐、生铁 B.氢气、硫酸钠、冰水混合体C.液氧、纯碱、空气 D.金刚石、熟石灰、石油8.人们的衣食住行都离不开材料.下列生活用品所含的主要材料,属于合成材料的是()A.铁锅 B.瓷碗 C.塑料盆D.玻璃杯9.下列溶液中的溶质,常温下为气体的是()A.稀盐酸B.碘酒 C.白酒 D.KNO3溶液10.砷化镓(GaAs)是一种“LED”绿色节能光源材料,镓元素的相关信息如图.下列有关镓的说法错误的是()A.原子的核电荷数是31 B.元素符号是GaC.属于金属元素 D.相对原子质量为69.72g11.下列关于氧气的说法,正确的是()A.灯泡中填充氧气可以延长其使用寿命B.用含有氧元素的物质反应才有可能产生氧气C.鱼、虾等能在水中生存,是由于氧气极易溶于水D.测定空气中氧气含量的实验可以将红磷换成蜡烛12.已知磷酸二氢铵(NH4H2PO4)是磷肥中的一种,下列说法错误的是()A.磷酸二氢铵是一种复合肥料B.磷酸二氢铵是由氮、氢、磷、氧四种元素组成C.磷酸二氢铵中氮、氢、磷、氧的质量比为1:6:1:4D.磷酸二氢铵与熟石灰混合研磨有氨味气体产生13.以下熄灭蜡烛的原理是利用让燃烧物的温度降低到着火点以下的是()A.B.C.D.14.下列叙述错误的是()A.用碘水可以检验土豆中是否含有淀粉B.利用沉降的方法,将硬水转化成软水C.氢气被认为是理想的清洁、高能燃料D.洗涤剂有乳化作用,能除去餐具上的油污15.下列相关事实用微观粒子的知识解释错误的是()A.A B.B C.C D.D16.物质的结构决定物质的性质.下列关于物质结构与性质的说法不正确的是()A.生铁和钢的性能不同,主要是由于其含碳量不同B.金刚石和石墨的物理性质不同,是由于构成它们的原子不同C.一氧化碳和二氧化碳的化学性质不同,是由于构成它们的分子不同D.金属钠和镁的化学性质不同,主要是由于钠原子和镁原子的最外层电子数不同17.甲、乙、丙、丁四种物质,在一定的条件下充分反应,测得反应前后各物质的质量分数如图所示.下列说法正确的()A.丁一定是化合物B.丙一定是这个反应的催化剂C.该反应可能是碳酸钙分解D.参加反应的甲的质量一定等于生成的丁和乙的质量之和18.下列实验中可观察到明显现象的是()A.向盐酸中滴加硫酸钠溶液B.向盐酸中滴加酚酞溶液C.向氯化镁溶液中滴加氢氧化钾溶液D.向氯化镁溶液中滴加稀硫酸19.如图是氢氧化钠溶液与稀盐酸恰好完全反应的微观示意图,由此得出的结论正确的是()A.反应后溶液的pH大于7B.反应前的溶液均可导电,反应后的溶液不导电C.反应后溶液中存在的粒子只有Na+和Cl﹣D.反应前后所有元素的化合价均无变化20.化学与生活密切相关,下列相关叙述中正确的是()A.鸡蛋清中加入饱和硫酸铵溶液,蛋白质发生了化学反应B.用点燃后闻气味的方法,可以区别真丝织品与全棉织品C.人体缺钙会引起骨质疏松,因此钙元素摄入得越多越好D.人误食重金属盐中毒后,可服用稀的氢氧化钠溶液解毒21.下列验证实验不能成功的是()A.CO2能与烧碱溶液反应B.不同物质的着火点不同C.分子在不断运动D.质量守恒定律22.甲、乙、丙三种不含结晶水的固体物质的溶解度曲线如图所示,下列说法中正确的是()A.t2℃时将50g甲物质放入50g水中,充分搅拌后得到100g甲溶液B.t2℃时配制等质量的三种物质的饱和溶液,甲所需要的水最少C.分别将t2℃时三种物质的饱和溶液降温至t1℃,所得溶液中溶质的质量分数的大小关系为乙>甲=丙D.分别将t2℃时三种物质的饱和溶液降温到t1℃,甲溶液中析出的晶体最多,丙溶液中无晶体析出23.(2分)下列除去杂质的方法中错误的是()A.A B.B C.C D.D24.下列各组离子在水中一定能大量共存的是()A.Na+、H+、HCO3﹣B.Na+、Ca2+、CO32﹣C.K+、NO3﹣、H+D.H+、Cl﹣、OH﹣25.下列图象不能正确反映对应变化关系的是()A.向一定量的碳酸钠溶液中加水稀释B.加热一定量的碳铵,试管中固体的质量变化C.向氯化钡和氢氧化钠的混合溶液中滴加稀硫酸D.20℃时,向一定量的硝酸钾不饱和溶液中加入硝酸钾固体二、解答题(共7小题,满分50分)26.(3分)将下列相对应的物质用短线连接.27.将二氧化碳通入紫色石蕊试液:,观察到紫色石蕊试液变为.(2)实验室用氯酸钾和二氧化锰混合加热制取氧气,其中二氧化锰起作用.(3)工业上用赤铁矿为原料炼铁的原理:,主要设备的名称是.(4)用氨水中和含有硫酸的废水,同时得到一种氮肥:,此反应属于(填基本反应类型)反应.(5)将生锈的铁制品用过量的稀盐酸浸泡除去表面的铁锈,发生的两个反应:,..28.(9分)熟悉和使用中学化学实验中常见的仪器及用品是学习化学的基本要求.如图是实验室中常用的几种化学仪器.试回答以下问题.(1)仪器E、G的名称是、.(2)“磨砂”是增加玻璃仪器密封性的一种处理工艺.在上述仪器中,用到“磨砂”工艺处理的有(填字母序号).(3)实验室欲用加热高锰酸钾制取氧气,化学方程式为,用以上所给仪器配置一套发生和收集装置,还须补充的一种用品是.(4)水电解也能得到氧气,为什么在实验室中不采用电解水的方法来制取氧气?.(5)实验室也可用仪器ABIJK组合来制取二氧化碳(所用集气瓶容积为250mL),化学反应方程式为,过程中可将放在集气瓶口来确定二氧化碳是否集满,如发现气体始终收集不满,则可能的原因有(写出两点)、.29.(8分)化学是在原子、分子水平上研究物质及其变化的学科.(1)图1是元素周期表中某些元素的原子结构示意图:①微粒E最外层电子数是,在化学反应中容易(填“得”或“失”)电子形成离子,离子符号为.②微粒ABCDE中,属于同种元素的是(填编号,下同).(2)一定条件下,甲和乙反应生成丙和丁(四种物质均由分子构成),反应前后微观示意图如图2.下列说法正确的是.A.反应前后共有4种原子B.该反应有单质生成C.反应前后元素化合价都不变D.化学变化中分子和原子均可再分E.该化学反应中,甲、丁两种分子的个数比是2:3(3)胃酸过多须服用抗酸药.如表为两种抗酸药的有效成分及其构成微粒:由于抗酸药有效成分不同,起抗酸作用(即消耗胃液中盐酸)的微粒也有差异.①Mg(OH)2起抗酸作用的微粒是(填微粒符号,下同).②铝碳酸镁与盐酸的反应为:AlMg(OH)3CO3+5HCl═MgCl2+AlCl3+4H2O+CO2↑.则铝碳酸镁起抗酸作用的两种微粒是、.30.(5分)化学实验室要从含少量铜粉的银、锰混合金属粉末中分离出贵金属,并获得一种盐晶体,将有关三种金属随意编号为:A、B、C,并设计了如下实验:(1)出下列物质的化学式:金属B、无色气体.(2)A、B、C三种金属的活动性由强到弱的顺序为.(3)已知A的硫酸盐中A元素显+2价,则A的硫酸盐的化学式为.(4)写出步骤②发生的反应的化学方程式:.31.若需配制50g溶质质量分数为6%的氯化钠溶液.实验操作步骤包括:(1)计算:氯化钠的质量为g,水的体积为mL.(2)称取:托盘大平调平之后,在两端托盘上分别放上质量相同的纸片,再用(填仪器名称)移动游码至相应刻度处,添加药品至大平平衡.(3)量取:用50mL量筒量取所需水的体积.(4)溶解:使用玻璃棒轻盈均匀地搅拌,使固体全部溶解.玻璃棒的作用为.(5)转移:将配制好的溶液转移到指定的容器中.(二)实验反思某同学在使用托盘大平时,将游码移动到了如图一的位置,则实际称量的氯化钠质量为g.他又按图二的方式量取了水,则在其他操作均正确的情况下,此同学最终配制的氯化钠溶液的溶质质量分数为(结果保留到0.1%).(三)实验拓展(1)医用生理盐水为0.9%的氯化钠溶液,甲同学欲将实验中配制的50g 6%氯化钠溶液稀释成0.9%的生理盐水,需再加水mL.工业上用电解饱和食盐水的方法生产氯气、烧碱、氢气等化工产品(化学方程式为2NaCl+2H2O2NaOH+H2↑+C12↑),这种工业称为“氯碱工业”.某工厂现电解20℃时的饱和食盐水442吨,最多可得到氯气多少吨?已知:20℃时,S(NaCl)=36g.(写出具体计算过程,注意格式)32.是新型的超导材料和发光材料,用白云五(主要含CaCO3和MgCO3)和废Al片制备七铝十二钙的工艺如图:已知:MgCO3MgO+CO2↑,MgO不溶于水也不与水反应,CaSO4微溶于水,Ca(NO3)2+CO2+2NH3+H2O═CaCO3↓+2NH4NO3.(1)煅粉主要含,操作X为.(2)用适量NH4NO3溶液浸取煅粉,发生的主要反应的化学方程式为、.(3)用NaOH溶液可除去废Al片表面的氧化膜,同时生成偏铝酸钠((NaAlO2)和水,该反应的化学方程式为.(4)该工艺中不能用(NH4)2SO4代替NH4NO3,原因是.(5)七铝十二钙(12CaO7A12O3)中钙元素的质量分数为.2016年江苏省苏州市立达中学中考化学二模试卷参考答案与试题解析1.“一园江南梦”第九届江苏省园艺博览会在苏州临湖美丽绽放.“飞鸟与鱼”﹣太湖水保护展馆提示我们保护赖以生存的母亲湖.下列关于保护水资源的说法正确的是()A.城市浇花,使用喷灌、滴灌技术B.保护水资源,禁止使用化肥、农药C.工业废水的任意排放,不会污染水体D.大力发展太湖围网养殖,促进经济发展【分析】A、根据城市浇花,使用喷灌、滴灌技术可以节约水资源进行解答;B、根据不能为了保护水资源,而禁止使用化肥、农药进行解答;C、根据工业废水的任意排放,会污染水体进行解答;D、根据大力发展太湖围网养殖会造成水体污染进行解答.【解答】解:A、城市浇花,使用喷灌、滴灌技术可以节约水资源,故A正确;B、不能为了保护水资源,而禁止使用化肥、农药,而应该是合理使用化肥农药,故B错误;C、工业废水的任意排放,会污染水体,故C错误;D、大力发展太湖围网养殖会造成水体污染,故D错误.故选:A.【点评】解答本题要充分理解节能环保的重要性,人人都要树立节能环保的理念,为保护环境贡献一份力量.2.以下资源的利用过程中发生化学变化的是()A.铁矿石炼铁B.干冰致冷 C.海水晒盐 D.风能发电【分析】化学变化是指有新物质生成的变化,物理变化是指没有新物质生成的变化,化学变化和物理变化的本质区别是否有新物质生成;据此分析判断.【解答】解:A、铁矿石炼铁的过程中有新物铁等生成,属于化学变化.B、干冰致冷的过程中只是状态发生改变,没有新物质生成,属于物理变化.C、海水晒盐的过程中只是状态发生改变,没有新物质生成,属于物理变化.D、风能发电的过程中没有新物质生成,属于物理变化.故选A.【点评】本题难度不大,解答时要分析变化过程中是否有新物质生成,若没有新物质生成属于物理变化,若有新物质生成属于化学变化.3.下列物质中,不属于糖类的是()A.葡萄糖B.淀粉 C.蛋白质D.纤维素【分析】人类需要的营养物质有糖类、油脂、蛋白质、维生素、水和无机盐.【解答】解:葡萄糖、淀粉、纤维素等物质属于糖类物质;蛋白质不属于糖类物质.故选C【点评】解答本题要分析食物中的主要成分,然后再根据营养物质的分类进行分析、判断,从而得出正确的结论.4.下列化学用语书写正确的是()A.五个氢原子:H5B.三个水分子:3H2OC.两个钙离子:2Ca+2D.四个铵根离子:4NH3+【分析】A、原子的表示方法,用元素符号来表示一个原子,表示多个该原子,就在其元素符号前加上相应的数字.B、分子的表示方法,正确书写物质的化学式,表示多个该分子,就在其化学式前加上相应的数字.C、离子的表示方法,在表示该离子的元素符号右上角,标出该离子所带的正负电荷数,数字在前,正负符号在后,带1个电荷时,1要省略.若表示多个该离子,就在其离子符号前加上相应的数字.D、离子的表示方法,在表示该离子的元素符号右上角,标出该离子所带的正负电荷数,数字在前,正负符号在后,带1个电荷时,1要省略.若表示多个该离子,就在其离子符号前加上相应的数字.【解答】解:A、由原子的表示方法,用元素符号来表示一个原子,表示多个该原子,就在其元素符号前加上相应的数字,故五个氢原子表示为:5H,故选项化学用语书写错误.B、由分子的表示方法,正确书写物质的化学式,表示多个该分子,就在其化学式前加上相应的数字,则三个水分子可表示为:3H2O,故选项化学用语书写正确.C、由离子的表示方法,在表示该离子的元素符号右上角,标出该离子所带的正负电荷数,数字在前,正负符号在后,带1个电荷时,1要省略.若表示多个该离子,就在其元素符号前加上相应的数字,故2个钙离子可表示为:2Ca2+,故选项化学用语书写错误.D、由离子的表示方法,在表示该离子的元素符号右上角,标出该离子所带的正负电荷数,数字在前,正负符号在后,带1个电荷时,1要省略.若表示多个该离子,就在其离子符号前加上相应的数字,故四个铵根离子可表示为:4NH4+,故选项化学用语书写错误.故选:B.【点评】本题难度不大,主要考查同学们对常见化学用语(原子符号、分子符号、离子符号等)的书写和理解能力.5.著名科学家张存浩获“国家最高科学技术奖”,他研究的火箭燃料常用的氧化剂是高氯酸铵(NH4C1O4).其中氮元素的化合价为﹣3价,则氯元素的化合价是()A.﹣1 B.+3 C.+5 D.+7【分析】根据在化合物中正负化合价代数和为零,结合高氯酸铵的化学式进行解答本题.【解答】解:氮元素的化合价为﹣3价,氢元素显+1价,氧元素显﹣2价,设氯元素的化合价是x,根据在化合物中正负化合价代数和为零,可得:(﹣3)+(+1)×4+x+(﹣2)×4=0,则x=+7价.故选:D.【点评】本题难度不大,掌握利用化合价的原则(化合物中正负化合价代数和为零)计算指定元素的化合价的方法即可正确解答本题.6.实验是学习化学的一条重要途径.下列化学实验操作正确的是()A.检查装置气密性B.测溶液pHC.塞紧橡皮塞D.加热固体物质【分析】A、根据检查气密性的方法进行分析;B、根据测定溶液的pH的方法进行分析;C、根据连接仪器的方法进行分析;D、根据加热固体物质的方法进行分析.【解答】解:A、检查气密性的方法是:先把导管的一端插入水中,然后两手紧握试管的外壁,然后观察导管口是否有气泡冒出,如图装置中长颈漏斗有气体溢出,不能检查气密性,故所示错误;B、测定溶液的pH在点滴板上,用玻璃棒滴加,操作正确;C、将橡皮塞塞进试管中,应左手持试管,右手持橡皮塞,慢慢旋进试管,不能放在桌面上塞人,容易压裂试管,故操作错误;D、加热固体药品,试管口应略向下倾斜,图中试管略向上倾斜,会导致冷凝水回流到热的试管底部,使试管炸裂,图中所示操作错误;故选B.【点评】化学实验的基本操作是做好化学实验的基础,学生要在平时的练习中多操作,掌握操作要领,使操作规范.7.分类是学习化学的方法之一,下列物质是按单质、盐、混合物的顺序排列的是A.甲烷、食盐、生铁 B.氢气、硫酸钠、冰水混合体C.液氧、纯碱、空气 D.金刚石、熟石灰、石油【分析】单质是由一种元素组成的纯净物;盐是由金属离子和酸根离子组成的化合物;混合物是由多种物质组成的,据此分析.【解答】解:A、甲烷属于纯净物;食盐属于盐;生铁是铁的合金属于混合物,故A错;B、氢气属于单质;硫酸钠属于盐;冰水,只有水一种物质,属于纯净物,故B错;C、液氧是液态的氧气,氧气属于单质;纯碱是碳酸钠的俗名,碳酸钠属于盐;空气中含有氧气、氮气等属于混合物,故C正确;D、金刚石属于碳的单质;熟石灰是氢氧化钙的俗名,氢氧化钙属于碱;石油属于混合物,故D错.故选C.【点评】要根据单质、盐、混合物的概念回答本题,要把握要点,知道常见物质的组成.8.人们的衣食住行都离不开材料.下列生活用品所含的主要材料,属于合成材料的是()A.铁锅 B.瓷碗 C.塑料盆D.玻璃杯【分析】有机合成材料简称合成材料,要判断是否属于合成材料,可抓住三个特征:有机物、合成、高分子化合物,据此常见材料的分类进行分析判断.【解答】解:A、铁锅是用生铁或钢制成的,生铁或钢属于铁的合金,属于金属材料,故选项错误.B、瓷碗是用泥土烧制而成的,属于无机非金属材料,故选项错误.C、塑料盆是用塑料制成的,塑料属于三大合成材料之一,故选项正确.D、玻璃杯是用玻璃制成的,玻璃的主要成分是硅酸盐,属于无机非金属材料,故选项错误.故选:C.【点评】本题难度不大,掌握合成材料的三大特征(有机物、合成、高分子化合物)、分类是正确解答此类题的关键所在.9.下列溶液中的溶质,常温下为气体的是()A.稀盐酸B.碘酒 C.白酒 D.KNO3溶液【分析】根据对溶液中溶质和溶剂的判断,再考虑溶质的状态回答本题.【解答】解:A、盐酸是氯化氢溶于水形成的溶液,溶质是氯化氢属于气体,故A正确;B、碘酒是将碘溶于酒精中,溶质是碘属于固体,故B错;C、白酒里面的溶质是酒精,酒精属于液体,故C错;D、硝酸钾溶液是硝酸钾溶于水形成的,溶质是硝酸钾属于固体,故D错.故选:A.【点评】解答本题关键是要知道溶质和溶剂的判断方法,固体、气体溶于液体时,固体和气体是溶质,液体是溶剂.10.砷化镓(GaAs)是一种“LED”绿色节能光源材料,镓元素的相关信息如图.下列有关镓的说法错误的是()A.原子的核电荷数是31 B.元素符号是GaC.属于金属元素 D.相对原子质量为69.72g【分析】根据元素周期表中的一个小格所提供的信息及辨别元素的种类的方法进行解答本题.【解答】解:A.根据原子的核电荷数=原子序数,则镓原子的核电荷数是31,故A不符合题意;B.根据图可知信息:镓元素符号是Ga,故B不符合题意;C.根据化学元素汉字名称的偏旁可辨别元素的种类,金属元素名称有“钅”字旁,因此镓属于金属元素,故C不符合题意;D.根据图可知信息:相对原子质量为69.72.其单位为1,而非g.故D符合题意.故选:D.【点评】本题考查学生根据元素周期表中的一个小格所提供的信息及辨别元素的种类的方法进行分析解题的能力.11.下列关于氧气的说法,正确的是()A.灯泡中填充氧气可以延长其使用寿命B.用含有氧元素的物质反应才有可能产生氧气C.鱼、虾等能在水中生存,是由于氧气极易溶于水D.测定空气中氧气含量的实验可以将红磷换成蜡烛【分析】根据氧气的性质、制法和测定空气中氧气的体积分数的原理分析判断有关的说法.【解答】解:A、灯泡中填充氧气,加快了钨丝的氧化,减少了其使用寿命,故A错误;B、由质量守恒定律可知,用含有氧元素的物质反应才有可能产生氧气,故B正确;C、鱼、虾等能在水中生存,是由于水中溶有一定量的氧气,氧气不易溶于水,故C错误;D、由于蜡烛燃烧有气体生成,测定空气中氧气含量的实验不可以将红磷换成蜡烛,故D错误.故选B.【点评】本题的难度不大,了解氧气的性质、制法和测定空气中氧气的体积分数的原理等知识即可分析解答.12.已知磷酸二氢铵(NH4H2PO4)是磷肥中的一种,下列说法错误的是()A.磷酸二氢铵是一种复合肥料B.磷酸二氢铵是由氮、氢、磷、氧四种元素组成C.磷酸二氢铵中氮、氢、磷、氧的质量比为1:6:1:4D.磷酸二氢铵与熟石灰混合研磨有氨味气体产生【分析】A.根据复合肥料的概念来分析;B.根据物质的组成来分析;C.根据化合物中各元素质量比的计算方法来分析;D.根据铵态氮肥的检验方法来分析.【解答】解:A.磷酸二氢铵中,含有三大营养元素中的磷元素和氮元素,属于复合肥料,故A正确;B.由磷酸二氢铵的化学式NH4H2PO4可知,它是由氮元素、氢元素、磷元素和氧元素四种元素组成的,故B正确;C.磷酸二氢铵(NH4H2PO4)中,氮、氢、磷、氧元素的质量比是14:(1×6):31:(16×4)=14:6:31:64,故C错误;D.磷酸二氢铵是一种铵态氮肥,能与熟石灰反应生成氨气,故D正确.故选:C.【点评】本题主要考查化肥的分类方面的知识、化学式的有关计算知识以及铵态氮肥的检验等,难度不大.13.以下熄灭蜡烛的原理是利用让燃烧物的温度降低到着火点以下的是()A.B.C.D.【分析】根据灭火的原理:清除或隔离可燃物、隔绝氧气或空气、使温度降到着火点以下,据此结合灭火方法进行分析判断.【解答】解:A、用嘴吹灭蜡烛,吹走了蜡烛火焰的热量,从而降低了蜡烛的温度,导致可燃物的温度降到了其着火点以下,使蜡烛熄灭,故选项正确.B、用二氧化碳灭火,利用的二氧化碳不能燃烧、不能支持燃烧、密度比空气大的性质,能隔绝氧气,故选项错误.C、图中熄灭蜡烛的原理是隔绝氧气,故选项错误.D、小苏打与稀盐酸反应生成二氧化碳气体,利用的二氧化碳不能燃烧、不能支持燃烧、密度比空气大的性质,能隔绝氧气,故选项错误.故选:A.【点评】本题难度不大,掌握灭火的原理(清除或隔离可燃物,隔绝氧气或空气,使温度降到可燃物的着火点以下)并能灵活运用是正确解答本题的关键.14.下列叙述错误的是()A.用碘水可以检验土豆中是否含有淀粉B.利用沉降的方法,将硬水转化成软水C.氢气被认为是理想的清洁、高能燃料D.洗涤剂有乳化作用,能除去餐具上的油污【分析】A、根据碘遇淀粉变蓝色的特性,进行分析判断.B、根据沉降不能除去水中的可溶性钙镁化合物,进行分析判断.C、根据氢气作为燃料的三大优点,进行分析判断.D、根据洗涤剂具有乳化作用,进行分析判断.【解答】解:A、碘遇淀粉变蓝色,用碘水可以检验土豆中是否含有淀粉,故选项说法正确.B、沉降不能除去水中的可溶性钙镁化合物,不能将硬水转化成软水,故选项说法错误.C、氢气作为燃料来源广、放热量高、无污染,被认为是理想的清洁、高能燃料,故选项说法正确.D、洗涤剂具有乳化作用,能将大的油滴分散成细小的油滴随水冲走,能除去餐具上的油污,故选项说法正确.故选:B.【点评】本题难度不大,作为碘遇淀粉变蓝色的特性、硬水软化的方法、氢气作为燃料的优点、乳化作用等是正确解答本题的关键.15.下列相关事实用微观粒子的知识解释错误的是()。

2016年苏州中考数学模拟试题(二)(含答案)

2016年苏州中考数学模拟试题(二)(含答案)

2016年苏州中考数学模拟试题(二)一.选择题(共10小题,30分)1.|﹣2|的相反数是()A.B.﹣2 C.D.22.一组数据从小到大排列为1,2,4,x,6,9.这组数据的中位数是5,那么这组数据的众数为()A.4 B.5 C.5.5 D.63.某种细菌的半径是0.000 0036毫米,这个数用科学记数法可表示为()A.3.6×10﹣6毫米B.3.6×10﹣5毫米C.0.36×10﹣7毫米D.36×10﹣4毫米4.a,b是两个连续整数,若a,则a+b的值是()A.5 B.6 C.7 D.85.小明统计本班同学的年龄后,绘制如下占频数分布直方图,这个班学生的平均年龄是()岁.A.14 B.14.3 C.14.5 D.156.已知点A(m+3,2)和B(3,m)是同一反比例函数图象上的两个点,则m的值是()A.﹣6 B.﹣2 C.3 D.67.如图,在△ABC中,AB=AC,D为BC的中点,E为AC边上一点,且AE=AD,∠BAC=40°,则∠EDC的度数是()A.10°B.20°C.30°D.40°8.若二次函数y=x2+bx的图象的对称轴是直线x=2,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4 B.x1=1,x2=5 C.x1=1,x2=﹣5 D.x1=﹣1,x2=59.如图,在扇形OAB中,∠AOB=90°,半径OA=2,将扇形OAB沿过点B的直线折叠,使点O恰好落在弧AB上的点D处,折痕为BC,则图中阴影部分的面积是()A.πB.π﹣C.π﹣D.π﹣10.如图,在一笔直的海岸线上有A、B两个观测站,C离海岸线l的距离(即CD的长)为2,从A测得船C 在北偏东45°的方向,从B l测得船C在北偏东22.5°的方向,则AB的长()A.2km B.(2+)km C.(4﹣2)km D.(4﹣)km二.填空题(共8小题,24分)11.计算:a6÷a2=.12.如图所示,直线l∥m,将含有45°角的三角形板ABC的直角顶点C放在直线m上.若∠1=25°,则∠2的度数为.13.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为.14.分解因式:x2﹣16y2=.15.已知点A(m,0)是抛物线y=x2﹣2x﹣1与x轴的一个交点,则代数式2m2﹣4m+2013的值是.16.如图,在△ABC中,∠A=40°,BC=3,分别以点B、C为圆心,BC长为半径在BC右侧画弧,两弧交于点D,与AB、AC的延长线分别交于点E、F,则弧DE和弧DF的长度和为17. 如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若FG=5,CF=6,则四边形BDFG的面积为.18.如图,在正方形ABCD内有一折线段,其中AE丄EF,EF丄FC,并且AE=6,EF=8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为.三.解答题(共10小题,76分)19.(本题5分)计算:()0+(﹣1)3+()﹣3﹣.20.(本题5分)解不等式组:.21.(本题6分)先化简,再求值:(1+)÷,其中a=4.22.(本题6分)甲乙两人做某种机器零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,求甲乙每小时各做多少个零件?23.(本题8分)(2013•长春模拟)一个不透明的口袋中装有2个红球和1个白球,小球除颜色外其余均相同.(1)从口袋中随机摸出一个小球,小球的颜色是白色的概率是.(2)从口袋中随机摸出一个小球,记下颜色后放回,再随机摸出一个小球.请用画树状图(或列表)的方法,求两次摸出的小球颜色相同的概率.24.(本题8分)(2015•宜昌)如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH的长为半径画弧,两弧在∠ABC 内部相交于点O,画射线BO,交AD于点E.(1)求证:AB=AE;(2)若∠A=100°,求∠EBC的度数.25.(本题8分)(2015•吉林)如图,点A(3,5)关于原点O的对称点为点C,分别过点A,C作y轴的平行线,与反比例函数y=(0<k<15)的图象交于点B,D,连接AD,BC,AD与x轴交于点E(﹣2,0).(1)求k的值;(2)直接写出阴影部分面积之和.26.(本题10分)如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点,过点B作BE∥AD,交⊙O 于点E,连接ED.(1)求证:ED∥AC;(2)连接AE,试证明:AB•CD=AE•AC.27.(本题10分)已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P 的坐标;若不存在,说明理由;(3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QA﹣QO|的取值范围.28.(本题10分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AB为⊙O的直径,且AB=8cm,AD=16cm,BC=14cm,动点P从B点开始沿BC边向C点以1cm/s的速度运动,动点Q从点D开始沿DA边向A以3cm/s 的速度运动;P、Q同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t.求:(1)要使四边形PQDC为直角梯形和等腰梯形,t应分别为多少?(2)要使直线PQ与⊙O相切,求t的值.(3)分别写出当直线PQ与⊙O相交、相离时t的取值范围.(此问直接写出结果)参考答案与试题解析一.选择题1.B2.D3.A4.C5.B6.D7.A8.D9.D 10.C二.填空题(共7小题)11.a412.20°13..14.(x+4y)(x﹣4y)15.201516. 17.15.18.80π﹣160.三.解答题(共10小题)19.计算()0+(﹣1)3+()﹣3﹣.【分析】本题涉及零指数幂、乘方、负指数幂、平方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.20.解不等式组:.【分析】分别求出各不等式的解集,再求出其公共解集即可.21.先化简,再求值:(1+)÷,其中a=4.【分析】先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.22.甲乙两人做某种机器零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,求甲乙每小时各做多少个零件?【分析】本题的等量关系为:甲每小时做的零件数量﹣乙每小时做的零件数量=6;甲做90个所用的时间=乙做60个所用的时间.由此可得出方程组求解.23.一个不透明的口袋中装有2个红球和1个白球,小球除颜色外其余均相同.(1)从口袋中随机摸出一个小球,小球的颜色是白色的概率是.(2)从口袋中随机摸出一个小球,记下颜色后放回,再随机摸出一个小球.请用画树状图(或列表)的方法,求两次摸出的小球颜色相同的概率.【分析】(1)根据概率的意义列式即可;(2)画出树状图然后根据概率公式列式即可得解.24.如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC 于点G,H;再分别以点G,H为圆心,大于GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.(1)求证:AB=AE;(2)若∠A=100°,求∠EBC的度数.【分析】(1)根据平行线的性质,可得∠AEB=∠EBC,根据角平分线的性质,可得∠EBC=∠ABE,根据等腰三角形的判定,可得答案;(2)根据三角形的内角和定理,可得∠AEB,根据平行线的性质,可得答案.25.如图,点A(3,5)关于原点O的对称点为点C,分别过点A,C作y轴的平行线,与反比例函数y=(0<k<15)的图象交于点B,D,连接AD,BC,AD与x轴交于点E(﹣2,0).(1)求k的值;(2)直接写出阴影部分面积之和.【分析】(1)根据点A和点E的坐标求得直线AE的解析式,然后设出点D的纵坐标,代入直线AE的解析式即可求得点D的坐标,从而求得k值;(2)根据中心对称的性质得到阴影部分的面积等于平行四边形CDGF的面积即可.26.如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点,过点B作BE∥AD,交⊙O于点E,连接ED.(1)求证:ED∥AC;(2)连接AE,试证明:AB•CD=AE•AC.【分析】(1)由圆周角定理,可得∠BAD=∠E,又由BE∥AD,易证得∠BAD=∠ADE,然后由AD是△ABC 的角平分线,证得∠CAD=∠ADE,继而证得结论;(2)首先连接AE,易得∠CAD=∠ABE,∠ADC=∠AEB,则可证得△ADC∽△BEA,然后由相似三角形的对应边成比例,证得结论.27.已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P 的坐标;若不存在,说明理由;(3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QA﹣QO|的取值范围.【分析】(1)点A的坐标是纵坐标为0,得横坐标为8,所以点A的坐标为(8,0);点B的坐标是横坐标为0,解得纵坐标为6,所以点B的坐标为(0,6);由题意得:BC是∠ABO的角平分线,所以OC=CH,BH=OB=6∵AB=10,∴AH=4,设OC=x,则AC=8﹣x由勾股定理得:x=3∴点C的坐标为(3,0)将此三点代入二次函数一般式,列的方程组即可求得;(2)求得直线BC的解析式,根据平行四边形的性质,对角相等,对边平行且相等,借助于三角函数即可求得;(3)如图,由对称性可知QO=QH,|QA﹣QO|=|QA﹣QH|.当点Q与点B重合时,Q、H、A三点共线,|QA﹣QO|取得最大值4(即为AH的长);设线段OA的垂直平分线与直线BC的交点为K,当点Q与点K重合时,|QA﹣QO|取得最小值0.28.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AB为⊙O的直径,且AB=8cm,AD=16cm,BC=14cm,动点P从B点开始沿BC边向C点以1cm/s的速度运动,动点Q从点D开始沿DA边向A以3cm/s的速度运动;P、Q同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t.求:(1)要使四边形PQDC为直角梯形和等腰梯形,t应分别为多少?(2)要使直线PQ与⊙O相切,求t的值.(3)分别写出当直线PQ与⊙O相交、相离时t的取值范围.(此问直接写出结果)【分析】(1)当BP=AQ时,四边形是直角梯形;根据AD﹣BC=2,可以得到:当DQ﹣PC=4时,四边形PQDC 是等腰梯形,据此即可列方程求得t的值;(2)过点P作PE⊥AD于E,则当PQ与⊙O相切时,根据切线长定理可得:PQ=BP+AQ,要使直线PQ与⊙O 相切,则一定有(BP+AQ)2=AB2+QE2,据此即可列方程求得t的值;(3)根据(2)解得的结果,t=或t=4,直线PQ从开始运动时与圆相交,一直到当t=时,直线与圆相切;再运动时,直线与圆相离,再到t=4时,直线与圆相切,然后相交,直到停止.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年江苏省苏州市立达中学中考数学二模试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)|﹣2|=()A.2 B.﹣2 C.±2 D.2.(3分)下列运算结果为a6的是()A.a2+a3B.a2•a3C.(﹣a2)3D.a8÷a23.(3分)据报道英国和新加坡研究人员制造出观测极限为0.00000005米的光学显微镜,其中0.00000005用科学记数法表示正确的是()A.0.5×10﹣9B.5×10﹣8C.5×10﹣9D.5×10﹣74.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(3分)如图,已知数轴上的点A,B,C,D分别表示数﹣2,1,2,3,则表示数5﹣的点P应落在线段()A.AO上B.OB上C.BC上D.CD上6.(3分)由一些大小相同的小正方体组成的几何体的三种视图如图所示,那么组成几何体的小正方体有()个.A.4 B.5 C.6 D.77.(3分)某市5月份日平均气温统计如下表,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21.5 C.21,22 D.22,228.(3分)一个底面半径是40cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为()A.80°B.160°C.320° D.100°9.(3分)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2 B.4 C.6 D.810.(3分)如图,在Rt△ABC中,∠C=90°,∠B=75°,将△ABC沿CD翻折,使点B落在边AC上的B′处,则BC:BD=()A.:2 B.3:2 C.:3 D.5:3二、填空题(共8小题,每小题3分,满分24分)11.(3分)若式子在实数范围内有意义,则x的取值范围是.12.(3分)如图,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为.13.(3分)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为.14.(3分)如图,OA,OB是⊙O的半径,C是⊙O上一点,∠ACB=20°,则∠OAB的度数为.15.(3分)如图,在Rt△ABC中,∠B=30°,AC=1,将△ABC绕着点A按顺时针方向旋转到△AB′C′,使得B′落在CA的延长线上,则在旋转过程中,线段AB所扫过的面积为.16.(3分)如图是二次函数y=ax2+bx﹣1图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0),则(a+b+1)(2﹣a﹣b)=.17.(3分)如图,已知一次函数y=kx+b的图象经过点P(3,2),与反比例函数y=(x>0)的图象交于点Q(m,n).当一次函数y的值随x值的增大而增大时,m的取值范围是.18.(3分)如图,在平面直角坐标系中,点A(1,),点B(2,0),P为边OB上一点,过点P作PQ∥OA,交AB于点Q,连接AP,则△APQ面积的最大值是.三、解答题(共10小题,满分76分)19.(5分)计算:﹣22+﹣()0.20.(5分)解不等式组.21.(6分)先化简,再求值:()÷,其中x=﹣2.22.(6分)初三(1)班和(2)班各花900元统一为班级同学购买纪念册.已知(2)班购买的纪念册比(1)班购买的纪念册每本贵5元,且(1)班人数比(2)班人数多20%.问:(1)班、(2)班各有多少人?23.(8分)小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.24.(8分)如图,在▱ABCD中,过点A作AE⊥DC交DC的延长线于点E过点D 作DF⊥BA,交BA的延长线于点F.(1)求证:四边形AEDF是矩形;(2)连接BD,若AB=AE=2,tan∠FAD=,求BD的长.25.(8分)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.26.(10分)如图,在平面直角坐标系xOy中,四边形OABC是正方形,点A,C 的坐标分别为(2,0),(0,2),D是x轴正半轴上的一点(点D在点A的右边),以BD为边向外作正方形BDEF(E,F两点在第一象限),连接FC交AB的延长线于点G.(1)若AD=1,求点F的坐标.(2)若反比例函数y=的图象经过点E,G两点,求k值.27.(10分)如图,O是坐标原点,过点A(﹣1,0)的抛物线y=x2﹣bx﹣3与x 轴的另一个交点为B,与y轴交于点C,其顶点为D点.(1)求b的值以及D点坐标.(2)在x轴上是否存在点P,能使得△ACP与△BCD相似,若存在,求出点P 的坐标,若不存在,说明理由.(3)连结BD、CD,动点Q的坐标为(m,1).①当四边形BQCD是平行四边形时,求m的值;②连结OQ、CQ,求△CQO的外接圆半径的最小值,并求出点Q的坐标.28.(10分)如图1,在矩形ABCD中,AB=4,BC=5,点E在AD上,ED=3,动点P从点B出发沿BC方向以每秒3个单位的速度向点C运动,过点P作PF∥CE,与边BA交于点F,过点F作FG∥BC,与CE交于点G,当点F与点A重合时,点P停止运动,设点P运动的时间为t秒.(1)BF=,PF=(用含t的代数式分别表示);(2)作点D关于CE的对称点D′,当D′落在FG上时,求t的值;(3)如图2,作△FGP的外接圆⊙O,当点P在运动过程中,是否存在⊙O与四边形ABCE的一边(AE边除外)相切?若存在,请直接写出所有符合要求的t值,若不存在,说明理由.2016年江苏省苏州市立达中学中考数学二模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)|﹣2|=()A.2 B.﹣2 C.±2 D.【解答】解:∵﹣2<0,∴|﹣2|=2,故选A.2.(3分)下列运算结果为a6的是()A.a2+a3B.a2•a3C.(﹣a2)3D.a8÷a2【解答】解:A、a3÷a2不能合并,故A错误;B、a2•a3=a5,故B错误;C、(﹣a2•)3=﹣a6,故C错误;D、a8÷a2=a6,故D正确;故选D.3.(3分)据报道英国和新加坡研究人员制造出观测极限为0.00000005米的光学显微镜,其中0.00000005用科学记数法表示正确的是()A.0.5×10﹣9B.5×10﹣8C.5×10﹣9D.5×10﹣7【解答】解:0.00000005=5×10﹣8,故选:B.4.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.5.(3分)如图,已知数轴上的点A,B,C,D分别表示数﹣2,1,2,3,则表示数5﹣的点P应落在线段()A.AO上B.OB上C.BC上D.CD上【解答】解:∵2<<3,∴2<5﹣<3,∴数5﹣的点P应落在线段DC上,故选:D.6.(3分)由一些大小相同的小正方体组成的几何体的三种视图如图所示,那么组成几何体的小正方体有()个.A.4 B.5 C.6 D.7【解答】解:第一行第1,2,3列各有1个;第二行第2列有2个;第三行第3列有1个.所以一共有1+1+1+2+1=6(个),故选C.7.(3分)某市5月份日平均气温统计如下表,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21.5 C.21,22 D.22,22【解答】解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是22,所以中位数是22.故选C.8.(3分)一个底面半径是40cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为()A.80°B.160°C.320° D.100°【解答】解:∵圆锥的底面半径是40cm,∴圆锥的侧面展开扇形的弧长为:2πr=80π,∵母线长90cm,∴圆锥的侧面展开扇形的面积为:lr=×80π×90=3600π,∴=3600π,解得:n=160.故选B.9.(3分)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2 B.4 C.6 D.8【解答】解:∵根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是菱形,∴AE=DE=DF=AF,∵AF=4,∴AE=DE=DF=AF=4,∵DE∥AC,∴=,∵BD=6,AE=4,CD=3,∴=,∴BE=8,故选D.10.(3分)如图,在Rt△ABC中,∠C=90°,∠B=75°,将△ABC沿CD翻折,使点B落在边AC上的B′处,则BC:BD=()A.:2 B.3:2 C.:3 D.5:3【解答】解:∵将△ABC沿CD翻折,使点B落在边AC上的B′处,∠C=90°,∴∠ACB=∠DCB=45°,∵∠B=75°,∴∠BDC=60°,作BE⊥CD,设ED长为x,∵∠BDC=60°,∴BE=x,BD=2x,∵∠DCB=45°,∴BE=EC=x,∴BC=x,∴BC:BD=x:x=:.故选:A.二、填空题(共8小题,每小题3分,满分24分)11.(3分)若式子在实数范围内有意义,则x的取值范围是x≥﹣3.【解答】解:若式子在实数范围内有意义,则x+3≥0,解得:x≥﹣3,则x的取值范围是:x≥﹣3.故答案为:x≥﹣3.12.(3分)如图,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为40°.【解答】解:∵AB∥CD,∴∠BEF=∠C=70°,∵∠BEF=∠A+∠F,∴∠A=70°﹣30°=40°.故答案是:40°.13.(3分)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为18.【解答】解:∵四边形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴AC==10,∵AO=OC,∴BO=AC=5,∵AO=OC,AM=MD=4,∴OM=CD=3,∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=18.故答案为18.14.(3分)如图,OA,OB是⊙O的半径,C是⊙O上一点,∠ACB=20°,则∠OAB的度数为70°.【解答】解:∵∠ACB=20°,∴∠AOB=2∠ACB=40°.∵OA=OB,∴∠OAB==70°.故答案为:70°.15.(3分)如图,在Rt△ABC中,∠B=30°,AC=1,将△ABC绕着点A按顺时针方向旋转到△AB′C′,使得B′落在CA的延长线上,则在旋转过程中,线段AB所扫过的面积为π.【解答】解:∵∠B=30°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣30°=60°,AB=2AC=2,∵△ABC绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,∴旋转角∠BAB1=180°﹣∠BAC=180°﹣60°=120°,∴线段AB所扫过的面积为==π,故答案为π.16.(3分)如图是二次函数y=ax2+bx﹣1图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0),则(a+b+1)(2﹣a﹣b)=2.【解答】解:∵二次函数的对称轴为x=﹣1,且过点(﹣3,0),∴二次函数与x轴的另一个交点坐标为:(1,0),∴a+b﹣1=0,故a+b=1,则a+b+1=2,2﹣a﹣b=2﹣(a+b)=2﹣1=1,故(a+b+1)(2﹣a﹣b)=2×1=2.故答案为:2.17.(3分)如图,已知一次函数y=kx+b的图象经过点P(3,2),与反比例函数y=(x>0)的图象交于点Q(m,n).当一次函数y的值随x值的增大而增大时,m的取值范围是1<m<3.【解答】解:过点P分别作y轴与x轴的垂线,分别交反比例函数图象于A点和B点,如图,把y=2代入y=得x=1;把x=3代入y=得y=,所以A点坐标为(1,2),B点坐标为(3,),因为一次函数y的值随x值的增大而增大,所以Q点只能在A点与B点之间,所以m的取值范围是1<m<3.故答案为1<m<3.18.(3分)如图,在平面直角坐标系中,点A(1,),点B(2,0),P为边OB上一点,过点P作PQ∥OA,交AB于点Q,连接AP,则△APQ面积的最大值是.【解答】解:如图,作AF⊥OB于F,QE⊥IB于E.设OP=x.∵A(1,),B(2,0),∴OF=1,AF=,OB=2,∵OF=FB,AF⊥OB,∴AO=AB,在Rt△OAF中,∵∠AFO=90°,OF=1,AF=,∴OA=AB==2,∵OA=OB=AB=2,∴△AOB是等边三角形,∴∠BOA=∠BAO=∠ABO=60°∵PQ∥OA,∴∠QPB=∠AOB=60°,∴△PQB是等边三角形,∴QP=PB=QB=2﹣x,=(2﹣x)2,∴S△PQB=S△AOB﹣S△AOP﹣S△PQB=×22﹣•x•﹣(2﹣x)2=﹣(x﹣1)∴S△APQ2+,∵﹣<0,∴当x=1时,△APQ的面积最大值为.故答案为.三、解答题(共10小题,满分76分)19.(5分)计算:﹣22+﹣()0.【解答】解:﹣22+﹣()0=﹣4+2﹣1=﹣2﹣1=﹣320.(5分)解不等式组.【解答】解:解第一个不等式得,x>﹣3,解第二个不等式得,x≤1,∴﹣3<x≤1.21.(6分)先化简,再求值:()÷,其中x=﹣2.【解答】解:原式=[﹣]•=•=,当x=﹣2时,原式==.22.(6分)初三(1)班和(2)班各花900元统一为班级同学购买纪念册.已知(2)班购买的纪念册比(1)班购买的纪念册每本贵5元,且(1)班人数比(2)班人数多20%.问:(1)班、(2)班各有多少人?【解答】解:设(1)班有x人,(2)班有y人,根据题意可得,解得,答:(1)班36人,(2)班30人.23.(8分)小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.【解答】解:(1)调查的总数是:2÷4%=50(户),则6≤x<7部分调查的户数是:50×12%=6(户),则4≤x<5的户数是:50﹣2﹣12﹣10﹣6﹣3﹣2=15(户),所占的百分比是:×100%=30%.故答案为:15,30%,6;补全频数分布表和频数分布直方图,如图所示:(2)中等用水量家庭大约有450×(30%+20%+12%)=279(户);(3)在2≤x<3范围的两户用a、b表示,8≤x<9这两个范围内的两户用1,2表示.画树状图:则抽取出的2个家庭来自不同范围的概率是:=.24.(8分)如图,在▱ABCD中,过点A作AE⊥DC交DC的延长线于点E过点D 作DF⊥BA,交BA的延长线于点F.(1)求证:四边形AEDF是矩形;(2)连接BD,若AB=AE=2,tan∠FAD=,求BD的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥DC,AF∥ED,∵AE⊥DC,DF⊥BA,∴DF∥EA,∴四边形AEDF是平行四边形,∵AE⊥DE,∴∠E=90°,∴四边形AEDF是矩形;(2)如图,连接BD,∵四边形AEDF是矩形,∴FD=AE=2,∠F=90°,∵在Rt△AFD中,tan∠FAD==,∵AF=5,∴AB=2,∴BF=AB+AF=7,在Rt△BFD中,BD==.25.(8分)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.【解答】解:(1)∵AB是⊙O的直径,∴∠ADB=∠ADC=90°,∵∠B=∠CAD,∠C=∠C,∴△ADC∽△BAC,∴∠BAC=∠ADC=90°,∴BA⊥AC,∴AC是⊙O的切线.(2)∵BD=5,CD=4,∴BC=9,∵△ADC∽△BAC(已证),∴=,即AC2=BC×CD=36,解得:AC=6,在Rt△ACD中,AD==2,∵∠CAF=∠CAD+∠DAE=∠ABF+∠BAE=∠AFD,∴CA=CF=6,∴DF=CA﹣CD=2,在Rt△AFD中,AF==2.26.(10分)如图,在平面直角坐标系xOy中,四边形OABC是正方形,点A,C 的坐标分别为(2,0),(0,2),D是x轴正半轴上的一点(点D在点A的右边),以BD为边向外作正方形BDEF(E,F两点在第一象限),连接FC交AB的延长线于点G.(1)若AD=1,求点F的坐标.(2)若反比例函数y=的图象经过点E,G两点,求k值.【解答】解:(1)过F作FN⊥x轴,交CB的延长线于点M,∵∠FBM+∠MBD=90°∠MBD+∠ABD=90°,∴∠FBM=∠ABD,∵四边形OABC是正方形,∴BF=BD,在△ABD和△BMF中,,∴ABD≌△BMF,∴BM=AB=2,FM=AD=1,∴F(4,3);(2)过E作EH⊥x轴,交x轴于点H,∵∠FBM+∠MBD=90°,∠MBD+∠ABD=90°,∴∠FBM=∠ABD,∵四边形BDEF为正方形,∴BF=BD,在△ABD和△BMF中,,∴△ABD≌△BMF(AAS),设AD=FM=a,则有F(4,2+a),C(0,2),由三角形中位线可得G为CF的中点,∴G(2,2+a),同理得到△DHE≌△BAD,∴EH=AD=a,OH=OA+AD+DH=4+a,∴E(4+a,a),∴2(2+a)=a(4+a),即a2+3a﹣4=0,解得:a=1或a=﹣4(舍去),∴E(5,1),把F代入反比例解析式得:k=5.27.(10分)如图,O是坐标原点,过点A(﹣1,0)的抛物线y=x2﹣bx﹣3与x 轴的另一个交点为B,与y轴交于点C,其顶点为D点.(1)求b的值以及D点坐标.(2)在x轴上是否存在点P,能使得△ACP与△BCD相似,若存在,求出点P 的坐标,若不存在,说明理由.(3)连结BD、CD,动点Q的坐标为(m,1).①当四边形BQCD是平行四边形时,求m的值;②连结OQ、CQ,求△CQO的外接圆半径的最小值,并求出点Q的坐标.【解答】解:(1)把A(﹣1,0)代入y=x2﹣bx﹣3,得1+b﹣3=0,解得b=2.y=x2﹣2x﹣3=(x﹣1)2﹣4,∴D(1,﹣4).(2)如图1,当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,即A(﹣1,0),B(3,0),D(1,﹣4).由勾股定理,得BC2=18,CD2=1+1=2,BD2=22+16=20,BC2+CD2=BD2,∠BCD=90°,①当△APC△DCB时,=,即=,解得AP=1,即P(0,0);②当△ACP∽△DCB时,=,即=,解得AP=10,即P′(9,0),综上所述:点P的坐标(0,0)(9,0);(3)①如图2,设抛物线的对称轴与x轴交于E点,则OE=1,DE=4.当x=0时,y=﹣3,即C(0,﹣3).当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,OB=3,OC=3,BE=2.设直线y=1与y轴交于点F,CF=4,BD==2.当四边形BQCD是平行四边形时,CQ=BD=2,∵CF=OF+OC=1+3=4,∴FQ==2,m=FQ=2;②如图3,记△OQC的外心为M,则M在OC的垂直平分线MN上(MN与y轴交与点N).∵当MQ取最小值时,⊙M与直线y=1相切,MQ=FN=OM=2.5,MN===2,FQ=MN=2,∴Q(2,1).28.(10分)如图1,在矩形ABCD中,AB=4,BC=5,点E在AD上,ED=3,动点P从点B出发沿BC方向以每秒3个单位的速度向点C运动,过点P作PF∥CE,与边BA交于点F,过点F作FG∥BC,与CE交于点G,当点F与点A重合时,点P停止运动,设点P运动的时间为t秒.(1)BF=4t,PF=5t(用含t的代数式分别表示);(2)作点D关于CE的对称点D′,当D′落在FG上时,求t的值;(3)如图2,作△FGP的外接圆⊙O,当点P在运动过程中,是否存在⊙O与四边形ABCE的一边(AE边除外)相切?若存在,请直接写出所有符合要求的t值,若不存在,说明理由.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴AB=CD=4,BC=AD=5,∠B=∠D=90°,AD∥BC,在Rt△ECD中,∵∠D=90°,ED=3.CD=4,∴EC==5,∵PF∥CE,FG∥BC,∴四边形PFGC是平行四边形,∴∠FPB=∠ECB=∠DEC,∴△PFB∽△ECD,∴==,∴==,∴BF=4t,PF=5t,故答案为4t,5t.(2)如图2中,∴D、D′关于CE对称,∴DD′⊥CE,DM=MD′,∵•DE•DC=•EC•DM,∴DM=D′M=,CM==,由△D′MG∽△CDE,得=,∴=,∴MG=,∴PF=CG=CM﹣MG,∴5t=﹣,∴t=.∴t=时,D′落在FG上.(3)存在.①如图3中,当⊙O与AB相切时,FG是直径.∴∠FPG=90°,∵FG∥BC,∴∠PFG=∠FPB,∵∠FPG=∠B=90°,∴△PFB∽△FGP,∴=,∴=,解得t=.②如图4中,当⊙O与BC相切时,连接OP延长PO交FG于M,连接OF、OG.∵OP⊥BC,BC∥FG,∴PO⊥FG,∴FM=MG由PB=MF=MG=FG=PC,得到3t=(5﹣3t),解得t=.③如图5中,当⊙O与EC相切时,连接GO,延长GO交PF于M,连接OF、OP.∵OG⊥EC,BF∥EC,∴GO⊥PF,∴MF=MP=t,∵△FGM∽△PFB,∴=,∴=,解得t=.综上所述t=或或时,⊙O与四边形ABCE的一边(AE边除外)相切.。

相关文档
最新文档