初三数学26章二次函数小题训练练习测试
华东师大版2019-2020学年九年级数学第二学期第26章 二次函数单元测试题(含答案)

第26章二次函数一、选择题(本大题共6小题,每小题4分,共24分)1.下面的函数是二次函数的是( )A.y=3x+1B.y=x2+2xC.y=D.y=2.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足函数关系式:h=-6(t-2)2+7,则小球距离地面的最大高度是( )A.2米B.5米C.6米D.7米3.下列关于函数y=-x2-1的图象的说法:①图象是一条抛物线;②开口向下;③对称轴是y 轴;④顶点坐标是(0,0);⑤当x>1时,y随x的增大而减小.其中正确的有( )A.1个B.2个C.3个D.4个4.在同一平面直角坐标系内,将函数y=2x2+4x-3的图象向右平移2个单位,再向下平移1个单位,得到的新图象的顶点坐标是 ( )A.-,-B.,-C.,-D.-,-5.二次函数的图象如图1所示,则其表达式是 ( )A.y=-x2+2x+3B.y=x2-2x-3C.y=-x2-2x+3D.y=-x2-2x-36.如图2,在Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系图象为下列选项中的( )图2图3二、填空题(本大题共6小题,每小题4分,共24分)7.已知A(0,3),B(2,3)是抛物线y=-x2+bx+c上的两点,该抛物线的顶点坐标是.8.如图4,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.9.已知二次函数y=ax2+bx+c(a,b,c是常数)的x与y的部分对应值如下表,则当x满足的条件是时,y=0;当x满足的条件是时,y>0.10.已知二次函数y=-x2+2x+m的部分图象如图5所示,则关于x的一元二次方程-x2+2x+m=0的解为.图511.某服装店购进单价为15元/件的童装若干件,销售一段时间后发现:当销售价为25元/件时平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.12.如图6是抛物线y1=ax2+bx+c的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,有下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(-1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b.其中正确的结论是.(只填写序号)图6三、解答题(本大题共4小题,共52分)13.(12分)如图7,已知二次函数y=ax2+bx+c的图象经过点A(-1,-1),B(0,2),C(1,3).(1)求该二次函数的关系式;(2)画出该二次函数的图象.图714.(12分)图8是抛物线形拱桥的剖面图,拱底宽12 m,拱高8 m.(1)请建立适当的平面直角坐标系,求出抛物线对应的函数关系式;(2)若设计警戒水位为6 m,当拱桥内水位达到警戒水位时,拱桥内的水面宽度是多少米?图815.(12分)已知二次函数y=x2-2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位后,得到的函数的图象与x轴只有一个公共点?16.(16分)如图9所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,连结AD,P是线段AD上的一个动点(不与点A,D重合).经过点P作y轴的垂线,垂足为E,连结AE.(1)求抛物线所对应的函数关系式,并写出顶点D的坐标;(2)如果点P的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连结EF,把△FPE沿直线EF折叠,点P的对应点为点P',求出点P'的坐标,并判断点P'是否在该抛物线上.图91. B2. D3. D4. C5. A6. D7.[答案] (1,4)8.[答案] (1+,2)或(1-,2)9.[答案] x=0或x=2 0<x<210.[答案] x1=-1,x2=311.[答案] 2212.[答案] ②⑤13.解:(1)根据题意,得,--,,解得-, , ,所以该二次函数的关系式为y=-x2+2x+2.(2)略.14.解:(1)答案不唯一,如建立如图所示的平面直角坐标系,则A(6,0),B(0,8).设抛物线的函数关系式为y=ax2+c.由题意,得,,解得-, ,∴抛物线对应的函数关系式为y=-x2+8.(2)将y=6代入y=-x2+8,得6=-x2+8,解得x=±3,∴拱桥内的水面宽度为6 m.答:当拱桥内水位达到警戒水位时,拱桥内的水面宽度是6 m.15.解:(1)证明:证法一:因为--4(m2+3)=-12<0,所以方程x2-2mx+m2+3=0没有实数根,所以不论m为何值,函数y=x2-2mx+m2+3的图象与x轴没有公共点.证法二:因为a=1>0,所以该函数的图象开口向上.又因为y=x2-2mx+m2+3=(x-m)2+3≥3,所以该函数的图象在x轴的上方,所以不论m为何值,函数y=x2-2mx+m2+3的图象与x轴没有公共点.(2)y=x2-2mx+m2+3=(x-m)2+3.把函数y=(x-m)2+3的图象沿y轴向下平移3个单位后,得到函数y=(x-m)2的图象,它的顶点坐标是(m,0),因此,这个函数的图象与x轴只有一个公共点.所以把函数y=x2-2mx+m2+3的图象沿y轴向下平移3个单位后,得到的函数的图象与x轴只有一个公共点.16.解:(1)∵抛物线过点A(-3,0),B(1,0),∴设其函数关系式为y=a(x+3)(x-1).将点C的坐标代入关系式,得a=-1,即抛物线所对应的函数关系式为y=-(x+3)(x-1)=-x2-2x+3,顶点D的坐标为(-1,4).(2)如图①,过点A作AH⊥EP交EP的延长线于点H.∵A(-3,0),D(-1,4),∴直线AD所对应的函数关系式为y=2x+6,∴S=AH ·EP=-xy=-x(x+3)=-x+2+,自变量x 的取值范围是-3<x<-1.当x=-时,S 取得最大值,最大值为.(3)当S 取到最大值时,点P 的坐标为-,3,且点E 与点C 重合. 如图②所示,过点P'作x 轴的垂线交x 轴于点N,交PE 的延长线于点M.∵PE=1.5,PF=3,且△FPE ≌△FP'E, ∴P'F=PF=3,P'E=PE=1.5. 设点P'的坐标为(m,n),可得ME=m,MP'=3-n,NP'=n,NF=m+1.5. 易证△MEP'∽△NP'F,∴ '= ' = ' ' =.,即= -. =,解得m=0.9,n=1.8, ∴P'(0.9,1.8).当x=0.9时,y=-x2-2x+3=-0.81-1.8+3=0.39≠1.8, ∴点P'不在抛物线y=-x2-2x+3上.。
第26章 二次函数 华东师大版九年级数学下册达标测试卷(含答案)

第26章二次函数达标测试卷一、选择题(每题3分,共24分)1.下列函数中,是二次函数的是()A.y=5x2B.y=22-2x C.y=2x2-3x3+1 D.y=1 x22.抛物线y=3(x-1)2+8的顶点坐标为()A.(1,8) B.(-1,8) C.(-1,-8) D.(1,-8) 3.某商场第1年销售计算机5 000台,设平均每年的销售量增长率为x,第3年的销售量为y台,则y关于x的函数表达式为()A y=5 000(1+2x)B y=5 000(1+x)2C y=5 000(1-2x)D y=5 000(1-x)2 4.在平面直角坐标系中,抛物线y=2x2保持不动,将x轴向上平移1个单位(y轴不动),则在新坐标系下抛物线的表达式是()A.y=2x2+1 B.y=2x2-1 C.y=2(x-1)2D.y=2(x+1)2 5.已知点A(2,y1)、B(3,y2)、C(-1,y3)均在抛物线y=ax2-4ax+c(a >0)上,则y1、y2、y3的大小关系为()A.y1<y2<y3B.y1<y3<y2 C.y2<y1<y3D.y2<y3<y1 6.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象为()7.若二次函数y=-x2+mx在-2≤x≤1时的最大值为5,则m的值是()A.-2 5或6 B.2 5或6 C.-92或6 D.-92或-2 5 8.如图,在平面直角坐标系中,抛物线y=13x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为83,则a,b的值分别为()A.13,43 B.13,-23 C.13,-43D.-13,43(第8题) (第13题) (第14题)二、填空题(每题3分,共18分)9.已知点P⎝ ⎛⎭⎪⎫a,12在抛物线y=2x2上,则a等于________.10.抛物线y=x2+6x+c与x轴有且只有1个公共点,则c=________.11.某小型无人机着陆后滑行的距离s(米)关于滑行的时间t(秒)的函数表达式是s=-0.25t2+10t,那么无人机着陆后滑行__ _秒才能停下来.12.已知二次函数y=ax2+bx+c,x与y的部分对应值如下表:则不等式ax2+bx+c>-3的解集为________.13.如图,过点A(0,4)作平行于x轴的直线AC,分别交抛物线y1=x2(x≥0)与y2=14x2(x≥0)于点B、C,则BC的长是________.14.二次函数y=ax2+bx+c的图象如图所示,则下列结论:①ac<0;②a+b=0;③a+b+c>0;④b2-4ac<0.其中正确的是___(填序号)三、解答题(第15,16题每题5分,第17~19题每题6分,第20,21题每题8分,第22题10分,其余每题12分,共78分)15.一抛物线以(-1,9)为顶点,且经过x轴上一点(-4,0),求该抛物线的表达式及抛物线与y轴的交点坐标.16.如图,二次函数y=-x2+bx+c的图象经过坐标原点,且与x轴交于点A(-2,0).(1)求此二次函数的表达式;(2)结合图象,直接写出满足y>0的x的取值范围.(第16题)17.一名男生推铅球,铅球行进高度y(m)与水平距离x(m)之间满足关系式y=-112x2+23x+53.(1)求铅球离手时的高度;(2)求铅球推出的最大距离.18.在平面直角坐标系中,二次函数y=-2x2+bx+c的图象经过点A(-2,4)和点B(1,-2).(1)求这个二次函数的表达式及其图象的顶点坐标;(2)平移该二次函数的图象,使其顶点恰好落在原点的位置上,请直接写出平移方法.19.某网店正在热销一款电子产品,其成本为每件10元,销售过程中发现,该商品每天的销量y(件)与销售单价x(元)之间存在如图所示的函数关系.(1)求y与x之间的函数关系式;(2)该款电子产品的销售单价为多少时,每天的销售利润最大?最大利润是多少?(第19题)20.如图,已知抛物线y=ax2+(a-1)x+3(a≠0)与x轴交于A、B(1,0)两点,与y轴交于点C.(1)点C的坐标为________;(2)将抛物线y=ax2+(a-1)x+3平移,使平移后的抛物线仍经过点B,与x轴的另一个交点为B′,且点B′的坐标为(3,0),求平移后的抛物线的表达式.(第20题) 21.现有一面12米长的墙,某农户计划用28米长的篱笆靠墙围成一个如图所示的矩形养鸡场ABCD.(1)若矩形养鸡场的面积为90平方米,求所用的墙长AD;(2)求矩形养鸡场的最大面积.(第21题)22.如图,矩形OABC的顶点A、C的坐标为A(2 3,0)、C(0,2),抛物线y=-x2+bx+c经过点B、C.(1)求该抛物线的表达式;(2)将矩形OABC绕原点O顺时针旋转一个角度α(0°<α<90°),在旋转过程中,当矩形的顶点A的对应点A′落在抛物线的对称轴上时,求此时点A′的坐标.(第22题)23.某班数学兴趣小组对函数y =x 2-2|x |的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值如下表:其中m =__________;(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分;(3)(3)观察函数图象,写出两条函数的性质;(4)进一步探究函数图象发现:①函数图象与x 轴有__________个交点,对应的方程x 2-2|x |=0有__________个实数根;②方程x 2-2|x |=2有__________个实数根;③关于x 的方程x 2-2|x |=a 有4个实数根时,a 的取值范围是__________.(第23题)答案一、1.A 2.A 3.B 4.B5.A 【点拨】∵y =ax 2-4ax +c ,且a >0, ∴图象开口向上,对称轴是直线x =--4a2a =2, ∴x ≥2时,y 随x 的增大而增大,∵C (-1,y 3)关于直线x =2的对称点是(5,y 3),2<3<5,∴y 1<y 2<y 3. 6.C7.C 【点拨】∵y =-x 2+mx ,∴图象开口向下,对称轴为直线x =-m 2×(-1)=m2.①当m 2≤-2,即m ≤-4时,函数在x =-2时取得最大值5,∴-4-2m =5,解得m =-92;②当m2≥1,即m ≥2时,函数在x =1时取得最大值5, ∴-1+m =5,解得m =6.③当-2<m 2<1,即-4<m <2时,函数在x =m 2时取得最大值5,∴-m 24+m 22=5,解得m =2 5(舍去)或m =-2 5(舍去).综上所述,m 的值为-92或6.8.C 【点拨】如图,设平移后所得新抛物线的对称轴和两抛物线分别相交于点A 和点B ,连结OA 、OB ,(第8题)∴S 阴影=S △OAB .由题意得a =13,∴y =ax 2+bx =13x 2+bx =13⎝ ⎛⎭⎪⎫x +3b 22-3b 24,∴点A 的坐标为⎝ ⎛⎭⎪⎫-3b 2,-3b 24,∴点B 的坐标为 ⎝ ⎛⎭⎪⎫-3b 2,3b 24,∴AB =3b 22,点O 到AB 的距离为-3b2,∴S △AOB =12×3b 22×⎝ ⎛⎭⎪⎫-3b 2=83,解得b =-43.二、9.12或-12 10.9 11.2012.0<x <2 13.2 14.①②③三、15.解:设抛物线的表达式为y =a (x +1)2+9,将(-4,0)代入y =a (x +1)2+9, 得0=9a +9,解得a =-1, ∴抛物线的表达式为y =-(x +1)2+9.令x =0,则y =8,∴抛物线与y 轴的交点坐标为(0,8).16.解:(1)把(0,0)和(-2,0)分别代入y =-x 2+bx +c ,得⎩⎨⎧c =0,-4-2b +c =0,解得⎩⎨⎧b =-2,c =0,∴二次函数的表达式为y =-x 2-2x . (2)-2<x <0.17.解:(1)令x =0,则y =53.∴铅球离手时的高度为53 m.(2)当y =0时,-112x 2+23x +53=0, 解得x 1=10,x 2=-2(不合题意,舍去), ∴铅球推出的最大距离是10 m.18.解:(1)∵二次函数y =-2x 2+bx +c 的图象经过点A (-2,4)和点B (1,-2).∴⎩⎨⎧-2×4-2b +c =4,-2×1+b +c =-2,解得⎩⎨⎧b =-4,c =4, ∴这个二次函数的表达式为y =-2x 2-4x +4. ∵y =-2x 2-4x +4=-2(x +1)2+6, ∴顶点坐标为(-1,6).(2)(答案不唯一)将该二次函数图象先向右平移1个单位,再向下平移6个单位. 19.解:(1)设y 与x 之间的函数关系式为y =kx +b ,将(20,100),(25,50)代入,得 ⎩⎨⎧20k +b =100,25k +b =50,解得⎩⎨⎧k =-10,b =300, ∴y 与x 之间的函数关系式为y =-10x +300. (2)设该款电子产品的销售利润为w 元,根据题意得w =(x -10)(-10x +300)=-10x 2+400x -3 000=-10(x -20)2+1 000, ∵-10<0,∴x =20时,w 最大,为1 000.答:该款电子产品的销售单价为20元时,每天销售利润最大,最大利润是1 000元. 20.解:(1)(0,3)(2)∵抛物线y =ax 2+(a -1)x +3与x 轴交于点B (1,0),∴a +a -1+3=0,∴a =-1,∴y =-x 2-2x +3.设平移后的抛物线表达式为y =-(x +h )2+k , ∵平移后的抛物线经过点B (1,0)和点B ′(3,0), ∴⎩⎨⎧-(1+h )2+k =0,-(3+h )2+k =0,解得⎩⎨⎧h =-2,k =1, ∴平移后的抛物线表达式为y =-(x -2)2+1.21.解:(1)设所用的墙长AD 为x 米,则AB 的长为28-x2米,由题意可得x ·28-x2=90,解得x 1=18(舍去),x 2=10.答:所用的墙长AD 为10米. (2)设AB 为a 米,面积为S 平方米, 则S =a (28-2a )=-2(a -7)2+98, ∵0<28-2a ≤12,∴8≤a <14,∴当a =8时,S 取得最大值,此时S =96, 答:矩形养鸡场的最大面积是96平方米.22.解:(1)∵A (2 3,0),C (0,2),∴易得B (2 3,2). 把点C 和点B 的坐标代入y =-x 2+bx +c , 得⎩⎨⎧c =2,-12+2 3b +c =2,解得⎩⎨⎧b =2 3,c =2, ∴该抛物线的表达式为y =-x 2+2 3x +2. (2)设对称轴与x 轴交于点D ,∴易得OD =3, 又∵OA ′=OA =2 3,∴A ′D =(2 3)2-(3)2=3,∴A ′(3,-3). 23.解:(1)0 (2)如图.(3)①函数y =x 2-2|x |的图象关于y 轴对称;②当x >1时,y 随x 的增大而增大. (4)①3;3 ②2 ③-1<a <0(第23题)【点拨】(3)题答案不唯一.24. 解:(1)由题意得⎩⎨⎧a -b +c =0,16a +4b +c =0c =3,,解得⎩⎪⎨⎪⎧a =-34,b =94,c =3,∴抛物线对应的函数表达式为y =-34x 2+94x +3.(2)设直线BC 对应的函数表达式为y =kx +d ,则⎩⎨⎧4k +d =0,d =3,解得⎩⎪⎨⎪⎧k =-34,d =3,∴y =-34x +3.设D (m ,-34m 2+94m +3)(0<m <4).过点D 作DM ⊥x 轴交BC 于点M ,则M ⎝ ⎛⎭⎪⎫m ,-34m +3,DM ∥OC ,∴DM =⎝ ⎛⎭⎪⎫-34m 2+94m +3-⎝ ⎛⎭⎪⎫-34m +3=-34m 2+3m ,∠DME =∠OCB ,又∵∠DEM =∠BOC =90°,∴△DEM ∽△BOC , ∴DE OB =DMBC .∵OB =4,OC =3,∴BC =5,∴DE =45DM ,∴DE =-35m 2+125m =-35(m -2)2+125(0<m <4).当m =2时,DE 取得最大值,最大值是125. (3)存在.∵F 为AB 的中点, ∴OF =32,∴tan ∠CFO =OCOF =2.如图,过点B 作BG ⊥BC ,交CD 的延长线于点G ,过点G 作GH ⊥x 轴,垂足为H .(第24题)①若∠DCE =∠CFO ,则tan ∠DCE =GBBC =2, ∴BG =10.易得△GBH ∽△BCO ,∴GH BO =HB OC =GBBC ,∴GH =8,BH =6,∴G (10,8). 设直线CG 对应的函数表达式为y =px +n ,11∴⎩⎨⎧n =3,10p +n =8,解得⎩⎪⎨⎪⎧p =12,n =3,∴直线CG 对应的函数表达式为y =12x +3,令12x +3=-34x 2+94x +3,解得x =73或x =0(舍去). ②若∠CDE =∠CFO ,同理可得BG =52,GH =2,BH =32,∴G ⎝ ⎛⎭⎪⎫112,2.易得直线CG 对应的函数表达式为y =-211x +3,令-211x +3=-34x 2+94x +3,解得x =10733或x =0(舍去).综上所述,点D 的横坐标为73或10733.12。
沪教新版 九年级数学上 第26章 二次函数 单元测试卷 (含解析)

沪教新版 九年级上 第26章 二次函数 单元测试卷一.选择题(共6小题)1.将二次函数22(2)y x =-的图象向左平移1个单位,再向下平移3个单位后所得图象的函数解析式为( )A .22(2)4y x =--B .22(1)3y x =-+C .22(1)3y x =--D .223y x =-2.抛物线224y x x =-+-一定经过点( ) A .(2,4)-B .(1,2)C .(4,0)-D .(3,2)3.在同一坐标系中,作2y x =,212y x =-,213y x =的图象,它们的共同特点是( ) A .抛物线的开口方向向上B .都是关于x 轴对称的抛物线,且y 随x 的增大而增大C .都是关于y 轴对称的抛物线,且y 随x 的增大而减小D .都是关于y 轴对称的抛物线,有公共的顶点4.下列二次函数中,如果图象能与y 轴交于点(0,1)A ,那么这个函数是( ) A .23y x =B .231y x =+C .23(1)y x =+D .23y x x =- 5.已知抛物线2(0)y ax bx c a =++≠如图所示,那么a 、b 、c 的取值范围是( )A .0a <、0b >、0c >B .0a <、0b <、0c >C .0a <、0b >、0c <D .0a <、0b <、0c <6.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =-,有以下结论: ①0abc <;②20a b -=;③248ac b a -<;④30a c +<;⑤()a b m am b -<+ 其中正确的结论的个数是( )A .1B .2C .3D .4二.填空题(共12小题)7.如果抛物线221y x x m =++-经过原点,那么m 的值等于 . 8.函数||1(1)55m y m x x +=++-是二次函数,则m = .9.如果点1(2,)A y 、2(3,)B y 是二次函数221y x x =-+的图象上两点,那么1y 2y .(填“>”、“ =”或“<” )10.如果抛物线22y x bx c =-++的对称轴在y 轴的左侧,那么b 0(填入“<”或“>” ). 11.若点(1,7)A -、(5,7)B 、(2,3)C --、(,3)D k -在同一条抛物线上,则k 的值等于 . 12.如果点(1,)A m -、1(,)2B n 是抛物线2(1)3y x =--+上的两个点,那么m 和n 的大小关系是m n (填“>”或“<”或“=”).13.若二次函数22(1)3y x =++的图象上有三个不同的点1(A x ,4)、12(B x x +,)n 、2(C x ,4),则n 的值为 .14.已知抛物线2()3y x m =-+,当1x >时,y 随x 的增大而增大,则m 的取值范围是 .15.二次函数2()1y x m =--,当2x …时,y 随x 的增大而增大,则m 取值范围是 . 16.如图,将函数21(2)12y x =-+的图象沿y 轴向上平移得到一条新函数的图象,其中点(1,)A m ,(4,)B n 平移后的对应点分别为点A '、B '.若曲线段AB 扫过的面积为12(图中的阴影部分),则新图象的函数表达式是 .17.如图,抛物线2(0)y ax bx c a =++≠过点(1,0)-,(0,2),且顶点在第一象限,设42M a b c =++,则M 的取值范围是 .18.二次函数2y ax bx c =++的图象如图所示,对称轴为1x =,给出下列结论:①0abc <;②24b ac >;③420a b c ++<;④20a b +=.其中正确的结论有 .三.解答题(共7小题)19.已知抛物线23y ax =+经过点(2,13)A --. (1)求a 的值.(2)若点(,22)P m -在此抛物线上,求点P 的坐标.20.将二次函数21y ax bx =++的图象向左平移1个单位长度后,经过点(0,3)、(2,5)-,求a 、b 的值.21.已知函数22(2)1y m m x mx m =++++, (1)当m 为何值时,此函数是一次函数? (2)当m 为何值时,此函数是二次函数? 22.将抛物线212y x =先向上平移2个单位,再向左平移(0)m m >个单位,所得新抛物线经过点(1,4)-,求新抛物线的表达式及新抛物线与y 轴交点的坐标. 23.抛物线22y x x c =-+经过点(2,1). (1)求抛物线的顶点坐标;(2)将抛物线22y x x c =-+沿y 轴向下平移后,所得新抛物线与x 轴交于A 、B 两点,如果2AB =,求新抛物线的表达式.24.在平面直角坐标系xOy 中,抛物线23y ax bx a =++过点(1,0)A -. (1)求抛物线的对称轴;(2)直线4y x =+与y 轴交于点B ,与该抛物线对称轴交于点C .如果该抛物线与线段BC 有交点,结合函数的图象,求a 的取值范围.25.已知,如图所示,直线l 经过点(4,0)A 和(0,4)B ,它与抛物线2y ax =在第一象限内交于点P ,又AOP ∆的面积为92,求a 的值.沪教新版 九年级上 第26章 二次函数 单元测试卷参考答案与试题解析一.选择题(共6小题)1.将二次函数22(2)y x =-的图象向左平移1个单位,再向下平移3个单位后所得图象的函数解析式为( )A .22(2)4y x =--B .22(1)3y x =-+C .22(1)3y x =--D .223y x =-【解答】解:由“上加下减,左加右减”的原则可知,将二次函数22(2)y x =-的图象向左平移1个单位,再向下平移3个单位后,得以新的抛物线的表达式是,22(21)3y x =-+-,即22(1)3y x =--, 故选:C .2.抛物线224y x x =-+-一定经过点( ) A .(2,4)-B .(1,2)C .(4,0)-D .(3,2)【解答】解:A 、将(2,4)-代入224y x x =-+-得,4444-=-+-,等式成立,故本选项正确;B 、将(1,2)代入224y x x =-+-得,2124≠-+-,等式不成立,故本选项错误;C 、将(4,0)-代入224y x x =-+-得,01684≠---,等式不成立,故本选项错误;D 、将(3,2)代入224y x x =-+-得,2964≠-+-,等式不成立,故本选项错误.故选:A .3.在同一坐标系中,作2y x =,212y x =-,213y x =的图象,它们的共同特点是( ) A .抛物线的开口方向向上B .都是关于x 轴对称的抛物线,且y 随x 的增大而增大C .都是关于y 轴对称的抛物线,且y 随x 的增大而减小D .都是关于y 轴对称的抛物线,有公共的顶点【解答】解: 因为2y ax =形式的二次函数对称轴都是y 轴, 且顶点都在原点, 所以它们的共同特点是: 关于y 轴对称的抛物线, 有公共的顶点 .故选:D .4.下列二次函数中,如果图象能与y 轴交于点(0,1)A ,那么这个函数是( ) A .23y x =B .231y x =+C .23(1)y x =+D .23y x x =-【解答】解:当0x =时,230y x ==;当0x =时,2311y x =+=;当0x =时,23(1)9y x =+=;当0x =时,230y x x =-=,所以抛物线231y x =+与y 轴交于点(0,1). 故选:B .5.已知抛物线2(0)y ax bx c a =++≠如图所示,那么a 、b 、c 的取值范围是( )A .0a <、0b >、0c >B .0a <、0b <、0c >C .0a <、0b >、0c <D .0a <、0b <、0c <【解答】解:由图象开口可知:0a <, 由图象与y 轴交点可知:0c <, 由对称轴可知:02ba-<, 0a ∴<,0b <,0c <,故选:D .6.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =-,有以下结论: ①0abc <;②20a b -=;③248ac b a -<;④30a c +<;⑤()a b m am b -<+ 其中正确的结论的个数是( )A .1B .2C .3D .4【解答】解:①根据抛物线可知: 0a <,0b <,0c >,0abc ∴>,所以①错误;②因为对称轴1x =-,即12ba-=-, 2b a ∴=,20a b ∴-=.所以②正确;③因为抛物线与x 轴有两个交点, 所以240b ac ->, 所以248b ac a ->. 所以③正确; ④当1x =时,0y <, 即0a b c ++<, 所以20a a c ++<, 所以30a c +<. 所以④正确;⑤当1x =-时,y 有最大值, 所以当1x =-时,a b c -+的值最大, 当x m =时,2y am bm c =++, 所以2a b c am bm c -+>++, 即()a b m am b ->+. 所以⑤错误.所以有②③④正确. 故选:C .二.填空题(共12小题)7.如果抛物线221y x x m =++-经过原点,那么m 的值等于 1 . 【解答】解:把(0,0)代入221y x x m =++-得10m -=,解得1m =, 故答案为1.8.函数||1(1)55m y m x x +=++-是二次函数,则m = 1 .【解答】解:由二次函数的定义可知,当10||12m m +≠⎧⎨+=⎩时,该函数是二次函数∴11m m ≠-⎧⎨=±⎩ 1m ∴=故答案为:1.9.如果点1(2,)A y 、2(3,)B y 是二次函数221y x x =-+的图象上两点,那么1y < 2y .(填“>”、“ =”或“<” )【解答】解:二次函数221y x x =-+的图象的对称轴是1x =, 在对称轴的右面y 随x 的增大而增大,点1(2,)A y 、2(3,)B y 是二次函数221y x x =-+的图象上两点, 23<,12y y ∴<.故答案为:<.10.如果抛物线22y x bx c =-++的对称轴在y 轴的左侧,那么b < 0(填入“<”或“>” ).【解答】解:由对称轴可知:04bx =<, 0b ∴<,故答案为:<11.若点(1,7)A -、(5,7)B 、(2,3)C --、(,3)D k -在同一条抛物线上,则k 的值等于 6 . 【解答】解:抛物线经过(1,7)A -、(5,7)B , ∴点A 、B 为抛物线上的对称点, ∴抛物线解析式为直线2x =,(2,3)C --、(,3)D k -为抛物线上的对称点,即(2,3)C --与(,3)D k -关于直线2x =对称, 22(2)k ∴-=--, 6k ∴=.故答案为6.12.如果点(1,)A m -、1(,)2B n 是抛物线2(1)3y x =--+上的两个点,那么m 和n 的大小关系是m < n (填“>”或“<”或“=” ). 【解答】解:抛物线的对称轴为直线1x =, 而抛物线开口向下,所以当1x <时,y 随x 的增大而增大, 所以m n <. 故答案为<.13.若二次函数22(1)3y x =++的图象上有三个不同的点1(A x ,4)、12(B x x +,)n 、2(C x ,4),则n 的值为 5 .【解答】解:1(A x ,4)、2(C x ,4)在二次函数22(1)3y x =++的图象上,22(1)34x ∴++=,22410x x ∴++=,根据根与系数的关系得,122x x +=-,12(B x x +,)n 在二次函数22(1)3y x =++的图象上,22(21)35n ∴=-++=,故答案为5.14.已知抛物线2()3y x m =-+,当1x >时,y 随x 的增大而增大,则m 的取值范围是1m … .【解答】解:2()3y x m =-+,∴对称轴为x m =,10a =>, ∴抛物线开口向上,∴在对称轴右侧y 随x 的增大而增大,当1x >时,y 随x 的增大而增大,1m ∴…,故答案为:1m ….15.二次函数2()1y x m =--,当2x …时,y 随x 的增大而增大,则m 取值范围是 2m … .【解答】解:函数的对称轴为x m =, 又二次函数开口向上,∴在对称轴的右侧y 随x 的增大而增大,2x …时,y 随x 的增大而增大, 2m ∴….故答案为:2m ….16.如图,将函数21(2)12y x =-+的图象沿y 轴向上平移得到一条新函数的图象,其中点(1,)A m ,(4,)B n 平移后的对应点分别为点A '、B '.若曲线段AB 扫过的面积为12(图中的阴影部分),则新图象的函数表达式是 21(2)52y x =-+ .【解答】解:曲线段AB 扫过的面积()312B A x x AA AA =-⨯'='=, 则4AA '=,故抛物线向上平移4个单位,则21(2)52y x =-+, 故答案为21(2)52y x =-+. 17.如图,抛物线2(0)y ax bx c a =++≠过点(1,0)-,(0,2),且顶点在第一象限,设42M a b c =++,则M 的取值范围是 66M -<< .【解答】解:将(1,0)-与(0,2)代入2y ax bx c =++,0a b c ∴=-+,2c =,2b a ∴=+,02b a->,0a <, 0b ∴>,2a ∴>-,20a ∴-<<,42(2)2M a a ∴=+++66a =+6(1)a =+66M ∴-<<,故答案为:66M -<<;18.二次函数2y ax bx c =++的图象如图所示,对称轴为1x =,给出下列结论:①0abc <;②24b ac >;③420a b c ++<;④20a b +=.其中正确的结论有 ①②④ .【解答】解:抛物线开口向下,0a ∴<,12b a-=, 0b ∴>,20a b +=,故④正确,抛物线交y 轴于正半轴,0c ∴>,0abc ∴<,故①正确,抛物线与x 轴有交点,240b ac ∴->,即24b ac >,故②正确,2x =时,0y >,420a b c ∴++>,故③错误,故正确的结论是①②④.三.解答题(共7小题)19.已知抛物线23y ax =+经过点(2,13)A --.(1)求a 的值.(2)若点(,22)P m -在此抛物线上,求点P 的坐标.【解答】解:(1)将点(2,13)A --.代入23y ax =+,得1343a -=+, 解得4a =-,∴抛物线的函数解析式为243y x =-+,(2)点(,22)P m -在此抛物线上,22243m ∴-=-+,解得52m =±,∴点P 的坐标为5(2,22)-或5(2-,22)-. 20.将二次函数21y ax bx =++的图象向左平移1个单位长度后,经过点(0,3)、(2,5)-,求a 、b 的值.【解答】解:二次函数图象向左平移1个单位长度后,经过点(0,3)、(2,5)-,可得原二次函数图象经过点(1,3)、(3,5)-,得139315a b a b ++=⎧⎨++=-⎩, 解得2a =-,4b =.21.已知函数22(2)1y m m x mx m =++++,(1)当m 为何值时,此函数是一次函数?(2)当m 为何值时,此函数是二次函数?【解答】解:(1)函数22(2)1y m m x mx m =++++,是一次函数, 220m m ∴+=,0m ≠,解得:2m =-;(2))函数22(2)1y m m x mx m =++++,是二次函数,220m m ∴+≠,解得:2m ≠-且0m ≠.22.将抛物线212y x =先向上平移2个单位,再向左平移(0)m m >个单位,所得新抛物线经过点(1,4)-,求新抛物线的表达式及新抛物线与y 轴交点的坐标.【解答】解:由题意可得:21()22y x m =++,代入(1,4)-, 解得:13m =,21m =-(舍去), 故新抛物线的解析式为:21(3)22y x =++, 当0x =时,132y =,即与y 轴交点坐标为:13(0,)2. 23.抛物线22y x x c =-+经过点(2,1).(1)求抛物线的顶点坐标;(2)将抛物线22y x x c =-+沿y 轴向下平移后,所得新抛物线与x 轴交于A 、B 两点,如果2AB =,求新抛物线的表达式.【解答】解:(1)把(2,1)代入22y x x c =-+得441c -+=,解得1c =, 所以抛物线解析式为221y x x =-+,2(1)y x =-,所以抛物线顶点坐标为(1,0);(2)2221(1)y x x x =-+=-,抛物线的对称轴为直线1x =, 而新抛物线与x 轴交于A 、B 两点,2AB =, 所以(0,0)A ,(2,0)B ,所以新抛物线的解析式为(2)y x x =-,即22y x x =-.24.在平面直角坐标系xOy 中,抛物线23y ax bx a =++过点(1,0)A -.(1)求抛物线的对称轴;(2)直线4y x =+与y 轴交于点B ,与该抛物线对称轴交于点C .如果该抛物线与线段BC 有交点,结合函数的图象,求a 的取值范围.【解答】解:(1)抛物线23y ax bx a =++过点(1,0)A -, 30a b a ∴-+=,4b a ∴=,∴抛物线的解析式为243y ax ax a =++,∴抛物线的对称轴为422a x a=-=-; (2)直线4y x =+与y 轴交于点B ,与该抛物线对称轴交于点C , (0,4)B ∴,(2,2)C -,抛物线23y ax bx a =++经过点(1,0)A -且对称轴2x =-, 由抛物线的对称性可知抛物线也一定过A 的对称点(3,0)-, ①0a >时,如图1,将0x =代入抛物线得3y a =,抛物线与线段BC 恰有一个公共点,34a ∴…, 解得43a …, ②0a <时,如图2,将2x =-代入抛物线得y a =-, 抛物线与线段BC 恰有一个公共点, 2a ∴-…,解得2a -…; 综上所述,43a …或2a -….25.已知,如图所示,直线l 经过点(4,0)A 和(0,4)B ,它与抛物线2y ax =在第一象限内交于点P ,又AOP ∆的面积为92,求a 的值.【解答】解:设点(,)P x y,直线AB的解析式为y kx b=+,将(4,0)A、(0,4)B分别代入y kx b=+,得1k=-,4b=,故4y x=-+,AOP∆的面积为92,∴19422Py⨯⨯=,94Py∴=,再把94Py=代入4y x=-+,得74x=,所以7(4P,9)4.把7(4P,9)4代入到2y ax=中得:3649a=.故a的值为36 49.。
2022-2023学年华东师大版九年级下册数学《第26章 二次函数》单元测试卷(有答案)

2022-2023学年华东师大版九年级下册数学《第26章二次函数》单元测试卷一.选择题(共10小题,满分30分)1.下列是二次函数的是()A.y=2﹣x2B.y=x﹣22C.D.y=2x﹣12.一次函数y=ax+b与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的大致图象可能是()A.B.C.D.3.抛物线y=﹣x2﹣2x一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.从地面竖直向上抛出一小球,小球的高度h(米)与运动时间t(秒)之间的解析式是h =﹣5t2+30t(0≤t≤6),则小球到达最高高度时,运动的时间是()A.1秒B.2秒C.3秒D.4秒5.如图是二次函数y=ax2+bx+c(a≠0)的图像,则下列结论正确的有()①abc>0;②2a+b=0;③b2<4ac;④4a+2b+c>0;⑤a+b≥am2+bm(m为任意实数)A.2个B.3个C.4个D.5个6.把函数y=(x﹣2)2+3的图象所在坐标系的坐标轴向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣3)2+3D.y=(x﹣1)2+3 7.小英在用“描点法”探究二次函数性质时,画出了以下表格,不幸的是,部分数据已经遗忘(如表所示),小英只记得遗忘的三个数中(如M,R,A所示),有两个数相同.根据以上信息,小英探究的二次函数解析式可能是()x…﹣10123…y…M R﹣4﹣3A…A.y=x2﹣3x﹣2B.C.y=2x2﹣5x﹣1D.8.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个根,其中一个根是3.若关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根的积是()A.0B.﹣8C.﹣15D.﹣249.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,有下列4个结论:①abc>0;②b2﹣4ac>0;③关于x的方程ax2+bx+c=0的两个根是x1=﹣2,x2=3;④关于x的不等式ax2+bx+c>0的解集是x>﹣2.其中正确的结论有()个.A.1B.2C.3D.410.对于二次函数y=ax2+bx+c,规定函数y=是它的相关函数.已知点M,N的坐标分别为(﹣,1),(,1),连接MN,若线段MN与二次函数y =﹣x2+4x+n的相关函数的图象有两个公共点,则n的取值范围为()A.﹣3<n≤﹣1或1<n≤B.﹣3<n<﹣1或1≤n≤C.n≤﹣1或1<n≤D.﹣3<n<﹣1或n≥1二.填空题(共10小题,满分30分)11.根据下表判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的取值范围是x0.40.50.60.7ax2+bx+c﹣0.64﹣0.250.160.5912.如果函数y=(m﹣3)x|m﹣1|+3x﹣1是二次函数,那么m的值为.13.在一块底边长为20厘米的等腰直角三角形铁皮上截一块矩形铁皮,如果矩形的一边与等腰三角形的底边重合且长度为x厘米,矩形另两个顶点分别在等腰直角三角形的两腰上,设矩形面积为y平方厘米,那么y关于x的函数解析式是.(不必写定义域)14.二次函数y=﹣x2+4x+a图象上的最高点的横坐标为.15.若点A(3,y1),B(﹣5,y2),C(7,y3)为二次函数y=(x+2)2﹣9的图象上的三点,则y1,y2,y3的大小关系是.16.将二次函数y=x2﹣2x+3化成顶点式为.17.一辆宽为2m的货车要通过跨度为8m,拱高为4m的截面为抛物线的单行隧道(从正中间通过),抛物线满足关系式.为保证安全,车顶离隧道至少要有0.5m的距离,则货车的限高应为m.18.如图所示的抛物线y=x2﹣bx+b2﹣9的图象,那么b的值是.19.二次函数的顶点坐标是.20.已知抛物线y=ax2+bx+3的图象与x轴相交于点A和点B(1,0),与y轴交于点C,连接AC,有一动点D在线段AC上运动,过点D作x轴的垂线,交抛物线于点E,交x 轴于点F,AB=4,设点D的横坐标为m.(1)连接AE,CE则△ACE的最大面积为;(2)当m=﹣2时,在平面内存在点Q,使以B,C,E,Q为顶点的四边形为平行四边形,请写出点Q的坐标.三.解答题(共7小题,满分60分)21.已知函数y=(m﹣1)+4x﹣5是二次函数.求m的值.22.已知二次函数y=x2﹣4x+3.(1)求二次函数y=x2﹣4x+3图象的顶点坐标;(2)在平面直角坐标系xOy中,画出二次函数y=x2﹣4x+3的图象.23.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.24.在平面直角坐标系中,已知抛物线C:y=ax2+2x﹣1(a≠0)和直线l:y=kx+b,点A (﹣5,﹣4),B(1,﹣1)均在直线l上.(1)求出直线l的解析式;(2)当a=﹣1,二次函数y=ax2+2x﹣1的自变量x满足m≤x≤m+2时,函数y的最大值为﹣9,求m的值;(3)若抛物线C与线段AB有两个不同的交点,求a的取值范围.25.某商场经调研得出某种商品每天的利润y(元)与销售单价x(元)之间满足关系:y =ax2+bx﹣75,其图象如图所示.(1)求a与b的值;(2)销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?(3)销售单价定在多少时,该种商品每天的销售利润为21元?结合图象,直接写出销售单价定在什么范围时,该种商品每天的销售利润不低于21元?26.已知:由函数y=x2﹣2x﹣2的图象知道,当x=0时,y<0,当x=﹣1时,y>0,所以方程x2﹣2x﹣2=0有一个根在﹣1和0之间.(1)参考上面的方法,求方程x2﹣2x﹣2=0的另一个根在哪两个连续整数之间;(2)若方程x2﹣2x+c=0有一个根在0和1之间,求c的取值范围.27.记函数y=x2﹣2x(x≤2)的图象为G1,函数的图象记为G2,图象G1和G2记为图象G.(1)若点(3,m)在图象G上,求m的值.(2)已知直线l与x轴平行,且与图象G有三个交点,从左至右依次为点A,点B,点C,若AB=1,求点C坐标.(3)若当﹣1≤x≤n时,﹣1≤y≤3,求n的取值范围.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:A、y=2﹣x2是二次函数,故此选项符合题意;B、y=x﹣22是一次函数,故此选项不符合题意;C、不是二次函数,故此选项不符合题意;D、y=2x﹣1是一次函数,故此选项不符合题意;故选:A.2.解:A、由一次函数的图象可知,a<0,由二次函数的图象可知,a>0,两结论矛盾,不符合题意;B、由一次函数的图象可知,a<0,b<0,由二次函数的图象可知,a<0,b>0,两结论矛盾,不符合题意;C、由一次函数的图象可知,a<0,b>0,由二次函数的图象可知,a<0,b<0,两结论矛盾,不符合题意;D、由一次函数的图象可知,a>0,b<0,由二次函数的图象可知,a>0,b<0,两结论一致,符合题意.故选:D.3.解:∵a=﹣1,抛物线开口向下,对称轴为x=,与y轴交于(0,),∴抛物线经过一、三、四象限,不经过第二象限.故选:B.4.解:h=30t﹣5t2=﹣5(t﹣3)2+45,∵﹣5<0,0≤t≤6,∴当t=3时,h有最大值,最大值为45,∴小球运动3秒时,小球达到最高高度,故选:C.5.解:由图象可知,抛物线开口向下,∴a<0,∵对称轴为,∴2a=﹣b,∴b>0且2a+b=0,②正确;∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,③错误;∵2a+b=0,∴4a+2b+c=2(2a+b)+c=c>0,④正确;∵当x=1时,函数取最大值,为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),∴a+b≥am2+bm(m为任意实数),⑤正确;综上所述,正确的有3个,故选:B.6.解:二次函数y=(x﹣2)2+3的图象的顶点坐标为(2,3),∴向右平移1个单位长度后的函数图象的顶点坐标为(3,3),∴所得的图象解析式为y=(x﹣3)2+3.故选:C.7.解:A、y=x2﹣3x﹣2的对称轴为直线,B、的对称轴为直线,C、y=2x2﹣5x﹣1的对称轴为直线,D、的对称轴为直线,若M与R相同,则抛物线的对称轴为直线,只有B选项符合,将点(1,﹣4),(2,﹣3)代入解析式,均符合;若M与A相同,则抛物线的对称轴为直线x=1,没有选项符合;若R与A相同,则抛物线的对称轴为直线,选项A、D符合,但将点(1,﹣4),(2,﹣3)代入解析式,却不符合;∴M与R相同,B选项符合,故选:B.8.解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3,∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴抛物线y=ax2+bx+c与直线y=﹣n的交点的横坐标在﹣5与﹣3之间和1与3之间,∴关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是﹣4和2,∴两个整数根的积是﹣4×2=﹣8.故选:B.9.解:∵抛物线开口向下,交y轴的正半轴,∴a<0,c>0,∵﹣=,∴b=﹣a>0,∴abc<0,所以①错误;∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,所以②正确;∵抛物线y=ax2+bx+c经过点(﹣2,0),而抛物线的对称轴为直线x=,∴点(﹣2,0)关于直线x=的对称点(3,0)在抛物线上,∴关于x的一元二次方程ax2+bx+c=0的两根是x1=﹣2,x2=3,所以③正确.由图象可知当﹣2<x<3时,y>0,∴不等式ax2+bx+c>0的解集是﹣2<x<3,所以④错误;故选:B.10.解:如图1所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有1个公共点.所以当x=2时,y=1,即﹣4+8+n=1,解得n=﹣3.如图2所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=x2﹣4x﹣n与y轴交点纵坐标为1,∴﹣n=1,解得:n=﹣1.∴当﹣3<n≤﹣1时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=﹣x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x2﹣4x﹣n经过点M(﹣,1),∴+2﹣n=1,解得:n=.∴1<n≤时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.综上所述,n的取值范围是﹣3<n≤﹣1或1<n≤,故选:A.二.填空题(共10小题,满分30分)11.解:∵函数y=ax2+bx+c的图象与x轴交点的横坐标就是方程ax2+bx+c=0的根,x轴上的点的纵坐标为0,由表中数据可知:y=0在y=﹣0.25与y=0.16之间,∴对应的x的值在0.5与0.6之间即0.5<x<0.6.故答案为0.5<x<0.6.12.解:∵函数y=(m﹣3)x|m﹣1|+3x﹣1是二次函数,∴|m﹣1|=2,且m﹣3≠0,解得:m=﹣1.故答案为:﹣1.13.解:∵△ABC是等腰直角三角形,四边形EFGD是矩形,∴△AFE和△DGB都是等腰直角三角形,∴ED=GF=x厘米,AF=BG=(20﹣x)厘米,∴EF=(20﹣x)厘米,∴矩形EFGD的面积y=x•(20﹣x)=﹣x2+10x,∴y关于x的函数关系式是y=﹣x2+10x.故答案为:y=﹣x2+10x.14.解:∵二次函数y=﹣x2+4x+a=﹣(x﹣2)2+4+a,∴二次函数图象上的最高点的横坐标为:﹣2.故答案为:﹣2.15.解:∵y=(x+2)2﹣9,∴图象的开口向上,对称轴是直线x=﹣2,∴B(﹣5,y2)关于直线x=﹣2的对称点是(1,y2),∵1<3<7,∴y2<y1<y3,故答案为:y2<y1<y3.16.解:y=x2﹣2x+3=(x2﹣2x+1)+2=(x﹣1)2+2.故答案为:y=(x﹣1)2+2.17.解:∵车的宽度为2米,车从正中通过,∴x=1时,y=﹣×12+4=,∴货车安全行驶装货的最大高度为﹣0.5=3.25(米),即货车的限高为:3.25;18.解:由图可知,抛物线经过原点(0,0),所以,02﹣b×0+b2﹣9=0,解得b=±3,∵抛物线的对称轴在y轴的右边,∴﹣>0,∴b>0,∴b=3.故答案为:3.19.解:二次函数y =﹣(x ﹣1)2+2的顶点坐标是(1,2),故答案为:(1,2).20.解:(1)∵点B (1,0),AB =4,则点A (﹣3,0),由题意得:,解得:,即抛物线的表达式为:y =﹣x 2﹣2x +3;设直线AC 的表达式为:y =mx +n ,则,解得:,故直线AC 的表达式为:y =x +3;设点D (m ,m +3),则点E (m ,﹣m 2﹣2m +3),则△ACE 的面积=S △EDA +S △EDC =DE ×AO =3×(﹣m 2﹣2m +3﹣m ﹣3)=﹣(m 2+3m )=﹣(m +)2+≤, ∴△ACE 的最大面积为, 故答案为:;(2)当m =﹣2时,﹣m 2﹣2m +3=3,即点E (﹣2,3),设点Q (s ,t ),当BC 是对角线时,由中点坐标公式得:,解得:, 当BE 是对角线时,由中点坐标公式得:,解得:, 当BQ 是对角线时,由中点坐标公式得:,解得:, 即点Q 的坐标为(﹣3,0)或(﹣1,0)或)(﹣3,6),故答案为:(﹣3,0)或(﹣1,0)或)(﹣3,6).三.解答题(共7小题,满分60分)21.解:由题意:,解得m =﹣1,∴m=﹣1时,函数y=(m﹣1)+4x﹣5是二次函数.22.解:(1)y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点为:(2,1);(2)解:该函数过点(0,3),(1,0),(2,﹣1),(3,0),(4,3)这五个点,用五点作图画出图象如下:23.解:(1)由图象可知,抛物线经过点(﹣1,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当y=0时,x的值为﹣1和3;(2)∵抛物线经过点(﹣1,0),(3,0),(0,﹣3),∴设抛物线的解析式为y=a(x+1)(x﹣3),代入(0,﹣3)得,﹣3=﹣3a,解得a=1,∴抛物线的解析式为y=(x+1)(x﹣3),令y=5得5=(x+1)(x﹣3),解得x1=4,x2=﹣2,∴当y>5时,求x的范围是x>4或x<﹣2;(3)∵y=(x+1)(x﹣3)=(x﹣1)2+4,∴抛物线开口向上,顶点为(1,4),对称轴为直线x=1,∴y随x的增大而增大时,x的范围是x>1.24.解:(1)把点A(﹣5,﹣4),B(1,﹣1)代入y=kx+b中,得,解得,∴直线l的解析式为y=x﹣;(2)根据题意可得,y=﹣x2+2x﹣1,∵a<0,∴抛物线开口向下,对称轴x=1,∵m≤x≤m+2时,y有最大值﹣9,∴当y=﹣9时,有﹣x2+2x﹣1=﹣9,∴x=﹣2或x=4,①在x=1左侧,y随x的增大而增大,∴x=m+2=﹣2时,y有最大值﹣4,∴m=﹣4;②在对称轴x=1右侧,y随x最大而减小,∴x=m=4时,y有最大值﹣9;综上所述:m=﹣4或m=4;(3))①a<0时,x=1时,y≤﹣1,即a+1≤﹣1,∴a≤﹣2;②a>0时,x=﹣3时,y≥﹣3,即9a﹣7≥﹣3,∴a≥,直线AB的解析式为y=x﹣;抛物线与直线联立:ax2+2x﹣1=x﹣,∴ax2+x+=0,Δ=﹣2a>0,∴a<,∴a的取值范围为≤a<或a≤﹣2.25.解:(1)y=ax2+bx﹣75图象过点(5,0)、(7,16),∴,解得:;(2)∵y=﹣x2+20x﹣75=﹣(x﹣10)2+25,=25.∴当x=10时,y最大答:销售单价为10元时,该种商品每天的销售利润最大,最大利润为25元;(3)根据题意,当y=21时,得:﹣x2+20x﹣75=21,解得:x1=8,x2=12,∴x=8或x=12,即销售单价定在8元或12元时,该种商品每天的销售利润为21元;故销售单价在8≤x≤12时,销售利润不低于21元.26.解:(1)利用函数y=x2﹣2x﹣2的图象可知,当x=2时,y<0,当x=3时,y>0,所以方程的另一个根在2和3之间;(2)函数y=x2﹣2x+c的图象的对称轴为直线x=1,由题意,得,解得0<c<1.27.解:(1)∵点(3,m)在图象G上,函数y=x2﹣2x(x≤2)的图象为G1,函数y=﹣x2+2(x>0)的图象记为G2,图象G1和G2记为图象G.∴点(3,m)在图象G2上,将点(3,m)代入y=﹣x2+2得,m=﹣×32+2=﹣,∴m的值﹣;(2)如图,∵直线l与x轴平行且与图象G有三个交点,从左至右依次为点A,点B,点C,由图象得﹣1≤y≤0,设A(a,a2﹣2a),∵y=x2﹣2x的对称轴为直线x=1,顶点为(1,﹣1),∴点B(2﹣a,a2﹣2a),∵AB=1,∴2﹣a﹣a=1,解得a=,∴点C的纵坐标为a2﹣2a=﹣,将y=﹣代入y=﹣x2+2得﹣=﹣x2+2,解得x=±(负值不合题意,舍去),∴点C坐标为(,﹣);(3)∵y=x2﹣2x(x≤2)的对称轴为直线x=1,顶点为(1,﹣1),函数y=﹣x2+2(x>0)的顶点为(0,2),∴当y=3时,3=x2﹣2x,解得x=﹣1或3(舍去),当y=﹣1时,﹣1=﹣x2+2,解得x=或﹣(舍去),∵当﹣1≤x≤n时,﹣1≤y≤3,结合图象得1≤n≤.。
九年级数学下册第26章二次函数练习题

九年级数学下册第26章二次函数练习题一、选择题1.若点(2,5),(4,5)在抛物线y =ax 2+bx +c 上,则它的对称轴是( )A .ab x -= B .x =1 C .x =2 D .x =3 2. 函数y=x 2+2x -2写成y=a (x -h )2+k 的形式是( ).A .y=(x -1)2+2B .y=(x -1)2+1C .y=(x+1)2-3D .y=(x+2)2-1 3. 将抛物线绕原点O 旋转180°,则旋转后抛物线的解析式为( )A.B. C. D. 4.二次函数与x 轴的公共点个数是( )A .0 B .1 C .2 D .3 5. 在同一坐标系中一次函数和二次函数的图象可能为( )6.已知函数4212--=x x y ,当函数值y 随x 的增大而减小时,x 的取值范围是( ) A .x <1 B .x >1 C .x >-2 D .-2<x <47.小颖在二次函数y=2x 2+4x+5的图象上,依横坐标找到三点(-1,y 1),(2,y 2),(-3,y 3),则你认为y 1,y 2,y 3的大小关系应为( ).A .y 1>y 2>y 3B .y 2>y 3>y 1C .y 3>y 1>y 2D .y 3>y 2>y 18..已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②a +b +c =2;21>a ③;④b <1.其中正确的结论是( )A .①②B .②③C .②④D .③④9. 把抛物线y =x +bx +c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y = x -3x +5,则( )A .b =3,c =7B .b =6,c =3C .b =9,c =5D .b =9,c =2110. 小敏在某次投篮中,球的运动路线是抛物线的一部分(如图),若命中篮圈中心,则他与篮底的距离是( )A .3.5mB .4mC .4.5mD .4.6m二、填空题1.若 y =( m 2+ m )x m2 – 2m -1是二次函数,则m =___________.2.将抛物线y=2x 2-4x+1先向左平移3个单位,再向下平移2个单位,平移后的函数关系式是_______________. 3. 已知抛物线与x 轴的交点是、B (1,0),且经过点C (2,8)。
二次函数的图象和性质练习题(含参考答案)

新华师大版九年级下册数学第26章 二次函数的图象和性质部分练习题姓名____________ 时间: 90分钟 满分:120分 总分____________一、选择题(每小题10分,共30分)1. 将抛物线2x y =向右平移2个单位,再向上平移1个单位,所得新抛物线对应的函数表达式为 【 】 (A )()122++=x y (B )()122-+=x y(C )()122+-=x y (D )()122--=x y2. 将抛物线()312+-=x y 向左平移1个单位,得到的抛物线与y 轴的交点坐标是 【 】(A )(0 , 2) (B )(0 , 3) (C )(0 , 4) (D )(0 , 7)3. 抛物线321532-⎪⎭⎫⎝⎛+-=x y 的顶点坐标是 【 】(A )⎪⎭⎫ ⎝⎛-3,21 (B )⎪⎭⎫ ⎝⎛--3,21 (C )⎪⎭⎫ ⎝⎛3,21 (D )⎪⎭⎫⎝⎛-3,214. 抛物线322++=x x y 的对称轴是 【 】 (A )直线1=x (B )直线1-=x (C )直线2-=x (D )直线2=x5. 在平面直角坐标系中,将抛物线221x y -=先向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式为 【 】(A )23212---=x x y (B )21212-+-=x x y (C )23212-+-=x x y (D )21212---=x x y6. 关于抛物线()212--=x y ,下列说法错误的是 【 】(A )顶点坐标为()2,1- (B )对称轴是直线1=x(C )开口向上 (D )当1>x 时,y 随x 的增大而减小7. 如图所示,把抛物线2x y =沿直线x y =向右平移2个单位后,其顶点在直线上的A 处,平移后的抛物线解析式是 【 】(A )()112-+=x y (B )()112++=x y(C )()112+-=x y (D )()112--=x y第 7 题图8. 关于二次函数1422-+=x x y ,下列说法正确的是 【 】 (A )图象与y 轴的交点坐标为(0 , 1) (B )图象的对称轴在y 轴的右侧 (C )当0<x 时,y 的值随x 值的增大而减小 (D )y 的最小值为3-9. 抛物线1822-+-=x x y 的顶点坐标为 【 】 (A )(7,2-) (B )(2 , 7) (C )(2 ,25-) (D )(2 ,9-)10. 已知二次函数()12+-=h x y ,在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为 【 】 (A )1或5- (B )1-或5 (C )1或3- (D )1或3 二、填空题(每小题3分,共30分)11. 抛物线()5232+-=x y 的顶点坐标为_________.12. 将抛物线2x y =向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为________________.13. 用配方法将二次函数982--=x x y 化为()k h x a y +-=2的形式为________________.14. 抛物线132+-=x x y 的顶点坐标为_________. 15. 抛物线x x y 92+-=的最大值为_________.16. 将抛物线()2432+-=x y 向右平移1个单位,再向下平移3个单位,平移后抛物线的解析式是________________. 17. 已知点()1,4y A ,()2,2y B,()3,2y C -都在二次函数()122--=x y 的图象上,则321,,y y y 的大小关系是__________.18. 抛物线m x x y +-=22与x 轴只有一个交点,则m 的值为_________.19. 已知点()11,y x A ,()22,y x B 为函数()3122+--=x y 图象上的两点,若121>>x x ,则21,y y 的大小关系是__________.20. 如图,把抛物线221x y =平移得到抛物线m ,抛物线m 经过点()0,8-A 和原点O (0 , 0),它的顶点为P ,它的对称轴与抛物线221x y =交于点Q ,则图中阴影部分的面积为_________.三、解答题(共60分) 21.(10分)已知抛物线()31432--=x y . (1)写出抛物线的开口方向、对称轴;(2)函数y 有最大值还是最小值?并求出这个最值;(3)设抛物线与y 轴的交点为P ,与x 轴的交点为Q ,求直线PQ 的函数表达式.22.(10分)已知二次函数的图象以()4,1-A 为顶点,且过点()5,2-B . (1)求该函数的关系式;(2)求该函数的图象与坐标轴的交点坐标.23.(10分)已知抛物线c bx ax y ++=2的顶点坐标为()1,4-,与y 轴交于点(0 , 3),求这条抛物线的函数表达式.24.(10分)如图,在平面直角坐标系中,把抛物线2x y =向左平移1个单位,再向下平移4个单位,得到抛物线()k h x y +-=2.所得抛物线与x 轴交于A 、B 两点(点A 在点B 的左边),与y轴交于点C ,顶点为D . (1)求k h ,的值; (2)判断△ACD 的形状.yxDC BA O25.(10分)已知抛物线22212-+-=x x y . (1)写出此抛物线的开口方向、对称轴和顶点坐标; (2)求出抛物线与x 轴、y 轴的交点坐标;(3)在(2)中,设抛物线与y 轴交于点A ,与x 轴交于点B ,若以点A 为顶点的抛物线经过点B ,请你求出这条抛物线的解析式,并指出其开口方向和函数的最值.26.(10分)已知二次函数m x x y ++=22的图象1C 与x 轴有且只有一个公共点. (1)求1C 的顶点坐标;(2)将1C 向下平移若干个单位后,得抛物线2C ,如果2C 与x 轴的一个交点为()0,3-A ,求2C 的函数关系式,并求2C 与x 轴的另一个交点坐标;(3)若()1,y n P ,()2,2y Q 是1C 上的两点,且21y y >,求实数n 的取值范围.新华师大版九年级下册数学第26章 二次函数的图象和性质练习题参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共30分)11. (2 , 5) 12. ()522-+=x y 13. ()2542--=x y 14. ⎪⎭⎫⎝⎛-45,2315.481 16. ()1532--=x y 17. 312y y y << 18. 1 19. 21y y < 20. 32三、解答题(共60分) 21.(10分)已知抛物线()31432--=x y . (1)写出抛物线的开口方向、对称轴; (2)函数y 有最大值还是最小值?并求出这个最值;(3)设抛物线与y 轴的交点为P ,与x 轴的交点为Q ,求直线PQ 的函数表达式. 解:(1)开口向上,对称轴为直线1=x ; ……………………………………………2分 (2)函数y 有最小值,最小值为3-=y ; ……………………………………………4分 (3)令0=x ,则()49310432-=--⨯=y ∴⎪⎭⎫ ⎝⎛-49,0P ……………………………5分令0=y ,则()031432=--x 解之得:3,121=-=x x∴()0,1-Q 或Q (3 , 0)……………………………………………6分 设直线PQ 的函数表达式为b kx y +=当⎪⎭⎫ ⎝⎛-49,0P ,()0,1-Q 时⎪⎩⎪⎨⎧=+--=049b k b 解之得:⎪⎪⎩⎪⎪⎨⎧-=-=4949b k∴直线PQ 的函数表达式为4949--=x y ; ……………………………………………8分当⎪⎭⎫ ⎝⎛-49,0P , Q (3 , 0)时⎪⎩⎪⎨⎧=+-=0349b k b 解之得:⎪⎪⎩⎪⎪⎨⎧-==4943b k∴直线PQ 的函数表达式为4943-=x y …………………………………………10分 综上所述,直线PQ 的函数表达式为4949--=x y 或4943-=x y . 22.(10分)已知二次函数的图象以()4,1-A 为顶点,且过点()5,2-B . (1)求该函数的关系式;(2)求该函数的图象与坐标轴的交点坐标. 解:(1)由题意可设该函数的关系式为()k h x a y +-=2∵其顶点为()4,1-A ∴4,1-==k h……………………………………………2分 ∴()412--=x a y把()5,2-B 代入()412--=x a y 得:()54122-=--⨯a解之得:1-=a……………………………………………4分 ∴该函数的关系式为()412---=x y ;(2)令0=x ,则()54102-=---=y∴该函数的图象与y 轴的交点为()5,0-;……………………………………………7分 令0=y ,则()0412=---x∴()412-=-x∴方程无实数解∴该函数的图象与x 轴无交点.…………………………………………10分 23.(10分)已知抛物线c bx ax y ++=2的顶点坐标为()1,4-,与y 轴交于点(0 , 3),求这条抛物线的函数表达式.解:由题意可设该抛物线为()k h x a y +-=2∵其顶点坐标为()1,4- ∴1,4-==k h……………………………………………4分 ∴()142--=x a y把(0 , 3)代入()142--=x a y 得:()31402=--⨯a……………………………………………6分 解之得:41=a …………………………………………10分 ∴这条抛物线的函数表达式为()14412--=x y . 24.(10分)如图,在平面直角坐标系中,把抛物线2x y =向左平移1个单位,再向下平移4个单位,得到抛物线()k h x y +-=2.所得抛物线与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D . (1)求k h ,的值; (2)判断△ACD 的形状.解:(1)平移后,抛物线的解析式为()412-+=x y……………………………………………3分 ∴4,1-=-=k h ;……………………………………………5分 (2)令0=y ,则()0412=-+x解之得:1,321=-=x x ∵点A 在点B 的左边 ∴()0,3-A ,B (1 , 0)……………………………………………6分 ∴3=OA令0=x ,则()34102-=-+=y∴()3,0-C……………………………………………7分 ∴3=OC∴OC OA =∴△AOC 为等腰直角三角形∴︒=∠45ACO∵点D 为抛物线()412-+=x y 的顶点∴()4,1--D……………………………………………8分 过点D 作y DE ⊥轴 ∴4,1==OE DE∴134=-=-=OC OE CE ∴CE DE =∴△DCE 为等腰直角三角形∴︒=∠45DCE∴︒=︒-︒-︒=∠904545180ACD ∴△ACD 为直角三角形.…………………………………………10分 25.(10分)已知抛物线22212-+-=x x y . (1)写出此抛物线的开口方向、对称轴和顶点坐标;(2)求出抛物线与x 轴、y 轴的交点坐标; (3)在(2)中,设抛物线与y 轴交于点A ,与x 轴交于点B ,若以点A 为顶点的抛物线经过点B ,请你求出这条抛物线的解析式,并指出其开口方向和函数的最值. 解:(1)()222212221--=-+-=x x x y ……………………………………………1分 开口向下,对称轴为直线2=x ,顶点坐标为(2 , 0);……………………………………………4分 (2)令0=y ,则()02212=--x 解之得:2=x∴抛物线与x 轴的交点为(2 , 0)……………………………………………5分 令0=x ,则()220212-=-⨯-=y ∴抛物线与y 轴的交点为()2,0-;……………………………………………6分 (3)由题意可设抛物线的解析式为k ax y +=2∵其顶点为A ()2,0- ∴2-=k……………………………………………7分 ∴22-=ax y把B (2 , 0)代入22-=ax y 得:024=-a 解之得:21=a……………………………………………8分∴2212-=x y开口向上,函数的最小值为2-.…………………………………………10分 26.(10分)已知二次函数m x x y ++=22的图象1C 与x 轴有且只有一个公共点. (1)求1C 的顶点坐标;(2)将1C 向下平移若干个单位后,得抛物线2C ,如果2C 与x 轴的一个交点为()0,3-A ,求2C 的函数关系式,并求2C 与x 轴的另一个交点坐标;(3)若()1,y n P ,()2,2y Q 是1C 上的两点,且21y y >,求实数n 的取值范围.解:(1)()11222-++=++=m x m x x y∵其图象1C 与x 轴有且只有一个公共点 ∴01=-m ∴1=m……………………………………………3分∴()21+=x y∴1C 的顶点坐标为()0,1-;……………………………………………4分(2)设2C 的函数关系式为()k x y ++=21把()0,3-A 代入()k x y ++=21得:()0132=++-k解之得:4-=k∴2C 的函数关系式为()412-+=x y……………………………………………7分 令0=y ,则()0412=-+x解之得:1,321=-=x x∴2C 与x 轴的另一个交点坐标为(1 , 0); ……………………………………………8分 (3)2>n 或4-<n .…………………………………………10分。
九年级数学上学期 第26章二次函数检测题ABC 三课标 试题

2021-2021学年度上学期九年级数学第26章二次函数检测题一.选择题〔每一小题4分,一共40分〕1、抛物线y=x 2-2x+1的对称轴是 ( )(A)直线x=1 (B)直线x=-1 (C)直线x=2 (D)直线x=-22、以下命题:①假设0a b c ++=,那么240b ac -≥;②假设b a c >+,那么一元二次方程20ax bx c ++=有两个不相等的实数根; ③假设23b a c =+,那么一元二次方程20ax bx c ++=有两个不相等的实数根; ④假设240b ac ->,那么二次函数的图像与坐标轴的公一共点的个数是2或者3. 其中正确的选项是〔 〕.A.只有①②③ B.只有①③④ C.只有①④ D. 只有②③④.3、对于2)3(22+-=x y 的图象以下表达正确的选项是〔 〕A 、顶点坐标为(-3,2)B 、对称轴为y=3C 、当3≥x 时y 随x 增大而增大D 、当3≥x 时y 随x 增大而减小4、如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P 〔3,0〕,那么c b a +-的值是A. 0B. -1C. 1D. 25、函数y =ax 2(a ≠0)的图象经过点(a ,8),那么a 的值是 〔 〕 A.±2 B.-2 6、自由落体公式h =21gt 2(g 为常量),h 与t 之间的关系是 〔 〕7、以下结论正确的选项是〔 〕A.y =ax 2是二次函数8、以下函数关系中,可以看作二次函数c bx ax y ++=2〔0≠a 〕模型的是 〔 〕 A 、在一定的间隔 内汽车的行驶速度与行驶时间是的关系B.我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间是的关系〔不计空气阻力〕D.圆的周长与圆的半径之间的关系9、对于任意实数m ,以下函数一定是二次函数的是 〔 〕 A .22)1(x m y -= B .22)1(x m y += C .22)1(x m y +=D .22)1(x m y -=10、二次函数y=x 2图象向右平移3个单位,得到新图象的函数表达式是 〔 〕 A.y=x 2+3 B.y=x 2-3 C.y=〔x+3〕2D.y=〔x-3〕2第二卷〔非选择题,一共80分〕二、填空题〔每一小题4分,一共40分〕11、某工厂第一年的利润是20万元,第三年的利润是y 万元,与平均年增长率x 之间的函数关系式是________。
人教版九年级数学下册第26章二次函数测试(答案)

《二次函数》同步检测一、选择题(每题3分,共39分)1.二次函数y=x 2+2x -7的函数值是8,那么对应的x 的值是( D )A .3B .5C .-3和5D .3和-52、(2010三亚市月考).抛物线y=12x 2向左平移8个单位,再向下平移9个单位后,所得抛物线的表达式是( A )A. y=12(x+8)2-9 B. y=12(x-8)2+9 C. y=12(x-8)2-9 D. y=12(x+8)2+9 3、(2010年厦门湖里模拟)抛物线y =322+-x x 与坐标轴交点为 ( B )A .二个交点B .一个交点C .无交点D .三个交点 4、若二次函数y=x 2-x 与y=-x 2+k 的图象的顶点重合,则下列结论不正确的是( D )A .这两个函数图象有相同的对称轴B .这两个函数图象的开口方向相反C .方程-x 2+k=0没有实数根D .二次函数y=-x 2+k 的最大值为12 5、(2010年厦门湖里模拟)如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则 的值为 ( A )A. 0B. -1C. 1D. 26、(2010年杭州月考)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,给出以下结论:①0<abc ②当1x =时,函数有最大值。
③当13x x =-=或时,函数y 的值都等于0. ④024<++c b a 其中正确结论的个数是( C )A.1B.2C.3D.47、已知二次函数,2c bx ax y ++=且0,0>+-<c b a a ,则一定有( A )A .042>-ac bB .042=-ac bC .042<-ac bD .042≤-ac b 8、小敏在某次投篮中,球的运动路线是抛物线的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是( B ).A .3.5mB .4mC .4.5mD .4.6m9、(2010年西湖区月考)关于二次函数y =ax 2+bx+c 的图象有下列命题:①当c=0时,函数的图象经过原点;②当c >0时且函数的图象开口向下时,ax 2+bx+c=0必有两个不等实根;③函数图象最高点的纵坐标是ab ac 442-;④当b=0时,函数的图象关于y 轴对称.其中正确的个数是( C )A.1个 B 、2个 C 、3个 D. 4个10、(2009烟台市)二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )11、(2009年鄂州)已知=次函数y =ax 2+bx+c 的图象如图.则下列5个代数式:ac ,a+b+c ,4a -2b+c ,2a+b ,2a -b 中,其值大于0的个数为( ) A .2 B 3 C 、4 D 、512、(2009年兰州)在同一直角坐标系中,函数y mx m =+和函数xxxx222y mx x =-++(m 是常数,且0m ≠)的图象可能..是13、(2009年黄石市)已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中所有正确结论的序号是( ) A .①② B . ①③④ C .①②③⑤ D .①②③④⑤二、填空题(每题3分,共30分)1、(2010三亚市月考)Y=-2(x-1)2 +5 的图象开口向 下 ,顶点坐标为 (1,5) ,当x >1时,y 值随着x 值的增大而 减小 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《第26章二次函数》中午小题训练1
(班级姓名:学号:)
一、精心选一选
3.把二次函数y=3x2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次
4.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a>0;②c>0;③b2﹣4ac>0,其中正确的个数是()
5.根据下列表格中的二次函数y=ax2+bx+c(a≠0,a、b、c为常数)的自变量x与函数y的对应值,2
2
7.如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()
二、细心填一填(2,3,4,5写过程)
1.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是_________.
2.将抛物线:y=x2﹣2x向上平移3个单位,再向右平移4个单位得到的抛物线是_________.
3.将抛物线y=2x2﹣12x+10绕它的顶点旋转180°,所得抛物线的解析式是_________.
.已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是?
5.y=﹣2x2﹣bx+3的对称轴是直线x=1,则b的值为_________.
三、解答题
1.已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).
(1)求出b,c的值,并写出此二次函数的解析式;
(2)根据图象,写出函数值y为正数时,自变量x的取值范围.
2.如图,已知二次函数y=ax2﹣4x+c的图象与坐标轴交于点A(﹣1,0)和点B(0,﹣5).(1)求该二次函数的解析式;
(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标.
3.随着近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,如图①所示;种植花卉的利润y2与投资量x成二次函数关系,如图②所示(注:利润与投资量的单位:万元)(1)分别求出利润y1与y2关于投资量x的函数关系式;
(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润,他能获取的最大利润是多少?
4.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣2,4),过点A作AB⊥y轴,垂足为B,连接OA.
(1)求△OAB的面积;
(2)若抛物线y=﹣x2﹣2x+c经过点A.
①求c的值;
②将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),求m的取值范围.。