初中数学试题分类测试及答案统计图表2019
2019年江西省中考数学试卷附分析答案

A.
B.
C.
D.
4.(3 分)根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可
知,下列说法错误的是( )
A.扇形统计图能反映各部分在总体中所占的百分比
B.每天阅读 30 分钟以上的居民家庭孩子超过 50%
C.每天阅读 1 小时以上的居民家庭孩子占 20%
D.每天阅读 30 分钟至 1 小时的居民家庭孩子对应扇形的圆心角是 108°
时,求∠ABC 的大小.
(参考数据:sin70°≈0.94,cos20°≈0.94,sin36.8°≈0.60,cos53.2°≈0.60)
第 5页(共 28页)
五、(本大题共 2 小题,每小题 9 分,共 18 分) 21.(9 分)数学活动课上,张老师引导同学进行如下探究:
如图 1,将长为 12cm 的铅笔 AB 斜靠在垂直于水平桌面 AE 的直尺 FO 的边沿上,一端 A 固定在桌面上,图 2 是示意图. 活动一 如图 3,将铅笔 AB 绕端点 A 顺时针旋转,AB 与 OF 交于点 D,当旋转至水平位置时, 铅笔 AB 的中点 C 与点 O 重合.
③抛物线 y1,y2,y3 与直线 y=1 的交点中,相邻两点之间的距离相等. 形成概念 (2)把满足 yn=﹣x2﹣nx+1(n 为正整数)的抛物线称为“系列平移抛物线”. 知识应用
2019年全国中考数学试题分类解析汇编(159套63专题)4

2019年全国中考数学试题分类解析汇编(159套63专题)专题5:分式一、选择题1. (2019安徽省4分)化简xxx x -+-112的结果是【 】 A.x +1 B. x -1 C.—x D. x 【答案】D 。
【考点】分式的加法运算【分析】分式的加减,首先看分母是否相同,同分母的分式加减,分母不变,分子相加减,如果分母不同,先通分,后加减,本题分母互为相反数,可以化成同分母的分式加减:222(1)111111x x x x x x x x x x x x x x x --+=-===------。
故选D 。
2. (2019浙江湖州3分)要使分式1x有意义,x 的取值范围满足【 】A .x=0B .x≠0 C.x >0 D .x <0 【答案】B 。
【考点】分式有意义的条件。
【分析】根据分式分母不为0的条件,要使1x 在实数范围内有意义,必须x≠0。
故选B 。
3.(2019浙江嘉兴、舟山4分)若分式x 1x+2-的值为0,则【 】A . x=﹣2B . x=0C . x=1或2D .x=1 【答案】D 。
【考点】分式的值为零的条件。
【分析】∵分式x 1x+2-的值为0,∴x 1=0x+2x+20-⎧⎪⎨⎪≠⎩,解得x=1。
故选D 。
4. (2019浙江绍兴4分)化简111x x --可得【 】 A .21x x - B . 21x x -- C .221x x x+- D .221x x x--【答案】B 。
【考点】分式的加减法。
【分析】原式=211(1)x x x x x x--=---。
故选B 。
5. (2019浙江义乌3分)下列计算错误的是【 】A .0.2a b 2a b 0.7a b 7a b ++=--B .3223x y x y x y= C .a b 1b a -=-- D .123c c c +=【答案】A 。
【考点】分式的混合运算。
【分析】根据分式的运算法则逐一作出判断:A 、0.2a b 2a 10b0.7a b 7a 10b ++=--,故本选项错误; B 、3223x y xyx y =,故本选项正确; C 、a b b a1b a b a --=-=---,故本选项正确; D 、123c c c+=,故本选项正确。
2019届浙教版七年级下第6章《数据与统计图表》单元培优试题有答案-(数学)(已纠错)

浙教版七下数学第6章《数据与统计图表》单元培优测试题班级_________ 姓名_____________ 得分_____________注意事项:本卷共有三大题23小题,满分120分,考试时间120分钟.一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1﹒下列说法中,不正确的是()A﹒了解某市中小学生每天睡眠情况,适合采用抽样调查B﹒了解某班学生的兴趣爱好,适合采用普查C﹒检查乘坐高铁旅客的行李,适合采用普查D﹒检查新研发的新型战斗机的零部件,适合采用抽样调查2﹒某课外兴趣小组为了解所在地区老年人的身体健康状况,分别作出了四种不同的抽样调查,你认为抽样比较合理的是()A﹒在公园选择1000名老年人了解身体健康状况B﹒随意调查10名老年人的健康状况C﹒利用所辖派出所的户籍网随机调查10%老年人的健康状况D﹒在各医院、卫生院调查100名老年人的健康状况3﹒某中学为了解七年级800名学生的视力情况,从中抽查了100名学生的视力情况,对于这个问题,下列说法中正确的是()A﹒该校七年级800名学生的全体是总体B﹒每个学生是个体C﹒100名学生的视力情况是所抽取样本的容量D﹒100名学生的视力情况是所抽取的一个样本4﹒为调查某校1500名学生对新闻、体育、动画、娱乐和戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图﹒根据统计图提供的信息,可估算出该校喜欢体育节目的学生共有()A﹒300名B﹒400名C﹒450名D﹒1200名第4题图第6题图第8题图5﹒某地三月中旬每天平均空气质量指数(AQI)分别为:118,96,60,82,56,86,112,108,94,为了描述这十天空气质量的变化情况,最适合用的统计图是()A﹒条形统计图B﹒折线统计图C﹒扇形统计图D﹒频数分布直方图6﹒如图,所提供的信息正确的是()A﹒七年级学生人数最多B﹒九年级的男生是女生的2倍C﹒九年级女生比男生多D﹒八年级比九年级的学生多7﹒一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、4,则第5组的频率是()A﹒0.1 B﹒0.2 C﹒0.3 D﹒0.48﹒为了解七年级学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图.由图可知,一周参加体育锻炼8小时的人数比锻炼10小时的人数少()A﹒20% B﹒40%C﹒60% D﹒80%9﹒如图是七(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A﹒2~4小时B﹒4~6小时C﹒6~8小时D﹒8~10小时10.小明统计了他家今年4月份打电话的次数及通话时间,并列出了如下频数分布表:A﹒0.1 B﹒0.4 C﹒0.5 D﹒0.9 二、填空题(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.某自然保护区的工作人员为估算该自然保护区栖息的某种鸟类的数量,他们随机捕捉了500只这种鸟,先将每只鸟做好标记,然后将其全部放回,经过一段时间之后,他们又从该保护区随机捕捉该种鸟300只,发现其中有20只是之前做的标记,则该保护区有这种鸟类大约________只﹒12.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是7,频率是0.2,那么该班级的人数是________人﹒13.一个样本含有下面10个数据:52,51,49,50,47,48,50,51,48,53,如果将这组数据的组距定为1.5,则应分成________组﹒14.在某次公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的条形统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为__________人﹒第14题图第15题图第16题图15.某校对学生上学方式进行了一次抽样调查,并根据调查结果绘制了一个不完整的扇形统计图,其中“其他”部分所对应的圆心角为36°,则“步行”部分所占百分比是_____﹒16.如图是某地一周五天中的日平均气温统计图,观察统计图得到下列4条信息:①这五天中周二平均气温最高;②这五天中周三平均气温最低;③从周二到周三平均气温变化最大;④这五天中有两天平均气温相同;⑤周二比周一平均气温升高了20%﹒其中信息准确的有____________________﹒(只填写准确信息的序号)三、解答题(本题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤.17.(6分)某中学开展“阳光体育一小时”活动.根据学校场地情况,决定开设四种运动项目:乒乓球;足球;篮球;跳绳.为了解学生最喜欢哪一种运动项目,随机抽取了n名学生进行问卷调查,每位学生在问卷调查时都按要求只选择了其中一种喜欢的运动项目.收回全部问卷后,将收集到的数据整理并绘制成如下不完整的统计图,若参与调查的学生中喜欢乒乓球项目的学生人数占参与调查学生人数的40%.根据统计图提供的信息,解答下列问题:(1)求n的值;(2)求参与调查的学生中喜欢篮球的学生人数,并补全条形统计图;(3)根据统计结果,估计该校1800名学生中喜欢篮球项目的学生比喜欢足球项目的学生多的人数.18.(8分)某校课外兴趣小组在本校学生中开展“感动中国2019-2020学年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A,B,C,D四类,其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:((2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;(3)若该校有2000名学生,根据调查结果估计该校学生中类别为D的人数约为多少?19.(8分)诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩绘制了如下不完整的频数表(每一组含前一个边界值,不含后一个边界值).(1)求统计表中a,b的值;(2)数据分组时,组距是多少?并根据上述信息绘制频数直方图;(3)若参加本次大赛的同学共有4000人,请你估计成绩在90分及以上的学生大约有多少人?20.(10分)为了解某市12000名初中学生的视力情况,某校数学兴趣小组从该市七、八、九年级各随机抽取了100名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.(1)由统计图可以看出年级越高视力不良率越________(填“高”或“低”);(2)抽取的八年级学生中,视力不良的学生有多少名;(3)请你根据抽样调查的结果,估计该市12000名初中学生中视力不良的人数是多少?21.(10分)某中学七年级学生共450人,其中男生250人,女生200人.该校对七年级所有学生进行了一次体育测试,并随机抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的条形统计图:((2)请绘制扇形统计图来反映这次体育测试各等级成绩所占百分比情况;(3)估计该校七年级学生体育测试成绩不及格的人数.22.(12分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分学生成绩(满分为100分)进行统计,绘制如下不完整的频数直方图,若将频数直方图划分的五组从左至右依次记为A、B、C、D、E,绘制如下扇形统计图,请你根据图形提供的信息,解答下列问题:(1)若A组的频数比B组小24,求频数分布直方图中的a、b的值;(2)扇形统计图中,D部分所对的圆心角为多少度,并补全频数直方图;(3)E组的两个边界值是多少?该组的频数、频率分别是多少?(4)若成绩在80分以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少名?23.(12分)已知一水果个体户在批发市场按每千克1.8元批发了若干千克的西瓜在城镇出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降价出售.若根据他售出西瓜千克数x和他手中持有的钱数y元(含备用零钱)绘制如下折线统计图,请你根据统计图提供的信息,解答下列问题:(1)该水果个体户自带的备用零钱是多少元?(2)降价前他每千克西瓜出售的价格是多少?(3)随后他按每千克下降0.5元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450元,问他一共批发了多少千克的西瓜?(4)请问这位水果个体户一共赚了多少钱?浙教版七下数学第6章《数据与统计图表》单元培优测试题参考答案Ⅰ﹒答案部分:一、选择题11﹒7500﹒12﹒35﹒13﹒5﹒14﹒35﹒15﹒40%﹒16﹒①②③﹒三、解答题17.解:(1)n=80÷40%=200(人);(2)200-80-30-50=40(人);答:喜欢篮球的学生人数为40人,补全条形统计图如下:×1800=90(人),(3)4030200答:该校1800名学生中喜欢篮球项目的学生比喜欢足球项目的学生多90人.=100(名),18.解:(1)问卷调查的总人数是:400.4a=30=0.3,b=100×0.06=6(名),100故a ,b 的值分别为0.3,6;(2)类别为B 的学生数所对应的扇形圆心角的度数为:360°×0.4=144°; (3)根据题意得:2000×0.06=120(名). 答:该校学生中类别为D 的人数约为120名.19.解:(1)由频数表可知:本次随机抽取的学生数为40÷0.08=500(人), ∴a =500×0.4=200,b =90500=0.18, 故a ,b 的值为200,0.18;(2)组距为10,绘制频数直方图如下:(3)∵4000×0.20=800(人),∴估计成绩在90分及以上的学生大约有800人.20.解:(1)由折线统计图可知,年级越高视力不良率越高, 故答案为:高;(2)∵100×63%=63,∴抽取的八年级学生中,视力不良的学生有63名; (3)12000×10049%10063%10068%100100100⨯+⨯+⨯++=7200(名),答:估计视力不良的学生共有7200名. 21.解:(1)合理,理由如下:∵抽取的男生所占百分比为50250=20%,抽取的女生所占百分比为40200=20%,∴抽取的男生所占百分比=抽取的女生所占百分比,∴随机抽取了50名男生和40名女生是合理的;(2)绘制的扇形统计图如下:(3)该校七年级学生体育测试成绩不及格的人数为:450×10%=45人,答:估计该校七年级学生体育测试成绩不合格的人数为45人.22.解:(1)学生总数是24÷(20%-8%)=200(人),则a=200×8%=16,b=200×20%=40;(2)n°=360°×70200=126°.即D部分所对的圆心角为126°,C组的人数是:200×25%=50.补全频数直方图如下:;(3)E组的两个边界值分别是90.5,100.5,该组的频数为200-16-40-50-70=24(人),频率为24200=0.12;(4)∵D、E两组的百分比的和为1-25%-20%-8%=47%,∴2000×47%=940(名)答估计成绩优秀的学生有940名.23.解:(1)由折线统计图可知:该水果个体户自带的备用零钱为50元,答:该水果个体户自带的备用零钱为50元;(2)(330-50)÷80=280÷80=3.5元.答:降价前他每千克西瓜售出的价格是3.5元;(3)(450-330)÷(3.5-0.5)=120÷3=40(千克),则80+40=120千克,答:他一共批发了120千克的西瓜;(4)450-120×1.8-50=184元.答:这个水果贩子一共赚了184元钱.Ⅱ﹒解答部分:一、选择题1﹒下列说法中,不正确的是()A﹒了解某市中小学生每天睡眠情况,适合采用抽样调查B﹒了解某班学生的兴趣爱好,适合采用普查C﹒检查乘坐高铁旅客的行李,适合采用普查D﹒检查新研发的新型战斗机的零部件,适合采用抽样调查【解答】A﹒了解某市中小学生每天睡眠情况,适合采用抽样调查,故此项正确;B﹒了解某班学生的兴趣爱好,适合采用普查,故此项正确;C﹒检查乘坐高铁旅客的行李,适合采用普查,故此项正确;D﹒检查新研发的新型战斗机的零部件,适合采用普查,故此项不正确;故选:D﹒2﹒某课外兴趣小组为了解所在地区老年人的身体健康状况,分别作出了四种不同的抽样调查,你认为抽样比较合理的是()A﹒在公园选择1000名老年人了解身体健康状况B﹒随意调查10名老年人的健康状况C﹒利用所辖派出所的户籍网随机调查10%老年人的健康状况D﹒在各医院、卫生院调查100名老年人的健康状况【解答】A﹒调查不具代表性,故此项错误;B﹒调查不具广泛性,故此项错误;C﹒调查具有广泛性、代表性,故此项正确;D﹒调查不具代表性,故此项错误,故选:C.3﹒某中学为了解七年级800名学生的视力情况,从中抽查了100名学生的视力情况,对于这个问题,下列说法中正确的是()A﹒该校七年级800名学生的全体是总体B﹒每个学生是个体C﹒100名学生的视力情况是所抽取样本的容量D﹒100名学生的视力情况是所抽取的一个样本【解答】A﹒该校八年级800名学生的视力情况的全体是总体,故此项错误;B﹒每个学生的视力情况是个体,故此项错误;C﹒样本的容量是100,故此项错误;D﹒100名学生的视力情况是所抽取的一个样本,故此项正确,故选:D﹒4﹒为调查某校1500名学生对新闻、体育、动画、娱乐和戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图﹒根据统计图提供的信息,可估算出该校喜欢体育节目的学生共有()A﹒300名B﹒400名C﹒450名D﹒1200名第4题图第6题图第8题图【解答】1500×(1-10%-30%-35%-5%)=300(名),故选:A﹒5﹒如图,所提供的信息正确的是()A﹒七年级学生人数最多B﹒九年级的男生是女生的2倍C﹒九年级女生比男生多D﹒八年级比九年级的学生多【解答】根据图中数据计算:七年级人数是8+13=21;八年级人数是14+16=30;九年级人数是10+20=30,所以A和D错误;根据统计图的高低,显然C错误;B中,九年级的男生20人是女生10人的两倍,故正确.故选:B.6﹒某地三月中旬每天平均空气质量指数(AQI)分别为:118,96,60,82,56,86,112,108,94,为了描述这十天空气质量的变化情况,最适合用的统计图是()A﹒条形统计图B﹒折线统计图C﹒扇形统计图D﹒频数分布直方图【解答】因为要反映这十天空气质量的变化情况,所以选择折线统计图最合适,故选:B﹒7﹒一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、4,则第5组的频率是()A﹒0.1 B﹒0.2 C﹒0.3 D﹒0.4【解答】根据题意得:40-(12+10+6+4)=40-32=8,则第5组的频率为8÷40=0.2.故选:B.8﹒为了解七年级学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图.由图可知,一周参加体育锻炼8小时的人数比锻炼10小时的人数少()A ﹒20%B ﹒40%C ﹒60%D ﹒80% 【解答】由图可知:锻炼8小时的人数为8人,锻炼10小时的人数10人, ∴10810-=20%, 故选:A ﹒9﹒如图是七(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是( ) A ﹒2~4小时 B ﹒4~6小时 C ﹒6~8小时 D ﹒8~10小时 【解答】解:由条形统计图可得, 4~6小时这组的频数为22, 所以4~6小时这组的人数最多, 故选:B .10.小明统计了他家今年4月份打电话的次数及通话时间,并列出了如下频数分布表:A ﹒0.1B ﹒0.4C ﹒0.5D ﹒0.9 【解答】由频数分布表可得,通话时间不超过15分钟的频率是20169201695+++++=0.9,故选:D ﹒ 二、填空题11.某自然保护区的工作人员为估算该自然保护区栖息的某种鸟类的数量,他们随机捕捉了500只这种鸟,先将每只鸟做好标记,然后将其全部放回,经过一段时间之后,他们又从该保护区随机捕捉该种鸟300只,发现其中有20只是之前做的标记,则该保护区有这种鸟类大约________只﹒=7500(只),【解答】500÷20300故答案为:7500﹒12.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是7,频率是0.2,那么该班级的人数是________人﹒【解答】∵80.5~90.5分这一组的频数是7,频率是0.2,∴该班级的人数是7÷0.2=35,故答案为:35﹒13.一个样本含有下面10个数据:52,51,49,50,47,48,50,51,48,53,如果将这组数据的组距定为1.5,则应分成________组﹒【解答】分析数据得:这组数据的最大值为53,最小值为47,则它们的差为53-47=6,∵组距定为1.5,∴6=4,但由于要包含两个端点,故可分为5组,1.6故答案为:5﹒14.在某次公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的条形统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为__________人﹒第14题图第15题图第16题图【解答】由题意,知:本年级捐款的同学一共有20÷25%=80(人), 则本次捐款20元的有80-20-10-15=35(人), 故答案为:35﹒15.某校对学生上学方式进行了一次抽样调查,并根据调查结果绘制了一个不完整的扇形统计图,其中“其他”部分所对应的圆心角为36°,则“步行”部分所占百分比是_____﹒【解答】∵“其他”部分所对应的圆心角为36°, ∴“其他”部分所占百分比为36360︒︒=10%, ∴“步行”部分所占百分比是1-15%-35%-10%=40%, 故答案为:40%﹒16.如图是某地一周五天中的日平均气温统计图,观察统计图得到下列4条信息:①这五天中周二平均气温最高;②这五天中周三平均气温最低;③从周二到周三平均气温变化最大;④这五天中有两天平均气温相同;⑤周二比周一平均气温升高了20%﹒其中信息准确的有____________________﹒(只填写准确信息的序号)【解答】由折线统计图可得:这五天中周二平均气温最高,故①正确;这五天中周三平均气温最低,故②正确;从周二到周三平均气温变化最大,故③正确;这五天中有三天平均气温相同,故④错误;周二比周一平均气温升高了222020-=10%,故⑤错误, 故答案为:①②③﹒ 三、解答题17.某中学开展“阳光体育一小时”活动.根据学校场地情况,决定开设四种运动项目:乒乓球;足球;篮球;跳绳.为了解学生最喜欢哪一种运动项目,随机抽取了n 名学生进行问卷调查,每位学生在问卷调查时都按要求只选择了其中一种喜欢的运动项目.收回全部问卷后,将收集到的数据整理并绘制成如下不完整的统计图,若参与调查的学生中喜欢乒乓球项目的学生人数占参与调查学生人数的40%.根据统计图提供的信息,解答下列问题:(1)求n的值;(2)求参与调查的学生中喜欢篮球的学生人数,并补全条形统计图;(3)根据统计结果,估计该校1800名学生中喜欢篮球项目的学生比喜欢足球项目的学生多的人数.【解答】解:(1)n=80÷40%=200(人);(2)200-80-30-50=40(人);答:喜欢篮球的学生人数为40人,补全条形统计图如下:×1800=90(人),(3)4030200答:该校1800名学生中喜欢篮球项目的学生比喜欢足球项目的学生多90人.18.某校课外兴趣小组在本校学生中开展“感动中国2019-2020学年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A,B,C,D四类,其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:(1(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;(3)若该校有2000名学生,根据调查结果估计该校学生中类别为D的人数约为多少?【解答】解:(1)问卷调查的总人数是:40=100(名),0.4a=30=0.3,b=100×0.06=6(名),100故a,b的值分别为0.3,6;(2)类别为B的学生数所对应的扇形圆心角的度数为:360°×0.4=144°;(3)根据题意得:2000×0.06=120(名).答:该校学生中类别为D的人数约为120名.19.诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩绘制了如下不完整的频数表(每一组含前一个边界值,不含后一个边界值).(1)求统计表中a,b的值;(2)数据分组时,组距是多少?并根据上述信息绘制频数直方图;(3)若参加本次大赛的同学共有4000人,请你估计成绩在90分及以上的学生大约有多少人?【解答】解:(1)由频数表可知:本次随机抽取的学生数为40÷0.08=500(人),=0.18,∴a=500×0.4=200,b=90500故a,b的值为200,0.18;(2)组距为10,绘制频数直方图如下:(3)∵4000×0.20=800(人),∴估计成绩在90分及以上的学生大约有800人.20.为了解某市12000名初中学生的视力情况,某校数学兴趣小组从该市七、八、九年级各随机抽取了100名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.(1)由统计图可以看出年级越高视力不良率越________(填“高”或“低”);(2)抽取的八年级学生中,视力不良的学生有多少名;(3)请你根据抽样调查的结果,估计该市12000名初中学生中视力不良的人数是多少?【解答】解:(1)由折线统计图可知,年级越高视力不良率越高, 故答案为:高;(2)∵100×63%=63,∴抽取的八年级学生中,视力不良的学生有63名; (3)12000×10049%10063%10068%100100100⨯+⨯+⨯++=7200(名),答:估计视力不良的学生共有7200名.21.某中学七年级学生共450人,其中男生250人,女生200人.该校对七年级所有学生进行了一次体育测试,并随机抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的条形统计图:(1(2)请绘制扇形统计图来反映这次体育测试各等级成绩所占百分比情况;(3)估计该校七年级学生体育测试成绩不及格的人数.【解答】解:(1)合理,理由如下:∵抽取的男生所占百分比为50250=20%,抽取的女生所占百分比为40200=20%,∴抽取的男生所占百分比=抽取的女生所占百分比,∴随机抽取了50名男生和40名女生是合理的;(2)绘制的扇形统计图如下:(3)该校七年级学生体育测试成绩不及格的人数为:450×10%=45人,答:估计该校九年级学生体育测试成绩不合格的人数为45人.22.为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分学生成绩(满分为100分)进行统计,绘制如下不完整的频数直方图,若将频数直方图划分的五组从左至右依次记为A、B、C、D、E,绘制如下扇形统计图,请你根据图形提供的信息,解答下列问题:(1)若A组的频数比B组小24,求频数分布直方图中的a、b的值;(2)扇形统计图中,D部分所对的圆心角为多少度,并补全频数直方图;(3)E组的两个边界值是多少?该组的频数、频率分别是多少?(4)若成绩在80分以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少名?【解答】解:(1)学生总数是24÷(20%-8%)=200(人),则a=200×8%=16,b=200×20%=40;(2)n°=360°×70=126°.200即D部分所对的圆心角为126°,C组的人数是:200×25%=50.补全频数直方图如下:;(3)E组的两个边界值分别是90.5,100.5,=0.12;该组的频数为200-16-40-50-70=24(人),频率为24200(4)∵D、E两组的百分比的和为1-25%-20%-8%=47%,∴2000×47%=940(名)答估计成绩优秀的学生有940名.23.已知一水果个体户在批发市场按每千克1.8元批发了若干千克的西瓜在城镇出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降价出售.若根据他售出西瓜千克数x和他手中持有的钱数y元(含备用零钱)绘制如下折线统计图,请你根据统计图提供的信息,解答下列问题:(1)该水果个体户自带的备用零钱是多少元?(2)降价前他每千克西瓜出售的价格是多少?(3)随后他按每千克下降0.5元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450元,问他一共批发了多少千克的西瓜?(4)请问这位水果个体户一共赚了多少钱?【解答】解:(1)由折线统计图可知:该水果个体户自带的备用零钱为50元,答:该水果个体户自带的备用零钱为50元;(2)(330-50)÷80=280÷80=3.5元.答:降价前他每千克西瓜售出的价格是3.5元;(3)(450-330)÷(3.5-0.5)=120÷3=40(千克),则80+40=120千克,答:他一共批发了120千克的西瓜;(4)450-120×1.8-50=184元.答:这个水果贩子一共赚了184元钱.。
2019宁波市中考数学试卷(word+详解+准图)

宁波市二〇一九年初中学业水平考试考试时间:120分钟满分:150分一、选择题:本大题共12小题,每小题4分,共48分.1.(2019年宁波)-2的绝对值为( )A.-12B.2 C.12D.-2{答案}B{解析}本题考查了绝对值的定义,一个数的绝对值等于这个数在数轴上所表示的点到原点的距离,因为-2在数轴上所表示的点到原点的距离是2,因此本题选B.2.(2019年宁波)下列计算正确的是( )A.a3+a2=a5B.a3·a2=a6C.(a2)3=a5D.a6÷a2=a4{答案}D{解析}本题考查了合并同类项和幂的运算,熟记合并同类项的法则与幂的运算性质是解决该类问题的关键.a3和a2不是同类项,故不能合并,选项A错误;同底数幂相乘,底数不变,指数相加,a3·a2=a5,选项B错误;幂的乘方,底数不变,指数相乘,(a2)3=a6,选项C错误;同底数幂相除,底数不变,指数相减,a6÷a2=a4,选项D正确.3.(2019年宁波)宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1526000000元人民币.数1526000000用科学记数法表示为( )A.1.526×108B.15.26×108C.1.526×109D.1.526×1010{答案}C{解析}本题考查了科学记数法,1526000000=1.526×109,因此本题选C.4.(2019年宁波)若分式12x-有意义,则x的取值范围是( )A.x﹥2 B.x≠2 C.x≠0 D.x≠-2{答案}B{解析}本题考查了分式有意义的条件,根据分式的分母不能为零,得到x-2≠0,所以x≠2,因此本题选B.5.(2019年宁波)如图,下列关于物体的主视图画法正确的是( )A.B.C.D.{答案}C{解析}本题考查了几何体的三视图,主视图是指从几何体的正面看到的平面图,该几何体从正面看,只有选项C正确,因此本题选C.6.(2019年宁波)不等式32x-﹥x的解为( )A.x﹤1 B.x﹤-1 C.x﹥1 D.x﹥-1{答案}A{解析}本题考查了解一元一次不等式.根据不等式的解法,不等式的两边同乘以2,得3-x>2x,再移项,合并同类项,得-3x>-3,解得x<1,因此本题选A.7.(2019年宁波)能说明命题“关于x的方程x2-4x+m =0一定有实数根”是假命题的反例为( ) A.m =-1 B.m =0 C.m =4 D.m =5{答案}D{解析}本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果……那么……”的形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.说明命题“关于x的方程x2-4x+m =0一定有实数根”是假命题,只要满足△=16-4m<0的解即可,即m>4的值,因此本题选D.8.(2019年宁波)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是( )A.甲B.乙C.丙D.丁{答案}B{解析}本题考查平均数和方差.比较四个品种的平均数可得,甲品种和乙品种的产量更好,而甲的方差>乙的方差,所以乙品种的产量更稳定些,因此本题选B.9.(2019年宁波)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为( )A.60°B.65°C.70°D.75°n{答案}C{解析}本题考查了平行线的性质和三角形的外角的性质.如图,∵△ABC 是含45°的等腰直角三角形,∴∠B =45°,∴∠3=∠B +∠1=45°+25°=70°,∵m ∥n ,∴∠2=∠3=70°,因此本题选C .10.(2019年宁波)如图所示,矩形纸片ABCD 中,AD =6cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为( ) A .3.5cmB .4cmC .4.5cmD .5cm{答案}B{解析}本题考查了圆锥的性质.根据题意,当裁出的扇形和圆恰好能作为一个圆锥的侧面和底面时,扇形的弧长等于圆周长.欲从矩形CDEF 中裁出最大的圆,矩形的两条边CD 、EF 恰好与圆相切,即DE 长是圆的直径,不妨设AB =x ,则扇形弧长为90180x p 白°,圆的周长为()6x p -,得90180xp 白°=()6x p -,所以x =4,因此本题选B .11.(2019年宁波)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( ) A .31元B .30元C .25元D .19元{答案}A{解析}本题考查了代数式的概念,二元一次方程的性质以及整体思想.不妨设每支玫瑰x 元,每支百合y 元,根据题意可列出方程:5x +3y +10=3x +5y -4,得x -y =-7,若小慧只买8支玫瑰,n (第9题解)则她剩下的钱可以用代数式表示为(5x+3y+10)-8x,即-3(x-y)+10,将“x-y=-7”整体代入可得解是31,因此本题选A.12.(2019年宁波)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出( )A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和图1 图2(第12题图){答案}C{解析}本题考查了图形的面积计算和勾股定理的应用.不妨设图中所给直角三角形的较长直角边为a,较短直角边为b,斜边为c,则a2+b2=c2.将图中阴影部分分离出来,其每条边长如图所示,利用图形面积的和差关系可知阴影部分面积可以表示为c(c-b)-a(a-b),又因为a2+b2=c2,即阴影部分可表示为b(a+b-c).直角三角形的面积是12ab,选项A错误;最大正方形的面积为c2,选项B错误;最大正方形和直角三角形的面积和是c2+12ab,选项D错误;用排除法易得选项C正确.事实上,较小两个正方形重叠部分是以b为长,(a+b-c)为宽的矩形,所以面积是b(a+b-c),选项C正确,因此本题选C.二、填空题:本大题共6小题,每小题4分,共24分.13.(2019年宁波)请写出一个小于4的无理数:.{答案}p(答案不唯一){解析}本题考查了实数的大小比较和无理数的概念.本题答案不唯一,p(第12题解)14.(2019年宁波)分解因式:x 2+xy = . {答案}x (x +y ){解析}本题考查了因式分解——提取公因式.原式= x (x +y ).15.(2019年宁波)袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为 . {答案}58{解析}本题考查概率的基本计算.用红球的个数除以球的总个数即为所求的概率.因为一共有8个球,其中5个红球,所以从袋中任意摸出1个球是红球的概率是58.16.(2019年宁波)如图,某海防哨所O 发现在它的西北方向,距离哨所400米的A 处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B 处,则此时这艘船与哨所的距离OB 约为 米.(精确到1≈1.4141.732)东A(第16题图){答案}566{解析}本题考查了解直角三角形,锐角三角函数等知识.如图,在Rt △ACO 中,∠ACO =90°,AO =400,∠AOC =45°,∴CO =AO ·cos45°=Rt △BCO 中,∠BCO =90°,∠COB =60°,∴OB = cos60CO°=.17.(2019年宁波)如图,Rt △ABC 中,∠C =90°,AC =12,点D 在边BC 上,CD =5,BD =13.点P 是线段AD 上一动点,当半径为6的⊙P 与△ABC 的一边相切时,AP 的长为 .(第16题解)东A{答案}132或{解析}本题考查了直线和圆的相切,相似三角形的判定和性质,勾股定理,分类讨论思想.在Rt△ACD 中,∠C=90°,AC=12,CD=5,由勾股定理得AD=13.如图,点P到AC的最远距离是5,又因为⊙P的半径为6,所以当点P在线段AD上运动时,⊙P不可能与AC相切,有可能与BC,AB相切.当⊙P与BC相切时,作PE⊥BC于点E(如图(1)所示),此时PE=6,∵∠PED=∠ACD=90°,∠PDE=∠ADC,∴△PDE∽△ADC,∴PDAD=PEAC,即13PD=612,得:PD=6.5,∴AP=AD-PD=6.5;当⊙P与AB相切时,作PF⊥AB于点F(如图(2)所示),DQ⊥AB于点Q,在Rt△ABC中,∠C=90°,AC=12,BC=18,由勾股定理得AB=AD=BD=13,DQ⊥AB,∴AQ=12AB =∴DQ=AFP=∠AQD=90°,∠P AF=∠DAQ,∴△APF∽△ADQ,∴APAD=PFDQ,即13AP,得:AP=AP的值为132或图(1) 图(2)(第17题解)18.(2019年宁波)如图,过原点的直线与反比例函数y =kx(k﹥0)的图象交于A,B两点,点A在第一象限.点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE的垂线,垂足为E,连结DE.若AC=3DC,△ADE的面积为8,则k的值为.{答案}6{解析}本题考查了反比例函数,相似三角形,角平分线等知识.如图,连结OE,作AM⊥x轴,AN⊥x轴,垂足分别为点M,N.∵过原点的直线与反比例函数y=kx(k﹥0)的图象交于A,B两点,∴AO=BO,又∵AE⊥BE,∴OE=AO,∴∠OAE=∠OEA,∵AE为∠BAC的平分线,∴∠OAE=∠DAE,∴∠OEA=∠DAE,∴OE∥AC,∴S△OAD=S△EAD=8,∵S四边形OADN=S△OAM+S四边形AMND=S△ODN+S△OAD,又∵点A、D均在反比例函数y=kx的图象上,∴S△OAM=S△ODN=2k,∴S四边形AMND =S△OAD=8.∵AM⊥x轴,AN⊥x轴,∴AM∥DN,∴△CDN∽△CAM,∴DNAM=CDCA=3CDCD=13,不妨设DN=a,AM=3a,∵点A、D均在反比例函数y=kx的图象上,∴OM=3ka,ON=ka,∴MN=OM-ON=23ka,∴S四边形AMND=12(AM+DN)·MN=43k=8,∴k=6.三、解答题:本大题有8小题,共78分.19.(2019年宁波)先化简,再求值:(x-2)(x+2)-x(x-1),其中x =3.{解析}本题考查了整式的乘法和代数式求值.首先计算多项式乘多项式,单项式乘多项式,再合并同类项,化简后再把x的值代入即可.{答案}解:原式=x2-4-x2+x=x-4当x=3时,原式=3-4=-1.20.(2019年宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6一个中心对称图形.)(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形(第20题图){解析}本题考查了轴对称图形和中心对称图形的作图,熟练掌握轴对称图形和中心对称图形定义是解题的关键.{答案}解:(1)画出下列其中一种即可.(2)画出下列其中一种即可.21.(2019年宁波)今年5月15日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相关知识的宣传教育活动.为了解这次宣传活动的效果,学校从全校1200名学生中随机抽取100名学生进行知识测试(测试满分100分,得分均为整数),并根据这100人的测试成绩,制作了如下统计图表.Array100名学生知识测试成绩的频数表(第21题图)由图表中给出的信息回答下列问题:(1)m=,并补全频数直方图;(2)小明在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由;(3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.{解析}本题考查了频数表,频数直方图,中位数,用样本估计总体.明确题意,找出所求问题需要的条件、利用数形结合思想解析问题.{答案}解:(1)20.补全频数直方图:(2)不一定是,理由:将100名学生知识测试成绩从小到大排列,第50名与第51名的成绩都在分数段80≤a<90中,但它们的平均数不一定是85分.(3)4015100+×1200=660(人).答:全校1200名学生中,成绩优秀的约有660人.22.(2019年宁波)如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.{解析}本题考查了二次函数的性质、待定系数法求解析式以及距离问题.在第(2)题的第②小题中先确定到y轴的距离等于2的x的值,再利用数形结合思想确定n的取值范围是解此题的关键.{答案}解:(1)把P(-2,3)代入y=x2+ax+3,得3=(-2)2-2a+3,解得a=2.∵y=x2+2x+3=(x+1)2+2,∴顶点坐标为(-1,2).(2)①把x=2代入y=x2+2x+3,求得y=11,∴当m=2时,n =11.②2≤n<11.23.(2019年宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H 在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD的中点,FH=2,求菱形ABCD的周长.{解析}本题考查了矩形、菱形的性质,全等三角形的判定和性质,平行四边形的判定和性质.根据矩形和菱形的相关性质得到判定三角形全等的条件,进而得出边相等.利用中点的定义进行边的等量转化,判定四边形ABGE是平行四边形,再利用矩形的对角线相等这一性质进行边的转化,求出菱形ABCD周长.{答案}解:(1)在矩形EFGH中,EH=FG,EH∥FG.∴∠GFH=∠EHF.∵∠BFG=180°-∠GFH,∠DHE=180°-∠EHF,∴∠BFG=∠DHE.在菱形ABCD中,AD∥BC,∴∠GBF=∠EDH.∴△BGF≌△DEH(AAS).∴BG=DE.(2)如图,连结EG.在菱形ABCD中,AD∥BC,且AD=BC.(第23题解)HF∵E 为AD 中点,∴AE =ED ,又∵BG =DE , ∴AE ∥BG ,且AE =BG . ∴四边形ABGE 为平行四边形. ∴AB =EG .在矩形EFGH 中,EG =FH =2,∴AB =2,∴菱形的周长为8.24.(2019年宁波)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7︰40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y (米)与时间x (分)的函数关系如图2所示.(1)求第一班车离入口处的路程y (米)与时间x (分)的函数表达式. (2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)(第24题图)本题考查了用待定系数法求一次函数解析式,一次函数的生活应用,一元一次不等式,主要考查学生能否把实际问题转化成数学问题.在第(1)小题中,根据(20,0),(38,2700)这两个特殊点,利用待定系数法可以求出y 关于x 的函数关系式.在第(2)小题中,已知函数值求自变量.第(3)小题中,利用一元一次不等式求出最早可以坐的班车,进而求出时差. {答案}解:(1)由题意得,可设函数表达式为:y =kx +b (k ≠0).把(20,0),(38,2700)代入y =kx +b ,得020270038k b k b ì=+ïí=+ïî,解得1503000k b ì=ïí=-ïî.图 2x y 2700150065382520小聪第一班车(分)(米)O图1∴第一班车离入口处的路程y(米)与时间x(分)的函数表达式为y=150x-3000(20≤x≤38).(注:x的取值范围可省略不写)(2)把y=1500代入,解得x=30,则30-20=10(分).∴第一班车到塔林所需时间10分钟.(3)设小聪坐上第n班车.30-25+10(n-1)≥40,解得n≥4.5,∴小聪最早坐上第5班车.等班车时间为5分钟,坐班车所需时间:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20-(8+5)=7(分).∴小聪坐班车去草甸比他游玩结束后立即步行到达草甸提早7分钟.25.(2019年宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.B图1 图2 图3(第25题图){解析}本题综合考查了直角三角形,等腰三角形,相似三角形的知识.根据邻余四边形的定义判定四边形ABEF是邻余四边形,利用直角三角形的两锐角互余画出图形,利用等腰三角形,相似三角形的判定和性质求出AB长.{答案}解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠F AB与∠EBA互余,∴四边形ABEF是邻余四边形.(2)如图所示(答案不唯一)B四边形ABEF即为所求.(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE.∵∠EDF=90°,M是EF中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴QBNC=BDCE=35.∵QB=3,∴NC=5,又∵AN=CN,∴AC=2CN=10,∴AB=AC=10.26.(2019年宁波)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB 的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.(2)当AF︰EF=3︰2,AC=6时,求AE的长.(3)设AFEF=x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.图1 图2(第26题图){解析}本题综合考查了圆,等腰三角形的判定、相似三角形的判定和性质.第(1)小题中利用同弧所对的圆周角相等,等角对等边推出两边相等.第(2)小题中利用等边△ABC的性质求出相关边长,再利用相似三角形对应边成比例求出EG长,然后由勾股定理求出AE.第(3)小题中通过构造直角三角形,有效利用tan∠DAE,找出y与x之间的函数关系;通过设参数a表示相关线段长,由面积关系找出等量关系,既而求出y值.{答案}解:(1)∵△ABC为等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D,∴BD=BE.(2)如图,过点A作AG⊥EC于点G,∵△ABC是等边三角形,AC=6,∴BG=12BC=12AC=3,∴在Rt△ABG中,AG=∵BF⊥EC,∴BF∥AG,∴AFEF=BGEB,∵AF︰EF=3︰2,∴BE=23BG=2,∴EG=BE+BG=3+2=5,∴在Rt△AEG中,AE(3)①如图,过点E作EH⊥AD于点H.∵∠EBD=∠ABC=60°,∴在Rt△BEH中,EHBE=sin60°=2,∴EH=2BE,BH=12BE,∵BGEB=AFEF=x,∴BG=xBE,∴AB=BC=2BG=2xBE,∴AH=AB+BH=2xBE+12BE=(2x+12)BE,∴在Rt△AHE中,tan∠EAD=EHAH=21(2)2x BE+∴y.(第26题第(2)题解)②如图,过点O 作OM ⊥EC 于点M ,设BE =a , ∵BG EB =AFEF=x ,∴CG =BG =xBE =ax , ∴EC =CG +BG +BE =a +2ax , ∴EM =12EC =12a +ax , ∴BM =EM -BE =ax -12a , ∵BF ∥AG ,∴△EBF ∽△EGA , ∴BF AG =BE EG =a a ax +=11x+. ∵AG,∴BF =11x+AG=1x +,∴△OFB 的面积=2BF BM ×=12(ax -12a ),∴△AEC 的面积=2EC AG ×=12(a +2ax ), ∵△AEC 的面积是△OFB 的面积的10倍, ∴12(a +2ax )=10×12×1x +(ax -12a ),∴ 2x 2-7x +6=0,解得x 1=2,x 2=32,∴ y.(第26题第(3)②题解)。
2019中考数学真题分类汇编解析版41 统计图表

一、选择题1. (2019四川巴中,7,4分)如图所示,是巴中某校对学生到校方式的情况统计图,若该校骑自行车到校的学生有200人,则步行到校的学生有( )A.120人B.160人C.125人D.180人第7题图【答案】B【解析】因为该校骑自行车到校的学生有200人,占比25%,所以可得全校总人数为200÷25%=800(人),步行人数占比20%,故人数为800×20%=160(人),故选B【知识点】扇形统计图,百分比二、解答题1.(2019浙江台州,21,10分)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将手机的数据制成如下统计图表.第21题图(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车"都不戴"安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车"都不戴"安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.【思路分析】(1)比较大小可得C 类最多,进而求出所占百分比;(2)根据样本百分比估计总体中"都不戴"的人数;(3)作出结论应该比较占比大小,不能单纯比较数量得到结论.【解题过程】(1)由表格数据可知,C 类偶尔戴的市民人数最多,占比为:5101000=51%. (2)177300000=531001000⨯(人),答:活动前全市骑电瓶车"都不戴"安全帽的总人数为53100人. (3)不合理.∵活动开始前后调查的总人数不同,要比较所占百分比大小才能得到正确结论.活动开展前,"都不戴"占比为177100%=17.7%1000⨯,活动开展后,"都不戴"占比为178100%=8.9%896+702+224178⨯+,∵17.7%>8.9%,所占百分比下降,"每次戴"的比例有6.8%大幅度上升到44.8%,说明活动有效果. 【知识点】统计图,统计表,百分比及应用,样本估计总体2.(2019浙江衢州,20,8分)某校为积极响应“南孔圣地,衢州有札”城市品牌建设,在每周五下午第三节课开展了丰富多彩的走班选课活动,其中综合实践类共开设了“礼行”“礼知”“礼思”“礼艺”“礼源”等五门课程,要求全校学生必须参与其中一门课程。
第6章数据与统计图表(原卷版)—七年级下期末复习专用

第6章数据与统计图表章末强化巩固测试卷班级___________ 姓名___________ 学号____________ 分数____________注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
答卷前,考生务必将自己的班级、姓名、学号填写在试卷上。
2.回答第I卷时,选出每小题答案后,将答案填在选择题上方的答题表中。
3.回答第II卷时,将答案直接写在试卷上。
第Ⅰ卷(选择题共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(2019鄞州期末)下列调查中,适合采用全面调查方式的是()A.对剡溪水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班50名同学体重情况的调查D.对某品牌日光灯质量情况的调查2.(2019三东威海)为配合全科大阅读活动,学校团委对全校学生阅读兴趣调查的数据进行整理.欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是()A.条形统计图B.频数直方图C.折线统计图D.扇形统计图3.(2019琼中县期末)如图是某组15名学生数学测试成绩统计图,则成绩高于或等于60分的人数是()A.4人B.8人C.10人D.12人4.(2019长沙期末)统计得到的一组数据有80个,其中最大值为139,最小值为48,取组距为10,则可分成()A.10组B.9组C.8组D.7组5.(2019浙江期末)为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加书法兴趣小组的频率是()A.0.1 B.0.15 C.0.2 D.0.312641082人数组别其他舞蹈绘画书法111298O6.(2019杭州西湖月考)如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息,以下判断错误的是()A.男女生5月份的平均成绩一样B.4月到6月,女生平均成绩一直在进步C.4月到5月,女生平均成绩的增长率约为8.5%D.5月到6月女生平均成绩比4月到5月的平均成绩增长快7.(2019长春期末)某青年足球队的14名队员的年龄如表:年龄(单位:岁)19 20 21 22人数(单位:人) 3 7 2 2则出现频数最多的是()A.19岁B.20岁C.21岁D.22岁8.(2019海南琼海质量检测)为了了解某校九年级学生的体能情况,随机抽查了该校九年级若干名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的直方图,请根据图示计算,仰卧起坐次数在25~30次的学生人数占被调查学生人数的百分比为()A.40% B.30% C.20% D.10%9.(2019杭州余杭区期末)对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:抽取件数(件)50 100 150 200 500 800 1000 合格频数42 88 141 176 445 724 901 若出售1500件衬衣,则其中的次品最接近()件.A.100 B.150 C.200 D.24010.(2019郑州期末)马老师带领的数学兴趣小组做“频率的稳定性”试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.掷一枚质地均匀的硬币,硬币落下后朝上的是正面B.一副去掉大小王的普通扑克牌(52张,四种花色)洗匀后,从中任抽一张牌,花色是梅花C.不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球D.在玩“石头、剪刀、布”的游戏中,小颖随机出的是“石头”第II卷(非选择题共70分)二、填空题(本大题共6小题,每小题3分,共18分)11.(2019浙江期末)为了了解我县6999名九年级学生的视力情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.①收集数据;②设计调查问卷;③用样本估计总体;④分析数据;⑤整理数据.则正确的排序为.(填序号)12.(2019泉州期末)在一篇文章中,“的”、“地”、“和”三个字共出现50次,已知“的”和“地”出现的频率之和是0.7,那么“和”字出现的频数是.13.(2018鄞州期末)某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是.14.(2019浙江期末)某学校在“你最喜欢的球类运动”调查中.随机调查了若干名学生(每名学生只能选取一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人.则该校被调査的学生总人数为人.15.(2019漳州期末)对某中学同年级70名男生的身高进行了测量,得到一组数据,其中最大值是183cm,最小值是146cm,对这组数据进行整理时,确定它的组距为5cm,则至少应分组.16.随着综艺节目《奔跑吧兄弟》的热播,问卷调查公司为了解节目在中学生中受欢迎的程度,走进校园随机抽取部分学生“你是否喜欢看《奔跑吧兄弟》”进行问卷调查,并将调查结果统计后绘制成如下不完整的统计表:非常喜欢喜欢一般不知道频数200 30 10频率 a b 0.025则a b.三、解答题(共52分,第17–18各6分,19–23各8分.解答应写出文字说明、证明过程或演算步骤)17.(2019浙江期末)下列调查运用哪种调查方式合适?(1)调查淮河流域的水污染情况;(2)调查一个村庄所有家庭的年收入情况;(3)调查某电视剧的收视率;(4)调查某一地区市场上奶粉的质量状况;(5)调查初一(2)班学生课外时间上网的情况.18.(2018江苏淮安期末)小花最近买了三本课外书,分别是《汉语字典》用A表示,《流行杂志》用B表示和《故事大王》用C表示.班里的同学都很喜欢借阅,在五天内小花做了借书记录如下表:书名代号借阅频数星期一星期二星期三星期四星期五A 3 2 2 3 4B 4 3 3 2 3C 1 2 3 2 3(1)在表中填写五天内每本书的借阅频数.(2)计算五天内《汉语字典》的借阅频率.19.(2019余姚期末)为了解某校学生的身高情况,随机抽取该校男生、女生进行调查.已知抽取的样本中男生和女生的人数相同,利用所得数绘制如下统计图表:组别身高A155x<B155160x<x<C160165x<D165170xE170根据图表提供的信息,回答下列问题:(1)求样本中男生的人数;(2)求样本中女生身高在E组的人数;x<之间的学生总人数.(3)已知该校共有男生380人,女生320人,请估计全校身高在16017020.(2019郑州期末)为进一步推进青少年阳光工程,树立“每天锻炼一小时,快乐学习一整天”的指导思想,郑州市教育局部署了校园阳光大课间活动郑州市某中学体育组为了了解七年级学生的体能情况,组织七年级学生进行了1分钟跳绳测试,并将测试成绩(即1分钟跳绳的个数)分段后给出相应等级,具体为:测试成绩在60~90范围内的记为D级,90~120范围内的记为C级,120~150范围内的记为B级,150~180及以上范围内的记为A级,并绘出了测试成绩频数分布直方图及扇形统计图,其中在扇形统计图中A级对应的圆心角为54°,请根据图中的信息解答下列问题:(1)在扇形统计图中,A级所占百分比为%;(2)在扇形统计图中,求D级对应的圆心角的度数;(3)请结合统计图给出合理的运动建议.(至少写出两条)21.(2018慈溪期末)某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.组别正确字数x人数A0≤x<8 10B8≤x<16 15C16≤x<24 25D24≤x<32 mE32≤x<40 n根据以上信息完成下列问题:(1)统计表中的m=,n=,并补全条形统计图;(2)扇形统计图中“C组”所对应的圆心角的度数是;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.22.(2019浙江期末)某中学学生会对初三级部分学生最喜爱的球类运动作了调查,并将调查的结果绘制了如下的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中一共抽查了多少名学生?(2)“羽毛球”项目在扇形图中所占圆心角是多少度?(3)请你补全图2中的折线图.23.(2019浙江期末)701班数学课代表小张本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数、频率分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题:分组49.5~59.5 59.5~69.5 69.5~79.5 79.5~89.5 89.5~100.5 合计频数 2 a20 16 4 50频率0.04 0.16 0.40 0.32 b 1(1)频数、频率分布表中a=,b=;(2)补全频数分布直方图;(3)如果成绩不少于80分为优秀,则这次期末考试数学成绩的优秀率是多少?。
2019年全国中考数学真题分类 网格作图(精品文档)

2019年全国中考数学真题分类
网格作图
4 的正方形网格,每个小正方形的顶点称为格点,在图①19.(2019·吉林)图①,图②均为4
中已画出线段AB,在图②中已画出线段CD,其中A,B,C,D均为格点,按下列要求画图:
(1)在图①中,以AB为对角线画一个菱形AEBF,且E,F为格点;
(2)在图②中,以CD为对角线画一个对边不相等的四边形CGDH,且G,H为格点,∠CGD=∠CHD=90°
解:
【知识点】菱形,勾股定理
20.(2019·长春)图①、图②、图③处均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C、D、E、F均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.
(1)在图①中以线段AB为边画一个△ABM,使其面积为6.
(2)在图②中以线段CD为边画一个△CDN,使其面积为6.
(3)在图③中以线段EF为边画一个四边形EFGH,使其面积为9,且∠EFG=90°.
解:(1)如图所示:
(2)如图所示:
(3)如图所示:
【知识点】作图—应用与设计作图.。
2019、2020年浙江中考数学试题分类(8)——统计和概率

2019、2020年浙江中考数学试题分类(8)——统计和概率一.频数(率)分布直方图(共7小题)1.(2020•温州)某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生猪有头.2.(2019•温州)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人.3.(2020•宁波)某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等级:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等级?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?4.(2020•杭州)某工厂生产某种产品,3月份的产量为5000件,4月份的产量为10000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)求4月份生产的该产品抽样检测的合格率;(2)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?5.(2019•舟山)在“创全国文明城市”活动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);【信息二】图中,从左往右第四组的成绩如下75757979797980808182828383848484【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.17940%277B75.1777645%211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民中能超过平均数的有多少人?(3)请尽量从多个角度比较、分析A,B两小区居民掌握垃圾分类知识的情况.6.(2019•嘉兴)在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值):【信息二】上图中,从左往右第四组的成绩如下:75757979797980808182828383848484【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.17940%277B75.1777645%211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民成绩能超过平均数的人数.(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.7.(2019•宁波)今年5月15日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相关知识的宣传教育活动.为了解这次宣传活动的效果,学校从全校1200名学生中随机抽取100名学生进行知识测试(测试满分100分,得分均为整数),并根据这100人的测试成绩,制作了如下统计图表.100名学生知识测试成绩的频数表成绩a(分)频数(人)50≤a<601060≤a<701570≤a<80m80≤a<904090≤a≤10015由图表中给出的信息回答下列问题:(1)m=,并补全频数直方图;(2)小明在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由;(3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.二.扇形统计图(共5小题)8.(2019•温州)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人9.(2020•金华)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.10.(2020•绍兴)一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对4月份生产的羽毛球重量进行抽样检验,并将所得数据绘制成如图统计图表.4月份生产的羽毛球重量统计表组别重量x(克)数量(只)A x<5.0mB 5.0≤x<5.1400C 5.1≤x<5.2550D x≥5.230(1)求表中m的值及图中B组扇形的圆心角的度数.(2)问这些抽样检验的羽毛球中,合格率是多少?如果购得4月份生产的羽毛球10筒(每筒12只),估计所购得的羽毛球中,非合格品的羽毛球有多少只?11.(2020•衢州)某市在九年级“线上教学”结束后,为了解学生的视力情况,抽查了部分学生进行视力检测.根据检测结果,制成下面不完整的统计图表.被抽样的学生视力情况频数表组别视力段频数A 5.1≤x≤5.325B 4.8≤x≤5.0115C 4.4≤x≤4.7mD 4.0≤x≤4.352(1)求组别C的频数m的值.(2)求组别A的圆心角度数.(3)如果视力值4.8及以上属于“视力良好”,请估计该市25000名九年级学生达到“视力良好”的人数.根据上述图表信息,你对视力保护有什么建议?12.(2019•台州)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.三.条形统计图(共3小题)13.(2020•湖州)为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)(2)求扇形统计图中表示“满意”的扇形的圆心角度数;(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?14.(2020•嘉兴)小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.15.(2019•绍兴)小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.四.折线统计图(共4小题)16.(2019•舟山)2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%17.(2020•台州)甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为S甲2与S乙2,则S甲2S乙2.(填“>”、“=”、“<”中的一个)18.(2020•温州)A,B两家酒店规模相当,去年下半年的月盈利折线统计图如图所示.(1)要评价这两家酒店7~12月的月盈利的平均水平,你选择什么统计量?求出这个统计量.(2)已知A,B两家酒店7~12月的月盈利的方差分别为1.073(平方万元),0.54(平方万元).根据所给的方差和你在(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家酒店经营状况较好?请简述理由.19.(2019•杭州)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表12345序号数据甲组4852474954乙组﹣22﹣3﹣14(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x甲,x乙,写出x甲与x乙之间的等量关系.①甲,乙两组数据的方差分别为S甲2,S乙2,比较S甲2与S乙2的大小,并说明理由.五.算术平均数(共2小题)20.(2020•湖州)数据﹣1,0,3,4,4的平均数是()A.4B.3C.2.5D.221.(2020•杭州)在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x六.加权平均数(共1小题)22.(2019•湖州)学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是分.七.中位数(共1小题)23.(2020•衢州)某班五个兴趣小组的人数分别为4,4,5,x,6.已知这组数据的平均数是5,则这组数据的中位数是.八.众数(共2小题)24.(2020•温州)山茶花是温州市的市花、品种多样,“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录,统计如下表:株数(株)79122花径(cm) 6.5 6.6 6.7 6.8这批“金心大红”花径的众数为()A.6.5cm B.6.6cm C.6.7cm D.6.8cm25.(2019•湖州)我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.某校抽查的学生文章阅读的篇数统计表文章阅读的篇数(篇)34567及以上人数(人)2028m1612请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有800名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数.九.方差(共4小题) 26.(2020•嘉兴)已知样本数据2,3,5,3,7,下列说法不正确的是( ) A .平均数是4 B .众数是3 C .中位数是5 D .方差是3.2 27.(2019•台州)方差是刻画数据波动程度的量.对于一组数据x 1,x 2,x 3,…,x n ,可用如下算式计算方差:s 2=1x [(x 1﹣5)2+(x 2﹣5)2+(x 3﹣5)2+…+(x n ﹣5)2],其中“5”是这组数据的( ) A .最小值 B .平均数 C .中位数 D .众数 28.(2019•宁波)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x (单位:千克)及方差S 2(单位:千克2)如表所示:甲 乙 丙 丁x24242320S 22.1 1.9 2 1.9 今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是( ) A .甲 B .乙 C .丙 D .丁 29.(2020•宁波)今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x (单位:千克)及方差s 2(单位:千克2)如表所示:甲 乙 丙x 45 45 42 s 21.82.3 1.8 明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是 . 一十.标准差(共1小题) 30.(2019•杭州)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是( ) A .平均数 B .中位数 C .方差 D .标准差 一十一.统计量的选择(共1小题) 31.(2020•台州)在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分析得出这个结论所用的统计量是( ) A .中位数 B .众数 C .平均数 D .方差 一十二.概率公式(共9小题) 32.(2020•衢州)如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是( )A .13B .14C .16D .1833.(2020•金华)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A .12B .13C .23D .1634.(2020•绍兴)如图,小球从A 入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E 出口落出的概率是( )A .12B .13C .14D .1635.(2020•温州)一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,是红球的概率为( ) A .47B .37C .27D .1736.(2020•宁波)一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为( ) A .14B .13C .12D .2337.(2019•温州)在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A .16B .13C .12D .2338.(2019•湖州)已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是( ) A .110B .910C .15D .4539.(2019•衢州)在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同.从箱子里任意摸出1个球,摸到白球的概率是( ) A .1B .23C .13D .1240.(2019•金华)一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是白球的概率为( ) A .12B .310C .15D .710一十三.列表法与树状图法(共4小题) 41.(2020•湖州)在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ,两次摸球的所有可能的结果如表所示,则两次摸出的球都是红球的概率是.42.(2020•杭州)一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是.43.(2019•台州)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是.44.(2019•舟山)从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为.一十四.利用频率估计概率(共2小题)45.(2019•绍兴)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x<160160≤x<170170≤x<180x≥180人数5384215根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是()A.0.85B.0.57C.0.42D.0.1546.(2020•台州)新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).0.2~0.40.4~0.60.6~0.80.8~1参与度人数方式录播416128直播2101612(1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?2019、2020年浙江中考数学试题分类(8)——统计和概率参考答案与试题解析一.频数(率)分布直方图(共7小题)1.【解答】解:由直方图可得,质量在77.5kg及以上的生猪:90+30+20=140(头),故答案为:140.2.【解答】解:由直方图可得,成绩为“优良”(80分及以上)的学生有:60+30=90(人),故答案为:90.3.【解答】解:(1)30÷15%=200(人),200﹣30﹣80﹣40=50(人),直方图如图所示:(2)“良好”所对应的扇形圆心角的度数=360°×80200=144°.(3)这次测试成绩的中位数是80﹣90.这次测试成绩的中位数的等级是良好.(4)1500×40200=300(人),答:估计该校获得优秀的学生有300人.4.【解答】解:(1)(132+160+200)÷(8+132+160+200)×100%=98.4%,答:4月份生产的该产品抽样检测的合格率为98.4%;(2)估计4月份生产的产品中,不合格的件数多,理由:3月份生产的产品中,不合格的件数为5000×2%=100,4月份生产的产品中,不合格的件数为10000×(1﹣98.4%)=160,∵100<160,∴估计4月份生产的产品中,不合格的件数多.5.【解答】解:(1)因为有50名居民,所以中位数落在第四组,中位数为75,故答案为75;(2)500×2450=240(人),答:A小区500名居民成绩能超过平均数的人数240人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.6.【解答】解:(1)因为有50名居民,所以中位数落在第四组,中位数为75,故答案为75;(2)500×2450=240(人),答:A小区500名居民成绩能超过平均数的人数240人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.7.【解答】解:(1)m=100﹣(10+15+40+15)=20,补全图形如下:故答案为:20;(2)不一定是,理由:将100名学生知识测试成绩从小到大排列,第50、51名的成绩都在分数段80≤a<90中,但他们的中位数不一定是85分;(3)估计全校1200名学生中成绩优秀的人数为1200×40+15100=660(人).二.扇形统计图(共5小题)8.【解答】解:调查总人数:40÷20%=200(人),选择黄鱼的人数:200×40%=80(人),故选:D.9.【解答】解:(1)22÷11%=200(人),答:参与调查的学生总数为200人;(2)200×24%=48(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为200﹣59﹣31﹣48﹣22=40(人),8000×40200=1600(人),答:最喜爱“健身操”的学生数大约为1600人.10.【解答】解:(1)550÷55%=1000(只),1000﹣400﹣550﹣30=20(只)即:m=20,360°×4001000=144°,答:表中m的值为20,图中B组扇形的圆心角的度数为144°;(2)4001000+5501000=9501000=95%,12×10×(1﹣95%)=120×5%=6(只),答:这次抽样检验的合格率是95%,所购得的羽毛球中,非合格品的羽毛球有6只.11.【解答】解:(1)本次抽查的人数为:115÷23%=500,m=500×61.6%=308,即m的值是308;(2)组别A的圆心角度数是:360°×25500=18°,即组别A的圆心角度数是18°;(3)25000×25+115500=7000(人),答:该市25000名九年级学生达到“视力良好”的有7000人,建议是:同学们应少玩电子产品,注意用眼保护.12.【解答】解:(1)宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数:5101000×100%=51%;答:宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数的51%, (2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万×1771000=5.31万(人), 答:估计活动前全市骑电瓶车“都不戴”安全帽的总人数5.31万人; (3)小明分析数据的方法不合理.宣传活动后骑电瓶车“都不戴”安全帽的百分比:178896+702+224+178×100%=8.9%,活动前全市骑电瓶车“都不戴”安全帽的百分比:1771000×100%=17.7%,8.9%<17.7%,因此交警部门开展的宣传活动有效果. 三.条形统计图(共3小题) 13.【解答】解:(1)抽查的学生数:20÷40%=50(人), 抽查人数中“基本满意”人数:50﹣20﹣15﹣1=14(人),补全的条形统计图如图所示: (2)360°×1550=108°, 答:扇形统计图中表示“满意”的扇形的圆心角度数为108°; (3)1000×(2050+1550)=700(人),答:该校共有1000名学生中“非常满意”或“满意”的约有700人.14.【解答】解:(1)由条形统计图可得,2014~2019年三种品牌电视机销售总量最多的是B 品牌,是1746万台;由折线统计图可得,2014~2019年三种品牌电视机月平均销售量最稳定的是C 品牌,比较稳定,极差最小;故答案为:B ,C ;(2)∵20×12÷25%=960(万台),1﹣25%﹣29%﹣34%=12%, ∴960×12%=115.2(万台);答:2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C 品牌,因为C 品牌2019年的市场占有率最高,且5年的月销售量最稳定; 建议购买B 品牌,因为B 品牌的销售总量最多,受到广大顾客的青睐. 15.【解答】解:(1)这5期的集训共有:5+7+10+14+20=56(天), 小聪5次测试的平均成绩是:(11.88+11.76+11.61+11.53+11.62)÷5=11.68(秒), 答:这5期的集训共有56天,小聪5次测试的平均成绩是11.68秒;(2)从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑,如图中第4期与前面两期相比;从测试成绩看,两人的最好的平均成绩是在第4期出现,建议集训时间定为14天. 四.折线统计图(共4小题)16.【解答】解:A 、错误.签约金额2017,2018年是下降的. B 、错误.与上年相比,2016年的签约金额的增长量最多. C 、正确. D 、错误.下降了:244.5−221.6244.5≈9.4%.故选:C . 17.【解答】解:由折线统计图得乙同学的成绩波动较大, 所以S 甲2<S 乙2. 故答案为:<. 18.【解答】解:(1)选择两家酒店月盈利的平均值;x x =1+1.6+2.2+2.7+3.5+46=2.5(万元), x x =2+3+1.7+1.8+1.7+3.66=2.3(万元);(2)平均数,方差反映酒店的经营业绩,A 酒店的经营状况较好.理由:A 酒店盈利的平均数为2.5万元,B 酒店盈利的平均数为2.3万元.A 酒店盈利的方差为1.073平方万元,B 酒店盈利的方差为0.54平方万元,无论是盈利的平均数还是盈利的方差,都是A 酒店比较大,且盈利折线A 是持续上升的,故A 酒店的经营状况较好. 19.【解答】解:(1)乙组数据的折线统计图如图所示:(2)①x 甲=x 乙+50. ①S 甲2=S 乙2.理由:∵S 甲2=15[(48﹣50)2+(52﹣50)2+(47﹣50)2+(49﹣50)2+(54﹣50)2]=6.8. S 乙2=15[(﹣2﹣0)2+(2﹣0)2+(﹣3﹣0)2+(﹣1﹣0)2+(4﹣0)2]=6.8, ∴S 甲2=S 乙2.五.算术平均数(共2小题) 20.【解答】解:x =−1+0+3+4+45=2,故选:D . 21.【解答】解:由题意可得, 若去掉一个最高分,平均分为x ,则此时的x 一定小于同时去掉一个最高分和一个最低分后的平均分为z , 去掉一个最低分,平均分为y ,则此时的y 一定大于同时去掉一个最高分和一个最低分后的平均分为z , 故y >z >x , 故选:A .六.加权平均数(共1小题)22.【解答】解:该班的平均得分是:120×(5×8+8×9+7×10)=9.1(分). 故答案为:9.1.七.中位数(共1小题) 23.【解答】解:∵某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5, ∴x =5×5﹣4﹣4﹣5﹣6=6,∴这一组数从小到大排列为:4,4,5,6,6, ∴这组数据的中位数是5. 故答案为:5.八.众数(共2小题) 24.【解答】解:由表格中的数据可得, 这批“金心大红”花径的众数为6.7, 故选:C . 25.【解答】解:(1)被调查的总人数为16÷16%=100人, m =100﹣(20+28+16+12)=24;(2)由于共有100个数据,其中位数为第50、51个数据的平均数, 而第50、51个数据均为5篇, 所以中位数为5篇, 出现次数最多的是4篇, 所以众数为4篇; (3)估计该校学生在这一周内文章阅读的篇数为4篇的人数为800×28100=224人.九.方差(共4小题)26.【解答】解:样本数据2,3,5,3,7中平均数是4,中位数是3,众数是3,方差是S 2=15[(2﹣4)2+(3﹣4)2+(5﹣4)2+(3﹣4)2+(7﹣4)2]=3.2. 故选:C .27.【解答】解:方差s 2=1x[(x 1﹣5)2+(x 2﹣5)2+(x 3﹣5)2+…+(x n ﹣5)2]中“5”是这组数据的平均数,故选:B . 28.【解答】解:因为甲组、乙组的平均数丙组比丁组大, 而乙组的方差比甲组的小, 所以乙组的产量比较稳定, 所以乙组的产量既高又稳定, 故选:B . 29.【解答】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高, 又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲; 故答案为:甲.一十.标准差(共1小题) 30.【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关. 故选:B .一十一.统计量的选择(共1小题) 31.【解答】解:班级数学成绩排列后,最中间一个数或最中间两个分数的平均数是这组成绩的中位数, 半数同学的成绩位于中位数或中位数以下,小明成绩超过班级半数同学的成绩所用的统计量是中位数, 故选:A .一十二.概率公式(共9小题)32.【解答】解:由游戏转盘划分区域的圆心角度数可得,指针落在数字“Ⅱ”所示区域内的概率是:120360=13.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选择题20.(2019 山东省德州市, 20,10)《中学生体质健康标准》规定的等级标准为: 90 分及以上为优秀, 8089 分为良好, 60~ 79 分为及格, 59 分及以下为不及格.某校为了解七、八年级学生的体质健康情况,现从两年级中各随机抽取 10 名同学进行体质健康检测, 并对成绩进行分析. 成绩如下: 七年级 8074 83 63 90 91 74 61 82 62 八年级 7461 83 91608546 84 74 82( 1)根据上述数据,补充完成下列表格.整理数据:优秀 良好及格不及格七年级 2 350 八年级 141分析数据:年级平均数众数中位数 七年级767477八年级74(2)该校目前七年级有 200 人,八年级有 300 人,试估计两个年级体质健康等级达到优秀的学生共有多 少人?3)结合上述数据信息,你认为哪个年级学生的体质健康情况更好,并说明理由. 解题过程】( 1)八年级及格的人数是 4,平均数=;故答案为: 4; 74;78;3)根据以上数据可得:七年级学生的体质健康情况更好.1. (2019·巴中 )如图所示 ,是巴中某校对学生到校方式的情况统计图 ,若该校骑自行车到校的学生有 200 人 ,则,中位数2)计两个年级体质健康等级达到优秀的学生共有 200×人;步行到校的学生有()A.120 人B.160 人C.125 人D.180 人【解析】因为该校骑自行车到校的学生有200 人,占比 25%,所以可得全校总人数为 200÷25%=800(人),步行人数占比 20%,故人数为 800×20% =160(人),故选 B.5.(2019·温州)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有 40 人,那么选择黄鱼的有()A.20人 B .40 人 C .60人 D .80人【答案】 D【解析】从统计图可知选择鲳鱼的占全体统计人数的 20%,则抽取的样本容量为 40÷ 20%=200,则根据统计图可知选择黄鱼的有 200× 40%=80人.故选答案 D.4.( 2019·嘉兴) 2019年 5月 26日第 5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是()A.签约金额逐年增加B.与上年相比, 2019 年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016 年D. 2018年的签约金额比 2017 年降低了 22.98%【答案】 C【解析】根据折线统计图观察可知,签约金额不是逐年增多,相对而言,增长量最多的是 2016 年,增长速度最快的也是 2016年, 2018年比 2017年降低了 %9.4 ,故选 C.6.(2019·威海)为配合全科大阅读活动,学校团委对全校学生阅读兴趣调查的数据进行整理 . 欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是()A. 条形统计图B. 频数直方图C. 折线统计图D. 扇形统计图【答案】 D【解析】依据每种统计图的特点选择,欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是扇形统计图.故选 D.4.( 2019·江西)根据《居民家庭亲子阅读消费调查报告)中的相关数据制成扇形统计图,由图可知,下列说法错误的是()A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读 30 分钟以上的居民家庭孩子超过 50%C.每天阅读 1 小时以上的居民家庭孩子占 20%D.每天阅读 30 分钟至 1 小时的居民家庭孩子对应扇形的圆心角是108°解析】∵每天阅读 1 小时以上的居民家庭孩子占 20%+10%=30% ,∴ C 错误 .2.3.4.5.6.7.8.二、填空题13.(2019·泰州)根据某商场 2018 年四个季度的营业额绘制成如图所示,其中二季度的营业额的扇形统计图为 1000 万元,则该商场全年的营业额为万元 .第 13 题图 【答案】 5000【解析】 二季度营业额所占百分比为 1-35%- 25%- 20%= 20%,所以该商场全年的营业额为 1000÷20%=5000(万元 ) 13.( 2019·温州) 某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边 界值)如图所示,其中成绩为“优良” (80 分及以上)的学生有 人.【答案】 90【解析】 从频数直方图中读懂信息、提取信息、发现信息.知道成绩为“优良” (80 分及以上)的在 80~90、90~100 两个小组中,其频数分别为 60、30. 因此,成绩为“优良” ( 80分及以上)的学生有 90人.故 填: 90. 12.(2019·山西) 要表示一个家庭一年用于 "教育"," 服装","食品","其他"这四项的支出各占家庭本年总支出 的百分比 ,从"扇形统计图 ","条形统计图 "," 折线统计图 "中选择一种统计图 ,最适合的统计图是 ________________________________________________________________________________________________________ . 【答案】 扇形统计图【解析】 ∵要表示四项支出各占家庭本年总支出的百分比 ,∴用扇形统计图最适合 .1. 2. 3. 4. 5. 6. 7. 8. 9. 10.三、解答题 19.(2019年浙江省绍兴市,第 19题,8分 )小明、小聪参加了 100m 跑的 5期集训,每期集训结束市进第13题图行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图:根据图中信息,解答下列问题:1)这 5 期的集训共有多少天?小聪 5 次测试的平均成绩是多少?2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法 解题过程】21.(2019·嘉兴))在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的 情况进行调查.其中 A 、 B 两小区分别有 500 名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】 A 小区 50 名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值) : 【信息二】上图中,从左往右第四组的成绩如下:757579797979808081 82 82 83 83 84 84 84 【信息三】 A 、 B 两小区各 50 名居民成绩的平均数、 中位数、众数、优秀率( 80 分及以上为优秀) 、方差 等数据如下(部分空缺):小区平均数 中位数 众数 优秀率方差A75.179 40%277 B75.1777645%211根据以上信息,回答下列问题:1)求 A 小区 50 名居民成绩的中位数.2)请估计 A 小区 500 名居民成绩能超过平均数的人数.3)请尽量从多个角度, 选择合适的统计量分析 A ,B 两小区参加测试的居民掌握垃圾分类知识的情况.× 500=240 人.(3)从平均数、中位数、众数、方差等方面,选择合适的 50 统计量进行分析,例如:①从平均数看,两个小区居民对于垃圾分类知识掌握情况的平均水平相同;②从 方差看, B 小区居民对垃圾分类知识的掌握情况比 A 小区稳定;③从中位数看, B 小区至少有一半的居民 成绩高于平均数 . 分三个不同层次的评价:A 层次:能从 1 个统计量进行分析B 层次:能从 2 个统计量进行分析C 层次:能从 3 个及以上统计量进行分析18. ( 2019浙江省杭州市, 18, 8分) (本题满分 8 分)称量五筐水果的质量,若每筐以 50 千克为基准,超 过基准部分的千克数记为正数 .不足基准部分的干克数记为负数 . 甲组为实际称量读数,乙组为记录数据 .并 把所得数据整理成如下统计表和未完成的统计图 (单位: 千克).(1) 补充完整乙组数据的折线统计图解题过程】 ( 1)乙组数据的折线统计图如图所示:序号 数据 1 2 3 4 5 甲组 48 52 47 49 54 乙组-22-3-14(2) ①甲,乙两组数据的平均数分别为 , ,写出 与 之间的等量关系 ②甲,乙两组数据的方差分别为, ,比较 与 的大小,并说明理由。
第 18 题)实际称量读数和记录数据222)①=50+ ;② S甲2=S 乙2.2 1 2 2 2 2 2理由:∵ S 甲2= [ ( 48-50 )2+( 52-50 )2+( 47-50 )2+( 49-50 )2+( 54-50 )2]=6.8 ,5S乙2=1[(-2-0 )2+(2-0)2+(-3-0)2+(-1-0)2+(4-0)2]=6.8 ,522 ∴ S 甲=S 乙.23.( 2019 江苏盐城卷, 23,10)某公司共有 400 名销售人员,为了解该公司销售人员某季度商品销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成如下统计图表进行分析 .频数分布表请根据以上信息,解决下列问题:(1)频数分布表中,a= ,b=(2)补全频数分布直方图:频数分布直方图3)如果该季度销量不低于 80件的销售人员将被评为“优秀员工”,试估计该季度被评为“优秀员工”的人数 .24 54 150 150解题过程】 解:(1) b =3÷0.06=50(人), a =1-( 0.06+0.14+0.46+0.08 )=0.26 或a =13÷50=0.26;2)因为 m =50-3- 7- 13- 4=23(人),所以可补全条形统计图如图所示:频数分布直方图3)D 、E 两组的频率之和为: 0.46+0.08=0.54 ,所以该季度被评为 “优秀员工 ”的人数约有: 400×54%=216 人) .23.( 2019·苏州) 某校计划组织学生参加“书法” 、“摄影”、“航模”、“围棋”几个课外兴趣小组,耍求每 人必须参加,并且只能选择其中的一个小组,为了了解学生对叫个课外兴趣小组的选择情况,学校从全体 学牛中随机抽取部分学生进行问卷调查,并把调查结果制成如同所示的扇形统计 图和条形统汁图(部分信息未给出).请你根据给出的信息解答下列问题:(第 23 题)1)求参加这次问卷调查的学牛人数,并补全条形统计图(画图后请标注相应的数据) (2)m= . n= ;(3)若该校共有 1200 名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人? 解:(1)参加这次问卷调查的学生人数为 30÷20%=150(人),航模的人数为 150﹣(30+54+24 )=42(人),补全图形如下:第 23 题答2)m% 100%= 36%,n% 100%=16%,即 m=36、n=16,故答案为 36、 16;21.(2019·淮安)某企业为了解员工安全生产知识掌握情况,随机抽取了部分员工进行安全生产知识测试,测试试卷满分 100 分.测试成绩按 A 、 B、C、D 四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图.(说明:测试成绩取整数, A 级: 90分~100分;B 级: 75分-89分;C 级: 60分~74分;D 级:60 分以下)请解答下列问题:(1)该企业员工中参加本次安全生产知识测试共有人;(2)补全条形统计图;(3)若该企业共有员工 800人,试估计该企业员工中对安全生产知识的掌握能达到 A级的人数 . 【解题过程】(1)∵ 20÷ 50%=40 ,∴该企业员工中参加本次安全生产知识测试共有40 人.( 2)∵ 40-8-20-4=8 ,∴补全条形统计图如下:8( 3)∵样本中 A 所占的百分比为:100% 20% ,40∴估计该企业员工中对安全生产知识的掌握能达到 A 级的人数 .为 800× 20%=160.18.(2019·泰州) PM2.5是指空气中直径小于或等于 2.5PM的颗粒物 ,它对人体健康和大气环境造成不良影响 .下表是根据(全国城市空气质量报告)中的部分数据制作的统计表 ,根据统计表回答下列问题 :2017年、 2018年 7~12月全国 338个地区及以上城市平均浓度统计表 :22018年23 24 25 36 49 53(1)________________________________________ 2018年 7~12月PM2.5 平均浓度的中位数为_______________________________________________________________ pm/m2;(2)"扇形统计图 "和"折线统计图 "中,更能直观地反映 2018年 7~12月PM2.5平均浓度变化过程和趋势的统计图是 ;(3)某同学观察统计表后说 :"2018 年 7~12月与 2017 年同期相比 ,空气质量有所改善 ".请你用一句话说明该同学得出这个结论的理由 .【解题过程】 (1)(25+36) ÷2= 30.5;(2)折线统计图 ;(3)对比两年相同月份的 PM2.5 平均浓度 ,除 8 月份持平外其余月份 2018年都比 2017年有所下降 ,因此 2018年 7~12 月与 2017年同期相比 ,空气质量有所改善 . 22.( 2019·益阳) 某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员 )进行了随机调查,根据每车乘坐人数分为 5类,每车乘坐 1人、2 人、3人、4人、5 人分别记为 A、B、C、D、E,由调查所得数据绘制了如图所示的不完整的统计图表 .第 22 题图(1)求本次调查的小型汽车数量及m, n 的值;(2)补全频数分布直方图;(3)若某时段通过该路段的小型汽车数量为5000辆,请你估计其中每车只乘坐 1 人的小型汽车数量32【解题过程】 22.解: (1)本次调查的小型汽车数量: =160( 辆).0.248m= =0.3 ,160n=1-(0.3+0.35+0.2+0.05)=0.1.(2)B 类小型汽车的辆数: 0.35×160=56 ,D 类小型汽车的辆数: 0.1× 160=16.∴补全频数分布直方图如下:(3)某时段该路段每车只乘坐 1 人的小型汽车数量: 0.3×5000=1500( 辆). 21.( 2019·长沙) 某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查 , 将他们的得分按优秀、良好、合格、待合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.2)补全条形统计图;3)若全校有 2000 名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好” 等级的学生共有多少人. 解题过程】(1)本次调查随机抽取了 21÷42%=50名学生, m=50×40%=20,n= 6 × 100=12,故答案为:502)补全条形统计图如图所21+20(3) 2000×=1640 人,答:该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有 164050人.21.(2019·娄底) 湖南省作为全国第三批启动高考综合改革的省市之一,从 2018 年秋季入学的高中一年 级学生开始实施高考综合改革, 承载着广大考生的美好期盼, 事关千家万户的切身利益, 社会关注度等级 频数 频率 优秀 21 42%良好 m 40% 合格 6 n% 待合格 3 6% 请根据以上信息,解答下列问题:(1)本次调查随机抽取了名学生;第 22 题答n= ;高.为了了解我店里某小区居民对此政策的关注程度,某数学兴趣小组随机采访了该小区居民部分居民,根据采访情况制作了如下统计呼表:表(一)1)根据上述统计图表,可得此次采访的人数为 ______ , m= ____ , n= __________2)根据以上信息补全图( 10)中的条形统计图.3 )请估计在该小区 1500 名居民中,高度关注新高考政策的约有多少人?解:(1)100 0.5 200,m 200 0.4 80,n 20 200 0.12) 200 0.4 80 (人),补全的条形图如图3)1500 0.4 600(人)∴在该小区 1500 名居民中,高度关注新高考政策的约有 600 人20.( 2019·衡阳)某学校为了丰富学生课余生活,开展了“第二课堂”的活动,推出了以下四种选修课程:A.绘画; B.唱歌;C.演讲;D.十字绣.学校规定:每个学生都必须报名且只能选择其中的一个课程.校随机抽查了部分学生,对他们选择的课程情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:关注程度频数频率A.高度关注m 0.4B.一般关注100 0.5C.没有关注20 n(10-1)1 .课程选择情况的条形统计图课程选择情况的扇形统计图(1)这次学校抽查的学生人数是;(2)将条形统计图补充完整;(3)如果该校共有 1000 名学生,请你估计该校报 D 的学生约有多少人?解:( 1) 40;43)解: 1000× = 100,故该校 1000 人中报 D 约有 100 人.4019.( 2019·武汉)为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:各类学生人数条形统计图各类学生人数扇形统计图1)这次共抽取 ___________ 名学生进行统计调查,扇形统计图中,D 类所对应的扇形圆心角的大小为________________ 2 )将条形统计图补充完整3)该校共有1500 名学生,估计该校表示“喜欢”的B 类的学生大约有多少人?【解题过程】(1)抽取学生人数为 12÷24%=50;D 类所对应的扇形圆心角的大小为100% 360o 72o,50故答案为50,72°(2)A 类人数为 50-23- 12-10=5,补充条形统计图如图(3)1500×23=690(人),∴估计该校表示“喜欢”的 B 类的学生大约有 690 人.501.(2019·台州 )安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查 ,将手机的数据制成如下统计图表 .活动前骑电瓶车戴安全帽情况统计表类别人数A 68B 245C 510D 177合计1000A: 每次戴B:经常戴C:偶尔戴D:都不戴第 21 题图(1)宣传活动前 ,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几 ?(2)该市约有 30万人使用电瓶车 ,请估计活动前全市骑电瓶车 "都不戴 "安全帽的总人数 ;(3) 小明认为 ,宣传活动后骑电瓶车 "都不戴 "安全帽的人数为 178,比活动前增加了 1 人,因此交警部门开展的宣传活动没有效果 .小明分析数据的方法是否合理 ?请结合统计图表 ,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法 .510解: (1)由表格数据可知 ,C类偶尔戴的市民人数最多 ,占比为 : 510=51%.1000177(2) 1000300000=53100(人),答:活动前全市骑电瓶车 "都不戴 "安全帽的总人数为 53100人.(3)不合理 .∵活动开始前后调查的总人数不同,要比较所占百分比大小才能得到正确结论.活动开展前 ,"都不177 178戴 "占比为100%=17.7%,活动开展后 ,"都不戴 "占比为100%=8.9%,∵17.7%>8.9%,1000 896+702+224 178所占百分比下降 ,"每次戴 "的比例有 6.8%大幅度上升到 44.8%, 说明活动有效果 .2.(2019·衢州 )某校为积极响应“南孔圣地,衢州有札”城市品牌建设,在每周五下午第三节课开展了丰富多彩的走班选课活动,其中综合实践类共开设了“礼行”“礼知”“礼思”“礼艺”“礼源”等五门课程,要求全校学生必须参与其中一门课程。