《认识二元一次方程组》公开课

合集下载

5.1 认识二元一次方程组 公开课获奖课件

5.1 认识二元一次方程组 公开课获奖课件

x=2
x=2
A.y=-4 B.y=4
x=-2 x=-2 C.y=4 D.y=-4
7.(3 分)在下列三对数中:①xy==22;,②xy==--91;, ③xy==-3,1, __①__③____是方程 3x+y=8 的解,___②__③___是方程 2x-y=7 的解,方
(2)由(1)得
方程为-4x+6y=6,当 x=21时,y=43
17.(12 分)根据下列语句,分别设适当的未知数,列二元一次方 程或二元一次方程组(不必求解).
(1)某旅游团一行 13 人分别入住海滨酒店双人间和三人间,刚好 住满,问入住的双人间和三人间各多少间?
(2)小明和小颖在河边放羊,小明说:“把你的羊给我 3 只,那我 的羊就是你的 2 倍了,怎么样?”小颖说:“不,还是把你的羊分 3 只给我,那么我们的羊就一样多了,多好呀!”问小明和小颖各有多 少只羊?
将xy==--13, 代入②,得 b=10,将xy==45,代入①,得 a=-1, 所以 a2 017+b=(-1)2 017+10=9
把x=2,代入方程组,得 y=-1
3×2-2×(-1)=8,5×2-1=9.∴被
污染的“■”是 8,被污染的“▲”是 9
一、选择题(每小题 4 分,共 12 分)
11.小亮的妈妈用 28 元钱买了甲、乙两种水果,甲种水果每千克
4 元,乙种水果每千克 6 元,且乙种水果比甲种水果少买了 2 千克,
xy=1 A.x+y=2
5x-2y=3 B.1x+y=3
2x+z=0 x=5 C.3x-y=1 D.x+y=7
3.(3 分)方程 3xm+1-2yn+2=4 是二元一次方程,则 m=___0_____,
n=__-__1____.

认识二元一次方程组市公开课一等奖省优质课获奖课件

认识二元一次方程组市公开课一等奖省优质课获奖课件
第9页
方程组
x y 8
2
x
y
10
解是(
C)
A.
x 2
y
6
x 6
B.
y
2
C.
x y
2 6
D.
x 2
y
6
方法:把四个答案中x、y值分别代入原方程组中 每一个方程, 假如都适合,说明这组数值是原方程组 解;假如这组数值不满足其中一个方程,则它就不是此方 程组解.
第10页
挑战自我
• 解:设东段长为x千米, 则西段长为(x+6100)千米
列方程为
x+(x+6100)=7300即2x+6100=7300
第3页
情景导航
长城西起嘉峪关,东至辽东虎山,全长约7300千米。 其中西段从嘉峪关到山海关,东段从山海关到辽东 虎山,西段比东段长约6100千米。长城东、西段各 长约多少千米?
(4)在这个问题中有两个未知量。假如分别设长城东段长为x 千米, 西段长为y千米,那么长城全长能够用含有未知数x,y代数 式表示为——————(X—+y—)千米
(y-x)千米
西段比东段长——— 依据等量关系:东段长+西段长=7300千米,能够列出方程
X+y=7300 ① ——————————————————————— 依据等量关系:西段长-东段长=6100千米,能够列出方程
x + y =7300 ① y - x =6100 ②
普通地,由几个一次方程组成一组方程,叫做一次方程组!
像这么,含有两个未知数一次方程组叫做二元一次方程组.
而 x=600 是方程①、②公共解 y=6700
像这么,二元一次方程组中两个方程公共解叫做这个 二元一次方程组解。求方程组解过程叫做解方程组

北师大版八年级数学上册《 5.1 认识二元一次方程组》公开课课件

北师大版八年级数学上册《 5.1 认识二元一次方程组》公开课课件

方程叫做二元一次方程.
方程 x+y=8 和 5x+3y=34中,x的含义相同吗?y呢? x,y的含义分别相同,因而x,y必须同时满足方程 x+y=8 和 5x+3y=34 把他们联立起来,得:
{x+y=8 5x+3y=34 像这样,共含有两个未知数的两个一次方程所组成的一组方程, 叫做二元一次方程组.
{ x=-2
(1)
y=6
{x=4
(3) y=3
(2)(4)
{ x=3
(2)
y=4
{x=6
(4) y=-2
x 1,
x 2y m,
4.如果
y
2 是方程组
3x y n
的解,
那么m=_5____,n= __1__.
拔尖自助餐
用14厘米长的铁丝围成一个长比宽多3厘米的长 方形, 求长方形的长和宽各是多少厘米?
• 本章将学习二元一次方程组及其解法,并利用二元一次 方程组解决一些有趣的现实问题。
• 你————
作好准备了吗?
1.学习目标
(1)了解二元一次方程、二元一次方程组的概念. (2)了解方程解的概念 ,会判断一组数是不是某个二 元一次方程(组)的解. (3)理解二元一次方程组的含义.
2.学习重点
了解二元一次方程(组)及其解等概念.
方程组各方程中同一字母必须代表同一个量.
• 例: x-y=2 x+y=8, x+1=2(y-1) 5x+3y=34
都是二元一次方程组
• 你知道了吗?
完成P105做一做 以下问题
并思考
• (1)适合方程x+y=8的x、y的值是唯一的 吗?
• 不是,有很多组。
• (2)适合方程5x+3y=34的x、y的值是唯一 的吗?

《认识二元一次方程组》word教案 (公开课获奖)2022北师版 (2)

《认识二元一次方程组》word教案 (公开课获奖)2022北师版 (2)

5.1.1 认识二元一次方程组教学目标1.了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解.2.通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识.3.对学生进行数学来源于生活服务于生活的教育.教学重点与难点 重点:二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解.难点:判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识.[来 教法与学法指导教法:课前播放一段录像:《舞蹈世界》,激发学生的学习兴趣.将启发引导、合作交流贯穿教学始终,唤起学生的求知欲望,主动参与教学全过程.学法:采取小组合作的方式,通过丰富的实际背景,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容. 课前准备:多媒体课件. 教学过程:一、 创设情境,导入新课师:我们都知道牛和马是我们人类最忠诚的帮手,在那个非机械化的年代,是它们为我们驮运货物,帮助农民耕地…活干多了,牢骚也来了.请同学们看下面的故事,同时请两个同学来为它们配音.(多媒体出示)(显示对话一,老牛与小马,学生配音) 生:(笑)师:两个同学配音不错,它们到底各驮了多少包裹呢?师:请同学们认真理解它们的对话,分别是什么含义?在小组内讨论,并选择代表回答. (学生小组讨论,几分钟后有学生开始举手) 生1:老牛比小马要多2个包裹,生2:另外一句话的意思是老牛的包裹加1就等于小马的包裹数减去1差的2.列方程累死我了!你还累?这么大的个,才比我多驮2个.哼,我从你背上拿来1个,我的包裹数就是你的2倍!真的?!它们各驮了多少包裹呢?师:如果假设老牛驮了x个包裹,小马驮了y个包裹,你能得到怎样的方程?能列几个?请大家写下来.(学生板演)x-y=2;x+1=2(y-1)师:刚刚解决老牛与小马的争论,下面还有一个疑问请大家来解决.(多媒体显示公园门票问题,学生认真观看图片,部分学生开始在练习本上计算.)师:这两个人的对话中说明了哪些数量之间的关系?请大家在小组内讨论解决这个问题的方法.(学生以小组为单位讨论,气氛热烈,举手的人越来越多.此时教师也参与在小组的探讨之中,看他们是怎样做的,听他们是怎样说的.适时的指导一下.)师:如果我们假设他们中有x个成人,y个儿童,你能得到怎样的方程呢?(学生板演x+y=8,5x+8y=34)设计意图:以动漫的形式引出方程问题,让学生再次经历建模的同时,调节部分学生的心情,以相对轻松的状态进入后面的学习.活动是以渐进的方式让学生通过自主探究来对二元一次方程建模思想的认识体会过程,也是学生完成从一元到多元的认识转化过程.本题及时巩固利用方程建立数学模型的思想,强化了“一元”到“多元”的思想转变.效果:学生通过前面的情景引入,在老师的引导下,列出了关注两个未知数的方程,为后续关于二元一次方程的讨论提供了素材,同时,有趣的情境,也激发了学生学习的兴趣.二、类比旧知,引入新知师:大家观察一下刚才所列出的5个方程,是我们学过的一元一次方程吗?(投影所列的五个方程)360x+720y=17280,x-y=2,x+1=2(y-1),x+y=8,5x+8y=34.生:不是师:哪位同学回忆一下什么叫做一元一次方程?一元一次方程的特征有哪些?生:含有一个未知数,并且所含未知数的次数为1的整式方程叫一元一次方程.它有三个特征:(1)含有一个未知数;(2)未知数的次数是1;(3)方程的两边都是整式.师:与一元一次方程的特征相比较我们可以给它们取一个什么名称呢?生齐答:二元一次方程!师:很好,这就是今天学习的主题(板书课题:7.1谁的包裹多),请同学们找出二元一次方程有什么特征?生1:含有两个未知数; 生2:未知数的次数是1; 生3:方程两边都是整式;(多媒体同一页显示,便于学生逐条比较.)师:对于方程xy +8=5x ,大家认为是二元一次方程吗?(学生认识不统一有说是,有说不是.) xy (多媒体用红色记号圈出)这个项的次数是几?(学生有的说是2,有的说是1.此时老师加以矫正,单项式的次数是单项式中所有字母的指数和,因此项xy 次数为2,原方程不是二元一次方程.)师:我们应将“未知数的次数是1”更正为什么? 生:未知项的次数是1.师:很好,掌声鼓励,(学生掌声热烈)现在大家知道什么叫二元一次方程了吗? 生:含有两个未知数,并且所含未知数的项的次数都是1的方程叫二元一次方程. (多媒体显示二元一次方程概念,并让学生加以巩固.)设计意图:为了让学生尽快理解新知识,教学通过类比的方法,引导学生与一元一次方程相比较,逐步理解二元一次方程的概念,同时培养学生归纳概括能力. 师:两人一组,分别写出几个方程,让另一位同学判别是不是二元一次方程.(生迅速出题,然后互相判断,很多小组出现争执,场面非常活跃,师巡视对出现的争执及时给以评判.)概念巩固一:1.下列方程有哪些是二元一次方程:(1)390x y +-=,(2)232120x y -+=,(3)3474a b b -=-, (4)131x y -=,(5)()523=-y x x ,(6)512mn -=.[ 2.如果方程12231m m n x y -+-=是二元一次方程,那么m = ,n = . (学生独立完成,老师指定学生回答、对出现的问题给予解释、评价.)设计意图:通过这两题的训练,使二元一次方程的定义得到很好巩固.有助于学生进一步理解二元一次方程组.师:让我们再回到公园门票问题:x +y =8和5x +3y =34这两个方程,其中x 含义是什么?y 呢?两个方程x 、y 含义一样吗?生1:x 代表成人数,y 代表儿童数.生2:两个方程中x 、y 的含义是一样的.师:说明x 、y 必须同时满足两个方程,所以我们把它们联立起来,在前面加一个大括号,组成方程组,8,5334.x y x y +=⎧⎨+=⎩像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组. (多媒体展示二元一次方程组的定义,学生进一步理解) 概念巩固二:判断下列方程组是否是二元一次方程组:(1)21,3512;x y x y -=⎧⎨+=⎩ (2)21,35;x y x y x ⎧+=⎨-=+⎩(3)1,2;xy x y =⎧⎨+=⎩(4)523,13;x y y x -=⎧⎪⎨+=⎪⎩ (5)20,13;5x z x y +=⎧⎪⎨-=⎪⎩ (6)5,7;23z yx =⎧⎪⎨+=⎪⎩ (学生逐一判定,老师作解释)师:通过这组题目,你有何收获?(学生以小组为单位展开热烈讨论) 生1:只能含有两个未知数.并且每个方程必须是一次方程.生2:二元一次方程组中含有两个未知数,并不是每个方程必须是二元一次方程. 师:同学们理解得真深刻,这是你们小组合作交流的结晶,在今后的学习中继续发扬合作学习的好习惯,再复杂的问题也可以迎刃而解,接下来我们继续探究两个新概念.设计意图:设置多种形式的方程组,让学生去辨别,有助于二元一次方程组的加深理解.问题探究:(多媒体显示“做一做”,学生迅速动笔在纸上演算,师巡视,发现有困难的同学及时加以指导,完成的同学积极举手.)生1:三对未知数的值都适合二元一次方程x +y =8;还有x =0,y =8;x =1,y =7…生2:这两组未知数的值都适合二元一次方程5x +3y =34.(多媒体出示)适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.做一做(1) 适合方程吗?呢?呢?你还能找到其他的值适合方程吗?6,2x y ==8x y +=5,3x y ==4,4x y ==,x y 8x y +=(2)适合方程吗?呢?5334x y +=5,3x y ==2,8x y ==(3)你能找到一组值,同时适合和吗?,x y 8x y +=5334x y +=师:x =6,y =2是二元一次方程x+y =8的一个解,记作:62x y =⎧⎨=⎩,同时53x y =⎧⎨=⎩也是二元一次方程x +y =8的一个解.大家说二元一次方程有多少个解?生1:很多个. 生2:无数个!(师强调:二元一次方程的一个解不是一个值,而是一对值;一般地,二元一次方程有无数个解.)师:刚才我们找出二元一次方程的解,那么有没有一组x,y 的值同时适合这两个方程呢?生: 53x y =⎧⎨=⎩同时适合这两个方程.(多媒体显示概念)二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解.(给两分钟时间巩固理解概念) 概念巩固三:1.下列四组数值中,哪些是二元一次方程31x y -=的解? A 、2,3;x y =⎧⎨=⎩ B 、4,1;x y =⎧⎨=⎩ C 、10,3;x y =⎧⎨=⎩ D 、5,2.x y =-⎧⎨=-⎩2.二元一次方程2328x y +=的解有:5,_____.x y =⎧⎨=⎩ _____,2.x y =⎧⎨=-⎩ 2.5,_______.x y =-⎧⎨=⎩ _____,7.3x y =⎧⎪⎨=⎪⎩ 3.二元一次方程组2102x y y x +=⎧⎨=⎩,的解是( )A .43x y =⎧⎨=⎩,;B .36x y =⎧⎨=⎩,;C .24x y =⎧⎨=⎩,;D .42x y =⎧⎨=⎩,.4.以1,2x y =⎧⎨=⎩为解的二元一次方程组是( )A 、3,31;x y x y -=⎧⎨-=⎩B 、1,35;x y x y -=-⎧⎨+=-⎩C 、23,355;x y x y -=-⎧⎨+=-⎩D 、1,3 5.x y x y -=-⎧⎨+=⎩(学生独立完成,优生对照答案,师完善解法)设计意图:本组题目有助于巩固二元一次方程的解及二元一次方程组的解.变式训练四:1.已知关于x 、y 的方程()()2182620n mm xn y +--++=是二元一次方程,求m 、n 的值.(师提示:二元一次方程不仅要注意次数,还要注意系数.)2.方程225(22)0x y x y +-+-+=可以转化为方程组 .3.已知2,1x y =⎧⎨=⎩是方程组2(1)2,1x a y bx y +-=⎧⎨+=⎩的解,则ab +的值为多少?(这三题对学生来说有一定的困难,可以合作探究,老师可以适时提示.)设计意图:使学生更深刻地理解本节课的有关概念概念,同时培养学生分析问题、解决问题的能力.三、交流心得,学习反思 师:本节课你有何收获?生1:1.含有两个未知数,并且所含未知数的项的次数都是1的方程叫二元一次方程.2.含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.3.适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.4.二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解.生2:会判断一个方程是否为二元一次方程,会判断一个方程组是否为二元一次方程组. 生3:会检验一组未知数的值是不是二元一次方程的解,是不是二元一次方程组的解. 生4:应用方程组的解来解决一些问题. 师强调:二元一次方程有无数个解.在探究二元一次方程的概念时,用到了类比的学习方法.设计意图:引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化. 四、达标检测,反馈矫正1.下列方程组中,属于二元一次方程组的是( )2A 3x y y z +=⎧⎨+=⎩、 5B 6x y xy +=⎧⎨=⎩、 215C 213a b a b +=⎧⎨-=⎩、 7D 15m n m n -=⎧⎪⎨+=⎪⎩、 2. 请写出一个二元一次方程组 ,使它的解是2-1x y =⎧⎨=⎩.3.关于x 、y 的方程组3x y m x my n -=⎧⎨+=⎩的解是11x y =⎧⎨=⎩ ,则m n -的值是( )A、5B、3 C.、2 D、14.二元一次方程21-=x y有无数多个解,下列四组值中不是..该方程的解的是()A、12xy=⎧⎪⎨=-⎪⎩B、11xy=⎧⎨=⎩C、1xy=⎧⎨=⎩D、11xy=-⎧⎨=-⎩5.下列方程组中是二元一次方程组的是()A、12xyx y=⎧⎨+=⎩B、52313x yyx-=⎧⎪⎨+=⎪⎩C、20135x zx y+=⎧⎪⎨-=⎪⎩D、2633854x yyx+=⎧⎪⎨+=⎪⎩6.方程组31x yx y+=⎧⎨-=-⎩,的解是()A、12.xy=⎧⎨=⎩,B、12.xy=⎧⎨=-⎩,C、21.xy=⎧⎨=⎩,D、1.xy=⎧⎨=-⎩,设计意图:巩固所学知识,了解学生对本课所学知识的掌握情况,发现不足,查漏补缺,从而达到理解、提高的目的.五、布置作业,落实目标必做题:习题5.1 第1、2、3题.选做题:习题5.1 第5题.设计意图:对本节的认知技能进行分层训练.以满足学生多样化的学习需要,让“不同的人在数学上得到不同的发展”.板书设计:5.1 谁的包裹大投影区1.二元一次方程的定义2.二元一次方程组的定义3.二元一次方程的解二元一次方程组的解教学反思:本节课的设计特点:1.通过创设情境,让学生感受数学知识的产生、发展与形成过程,通过自主探究、合作交流的教学方式,培养学生的观察、比较、分析、思考、探究的能力,在教学过程中,不但注重数学知识的产生与形成过程,同时注重思想方法与思想情感教育的渗透,使学生的思想情感得到升华.2.主要运用了类比的思想方法,通过与一元一次方程的比较引出二元一次方程的概念,有助于学生对新知识的理解.3.充分发挥学生的主观能动性,挖掘学生的潜力,鼓励学生与他人的合作意识和探索精神,形成和谐的学习氛围.不足之处:由于本节课概念较多,部分学困生对个别概念理解不够深刻,致使变式训练不能灵活解决.第五章反比例函数一、学生知识状况分析通过本章的学习,学生已经经历抽象反比例函数概念的过程,理解了反比例函数的概念,会作出反比例函数的图象,并探索和掌握其性质,能从函数图象中获取信息来解决实际问题。

认识二元一次方程组【公开课教案】

认识二元一次方程组【公开课教案】

第五章二元一次方程组5.1 认识二元一次方程组第一环节:情境引入内容:(一)情境1实物投影,并呈现问题:在一望无际的呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个.”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?请每个学习小组讨论(讨论2分钟,然后发言).教师注意引导学生设两个未知数,从而得出二元一次方程.这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程2-=,若x y老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:()+=-.x y121(二)情境2实物投影,并呈现问题:昨天,有8个人去红山公园玩,他们买门票共花了34元.每张成人票5元,每张儿童票3元.那么他们到底去了几个成人、几个儿童呢?同学们,你们能否用所学的方程知识解决呢?仍请每个学习小组讨论(讨论2分钟,然后发言),老师注意引导学生分析其中有几个未知量,如果分别设未知数,将得到什么样的关系式?这个问题由于涉及到有几个成年人和几个儿童两个未知数,我们设他们中有x个成年人,有y个儿童,在题目的条件中,我们可以找到的等量关系为:成人人数+儿童人数=8,成人票款+儿童票款=34.由此我们可以得到方程8+=x y和5334+=.x y在这个问题中,可能会有学生认为用一元一次方程也可以解答,我们要肯定学生的做法,并将学生的答案保留下来,放到第二节二元一次方程组解法的学习中去,让学生更有学习的好奇心与积极性.同时告诉学生在某些有两个等量关系的实际问题中,列二元一次方程组比列一元一次方程更快捷、清楚.目的:通过现实情景再现,让学生体会到方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识.设计效果:学生通过前面的情景引入,在老师的引导下,列出关注两个未知数的方程,为后续关于二元一次方程的讨论提供了素材,同时,有趣的情境,也激发了学生学习的兴趣.第二环节:新课讲解,练习提高内容:(一)二元一次方程概念的概括提请学生思考:上面所列方程有几个未知数?所含未知数的项的次数是多少?从而归纳出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1的方程.教师对概念进行解析,要求学生注意:这个定义有两个要求:①含有两个未知数;②所含未知数的项的最高次数是一次.再呈现一些关于二元一次方程概念的辨析题,进行巩固练习:1.下列方程有哪些是二元一次方程:(1)093=-+y x ,(2)012232=+-y x ,(3)743=-b a ,(4)113=-y x ,(5)()523=-y x x ,(6)152=-n m . 2.如果方程13221=-+-n m m y x 是二元一次方程,那么m = ,n = .(二)二元一次方程组概念的概括师提请学生思考:上面的方程2121()x y x y -=+=-, 中的x 含义相同吗?y 呢?(两个方程中x 的表示老牛驮的包裹数,y 表示小马的包裹数,x 、y 的含义分别相同.)由于x 、y 的含义分别相同,因而必同时满足2x y -=和()121x y +=-,我们把这两个方程用大括号联立起来,写成()⎩⎨⎧-=+=-.121,2y x y x ,从而得出二元一次方程组的概念:像这样共含有两个未知数的两个一次方程所组成的一组方程.如:⎩⎨⎧=-=+;03,332y x y x ⎩⎨⎧=+=+.8,835y x y x 注意:在方程组中的各方程中的同一个字母必须表示同一个对象.再呈现一些辨析题,让学生进行巩固练习:判断下列方程组是否是二元一次方程组:(1)⎩⎨⎧=+=-;1253,12y x y x (2)⎩⎨⎧=-=+;53,12y x y x (3)⎩⎨⎧=+=-;153,37z y y x (4)⎩⎨⎧==;2,1y x (5)⎪⎩⎪⎨⎧=+=-;1283,52y x y x (6)⎩⎨⎧=+=-.325,132b ab b a (三)因承上面的情境,得出有关方程的解的概念1.6,2x y ==适合方程8x y +=吗?5,3x y ==呢?4,4x y ==呢?你还能找到其他x ,y 值适合8x y +=方程吗?2. 5,3x y ==适合方程5334x y +=吗?2,8x y ==呢?3.你能找到一组值x ,y 同时适合方程8x y +=和5334x y +=吗?各小组合作完成,各同学分别代入验算,教师巡回参与小组活动,并帮助找到3题的结论.由学生回答上面3个问题,老师作出结论:适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的解.如x =6, y =2是方程x + y =8的一个解,记作⎩⎨⎧==2,6y x ;同样,⎩⎨⎧==3,5y x 也是方程8x y +=的一个解,同时⎩⎨⎧==3,5y x 又是方程5334x y +=的一个解. 二元一次方程组中各个方程的公共解,叫做二元一次方程组的解.例如,⎩⎨⎧==3,5y x 就是二元一次方程组⎩⎨⎧=+=+3435,8y x y x 的解. 然后,同样呈现一些辨析性练习:(投影)1.下列四组数值中,哪些是二元一次方程13=-y x 的解?(A )⎩⎨⎧==;3,2y x (B )⎩⎨⎧==;1,4y x (C )⎩⎨⎧==;3,10y x (D )⎩⎨⎧-=-=.2,5y x 2.二元一次方程2832=+y x 的解有:⎩⎨⎧==._____,5y x ⎩⎨⎧-==.2_____,y x ⎩⎨⎧=-=._______,5.2y x ⎪⎩⎪⎨⎧==.37_____,y x …… 3.二元一次方程组⎩⎨⎧==+x y y x 2,102的解是( ) (A )⎩⎨⎧==;3,4y x (B )⎩⎨⎧==;6,3y x (C )⎩⎨⎧==;4,2y x (D )⎩⎨⎧==.2,4y x 4.以⎩⎨⎧==2,1y x 为解的二元一次方程组是( ) (A )⎩⎨⎧=-=-;13,3y x y x (B )⎩⎨⎧-=+-=-;53,1y x y x (C )⎩⎨⎧-=+-=-;553,32y x y x (D )⎩⎨⎧=+-=-.53,1y x y x 5.二元一次方程6=+y x 的正整数解为 .6.如果⎩⎨⎧==2,1y x 是⎩⎨⎧=-=+n y x m y x 3,2的解,那么m = ,n = . 7.写出一个以⎩⎨⎧-==3,2y x 为解的二元一次方程组为 . (答案不唯一)目的:通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好巩固新知识.设计效果:通过本环节的讲解与训练,让学生对利用新知识解决一些简单问题有更加明确的认识,同时也尽量让学生明白知识点不是孤立的,需要前后联系,才能更好地处理一些新问题.第三环节:课堂小结内容:1.含有两未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解是一个互相关联的两个数值,它有无数个解.3.含有两个未知数的两个二元一次方程组成的一组方程,叫做二元一次方程组,它的解是两个方程的公共解,是一组确定的值.目的:引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.设计效果:本环节虽然用时不多,却是必不可少的教学环节,对学生回顾与整理本节课的知识效果明显.第四环节:布置作业习题5.1教学设计反思1.本节课充分体现了从问题情景中抽象数学问题、使用各种数学语言表达问题、建立数学关系式、获得合理的解答、理解并掌握相应的数学知识与技能的有意义的这一变化学习过程.在教学中力求体现“问题情景——建立数学模型——解释、应用与拓展”的模式,使学生在自主探索和合作交流的过程中建立二元一次方程的数学模型,学会逐步掌握基本的数学知识和方法,形成良好的数学思维习惯和应用意识,提高自己解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,获得对数学较全面的体验和理解.2.通过情境引入,让同学们体会到了生活中的数学无处不在,激发了学生强烈的求知欲望,学生的反应非常积极踊跃,丰富了学生们的情感与态度.充分利用小组合作交流,让同学们自己找出方程中的等量关系,启发同学们自己说出各个定义的理解.在同学们合作做题的时候,老师进一步强调小组合作交流、合理分配时间会取得更好的效果.教学过程各环节紧紧相扣,整个教学过程逻辑思维清晰,问题与问题之间衔接紧密,每一步都为下一步做了很好的铺垫.3.这个案例主要针对中等生而设计,教师可根据学生学习能力再进行设计上的侧重.比如,学生学习能力较强,可在实际问题中抽象二元一次方程组的模型环节、课后的拓展环节增加适当的深层次的内容,以满足学生的学习需要.4.4 一次函数的应用第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式 正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52. 方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 18+0.4 216+0.8 324+1.2 432+1.6 540+2.0 … …解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、……解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.2.2 平方根第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点)2.根据算术平方根的概念求出非负数的算术平方根;(重点)3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念 【类型一】 求一个数的算术平方根 求下列各数的算术平方根: (1)64;(2)214;(3)0.36;(4)412-402. 解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32; (3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22.方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质 【类型一】 含算术平方根式子的运算 计算:49+9+16-225.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算.解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】 算术平方根的非负性已知x ,y 为有理数,且x -1+3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1.方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计 算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.4.4 一次函数的应用第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 1 8+0.4 2 16+0.8 3 24+1.2 4 32+1.6 5 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。

北师大版初中数学八年级上册《1 认识二元一次方程组》 公开课教案_2

北师大版初中数学八年级上册《1 认识二元一次方程组》 公开课教案_2

主备人:齐娟学习目标桥山中学2016-2017学年度第一学期八年级数学教案星期星期班级803804课题认识二元一次方程组课时11、了解二元一次方程、二元一次方程组及其解等有关概念2、并会判断一组数是不是某个二元一次方程组的解。

重点难点教学方法课前准备情境导入内容掌握二元一次方程及二元一次方程组的概念,理解它们解的含义。

从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想。

讲练结合多媒体课件复习旧知,引入新课1.什么叫方程?2.什么叫一元一次方程?3.什么是方程的解?解决措施小组讨论、举一反三练习法第一环节:出示学习目标(1)了解二元一次方程、二元一次方程组及其解的含义。

(2)会判断一组数是不是某个二元一次方程组的解.第二环节:新课讲授一、解决问题问题一:设老牛驮了x个包,小马驮了y个包,由此你能得到怎样的方程?问题二、甲:昨天,我们8个人去看电影买电影票花了34元乙:每张成人票5元,每张儿童票3元,他们到底去了几个成人,几个儿童呢?设他们中有x个成人,y个儿童.你能得到怎样的方程?3.想一想观察下列所列方程回答下列问题:x-y=2x+y=8x+1=2(y-1)5x+3y=34(1).上面所列方程各含有几个未知数?三、自学 p 页内容完成下列问题(2).所含未知数的项的次数是多少?(3).根据他们的共同特征你认为怎样的方程叫做二元一次方程?请每个学习小组讨论(讨论 2 分钟,然后发言)含有两个未知数,并且所含未知数的项的次数都是 1 的方程叫做二元一次方程.注意:这个定义有两个地方要注意① 含有两个未知数,② 含未知数的次数是一次跟踪训练:下列方程中哪些是二元一次方程?(1) x+y+z=9(2) x=6(3) 2x+6y=14(4) xy+y=7(5) 7x+6y+4=16(6) x²+y=6二、议一议、在上面的方程 x +y =8 和 5x +3y =34 中,x 所代表的对象相同吗?y 呢?x,y 的含义分别相同,因而 x,y 必须同时满足方程 x +y =8 和5x +3y =34 把他们联立起来,得x +y =85x +3y =34像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

北师大版八年级数学上册《5.1.认识二元一次方程组》公开课课件

北师大版八年级数学上册《5.1.认识二元一次方程组》公开课课件

的解,
那么m=___5__,n= 1 ________.
7.写出一个以
_____2__x____y____1_____.
x 2
y
3
为解的二元一次方程为
(答案不唯一)
习题5.1
• 17、儿童是中心,教育的措施便围绕他们而组织起来。2021/7/292021/7/292021/7/292021/7/29
• 2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二一年六月十七日2021年6月17日星期四 • 3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。10:516.17.202110:516.17.202110:5110:51:196.17.202110:516.17.2021 • 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19 • 5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021

二元一次方程公开课教案(优秀6篇)

二元一次方程公开课教案(优秀6篇)

二元一次方程公开课教案(优秀6篇)教学建议下面是我精心为大家整理的6篇《二元一次方程公开课教案》,如果能帮助到亲,我们的一切努力都是值得的。

元一次方程教学设计篇一一、教学目标(一)教学知识点1、代入消元法解二元一次方程组。

2、解二元一次方程组时的消元思想,化未知为已知的化归思想。

(二)能力训练要求1、会用代入消元法解二元一次方程组。

2、了解解二元一次方程组的消元思想,初步体会数学研究中化未知为已知的化归思想。

(三)情感与价值观要求1、在学生了解二元一次方程组的消元思想,从而初步理解化未知为已知和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,提高学习数学的信心。

2、培养学生合作交流,自主探索的良好习惯。

二、教学重点1、会用代入消元法解二元一次方程组。

2、了解解二元一次方程组的消元思想,初步体现数学研究中化未知为已知的化归思想。

三、教学难点1、消元的思想。

2、化未知为已知的化归思想。

四、教学方法启发自主探索相结合。

教师引导学生回忆一元一次方程解决实际问题的方法并从中启发学生如果能将二元一次方程组转化为一元一次方程。

二元一次方程便可获解,从而通过学生自主探索总结用代入消元法解二元一次方程组的步骤。

五、教具准备投影片两张:第一张:例题(记作7。

2 A);第二张:问题串(记作7。

2 B)。

六、教学过程Ⅰ、提出疑问,引入新课[师生共忆]上节课我们讨论过一个希望工程义演的问题;没去观看义演的成人有x个,儿童有y个,我们得到了方程组成人和儿童到底去了多少人呢?[生]在上一节课的做一做中,我们通过检验是不是方程x+y=8和方程5x+3y=34,得知这个解既是x+y=8的解,也是5x+3y=34的解,根据二元一次方程组解的定义得出是方程组的解。

所以成人和儿童分别去了5个人和3个人。

[师]但是,这个解是试出来的。

我们知道二元一次方程的解有无数个。

难道我们每个方程组的解都去这样试?[生]太麻烦啦。

[生]不可能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:设男生人数有x人,则女生人数有(x+1)人 根据题意得x+(x+1)=23 解得 x=11 则x+1=12(人) 答:147班男生有11人,女生有12人。
桐峪学校八年级147班共有学生人数23人,女生人数比 男生人数多1人,问147班男女生各有几人?
如果设男生人数有x人,女生人数有y人,根据题中的等 量关系,你能列出哪些方程,

x2 y 1,
(2)
x

3y
5;
不是
(3)
x 7 y 3, 3y 5z 1;
不是
(4)
2a 3b 1, 5ab 2b 3.
不是
思(考5):2y如x何3y判 断2 一是个方程(是6)二元xy 一12次,; 方是程?
①共有两个未知数;
桐峪学校 申旭红
一切问题都可以转化为数学问题, 一切数学问题都可以转化为代数问题, 而一切代数问题又可以转化为方程。因 此,一旦解决了方程问题,一切问题将 迎刃而解。
——解析几何之父笛卡尔
情景一
桐峪学校八年级147班共有学生人数23人,女生人数比 男生人数多1人,根据问题情境,提出你最想解决的问 题。
阅读104页想一想
思考: 上面这些方程中各含有几个未知数?含有未知数的项的
次数各是多少? 二元一次方程的概念: 含有两个未知数,并且所含未知数的项的次数都是1的方
程,叫做二元一次方程.
对应目标2:
跟踪训练1 含有两个未知数,并且所含未知数的项的
次数都是1的方程叫做二元一次方程.
1、下列方程是不是二元一次方程
对应目标2:
2、如果方程
x y m1
2n5
3 是二元一次方程,那
么 m = 0 ,n = -2 .
阅读104页议一议
理解二元一次方程组的概念
对应目标3:
二元一次方程组
设男生人数有x人, 女生人数有y人.
x y 23 y-x 1
解:设黑板的长为x
米, 宽为y米, (2 x y) 10
(1)2x y 3 是
1 (2) x

3

5
不是
(3)x2 y 2 不是 (4) x 是
思考:如何判断一个方程是二元一次方程?
①方程中必须含两个未知数; ②含未知数的项的次数为 1,而不是未知数的次数为1 ③分母中出现字母的都不是二元一次方程。
则 m=__3___ , n =__1____
4、请你写出一个以
为解的二元一次方程
小结
1、含有两个未知数,并且含有未知数的项的次数都 是1的方程叫做二元一次方程. 2、共含有两个未知数的两个一次方程所组成的一组 方程叫做二元一次方程组. 3、适合一个二元一次方程的一组未知数的值,叫做 这个二元一次方程的一个解. 4、二元一次方程组中各个方程的公共解,叫做这个
代入每一个方程
跟踪训练3
1、已知下列四组数值:
x 3
A.

y

1
x 4
B.

y

3
C.
x 2


y

4 3
x 2
D.

y

2
(1)是方程 2x y 5的解的有: A、 B
(2)是方程 x 3y 6 的解有: A、 C
(3)是方程组2x x3 yy
3、二元一次方程2x y 7 的正整数解有( )组
A. 1 B. 2 C. 3 D. 4
4、xy
1与 1
x

y

3都是方程 c
x

y

b的解,则c=_____
5、方程2x2m+3+3y5n-7=4是关于x、y二元一次方程,则
m=_______,n=______
6、小明从邮局买了面值50分和80分的邮票9枚, 花了6.3元。小明买了两种邮票各多少枚?
二元一次方程组的解.
当堂检测
1、下列各式中,是二元一次方程的是( )
A. x 2y 3z
B. xy 1
C. x y2 2015
D. x y 1
2、关于二元一次方程 4x 5y 13 的解,下列说法
正确的是( )
A.只有一个解 B.有两个解
C.有无数组解 D.任何一组有理数都是它的解
①x+y=23 ②y-x=1
情境二
147班教室黑板的周长为10米,面积为5平方米,请你 根据情境提出你想解决的问题: 如果设黑板的长为x米,宽为y米,你能列出那些方程? ③2(x+y)=10 (4)xy=5 ①x+y=23 ②y-x=1 同学们观察一下,这四个方程与前面所列方程有什么区 别?

5 6
的解的是
A
对应目标4:
2、二元一次方程组
x

y
2y 2x
10
的解是( C
)
x 4
A.

y

3
B.
x

y

3 6
C.
x 2

y

4
D.
x

y
4 2
x 2
3、若

y

1
x y m 是方程组 2x y 3n 的解,
②每个方程都是一次方程
对应目标4:
自主学习 合作交流
阅读课本105页,并思考以下几个问题:
1、二元一次方程有几个解?如何书写?
无数个
2、如何判断一组未知数的值是不是二元一次方程的解?
代入
3、如何理解“各个方程的公共解”?如何书写方程组的解? 既是第一个方程的解 又是第二个方程的解
4、如何判断一组未知数的值是不是二元一次方程组的解
xy 5
二元一次方程组:共含有两个未知数的两个一
次方程所组成的一组方程,叫做二元一次方程组.
方程组各方程中同一字母必须代表同一个量.
对应目标3:
跟踪训练2
共含有两个未知数的两个一次方程 所组成的一组方程,叫做二元一次方程组.
1、下列方程组是不是二元一次方程组
x 2y 1, (1) 3x 5y 12;
相关文档
最新文档