【高中数学】2018-2019学年度最新北师大版必修三教学案:第二章§1 算法的基本思想 Word版含答案
2018版高中数学北师大版必修三学案:第二章 算法初步 1 算法的基本思想 精品

[学习目标] 1.通过几个具体问题的求解过程,体会算法的基本思想.2.了解算法的含义和特征.3.会用自然语言描述简单的具体问题的算法.知识点一算法的含义及特征1.算法的概念在解决某些问题时,需要设计出一系列可操作的或可计算的步骤,通过实施这些步骤来解决问题,通常把这些步骤称为解决这些问题的算法.2.算法的特征(1)有限性:一个算法的步骤序列是有限的,必须在有限的操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的,并且能有效地执行且得到确定的结果,而不应当模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后续步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一问题的解法不一定是唯一的,对于同一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.3.算法与计算机计算机解决任何问题都要依赖于算法.只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.知识点二算法的设计1.设计算法的目的设计算法的目的实际上是寻求一类问题的算法,它可以通过计算机来完成.设计算法的关键是把过程分解成若干个明确的步骤,然后用计算机能够接受的“语言”准确地描述出来,从而达到让计算机执行的目的.2.设计算法的要求(1)写出的算法必须能解决一类问题.(2)要使算法尽量简单、步骤尽量少.(3)要保证算法步骤有效,且计算机能够执行.思考一次青青草原园长包包大人带着灰太狼、懒羊羊和一捆青草过河.河边只有一条船,由于船太小,只能装下两样东西.在无人看管的情况下,灰太狼要吃懒羊羊,懒羊羊要吃青草,请问包包大人如何才能带着他们平安过河?答包包大人采取的过河的算法可以是第一步,包包大人带懒羊羊过河;第二步,包包大人自己返回;第三步,包包大人带青草过河;第四步,包包大人带懒羊羊返回;第五步,包包大人带灰太狼过河;第六步,包包大人自己返回;第七步,包包大人带懒羊羊过河.题型一算法的概念例1下列关于算法的说法,正确的个数有()①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.A.1 B.2C.3 D.4答案 C解析由于算法具有有限性、确定性等特点,因而②③④正确,而解决某类问题的算法不一定唯一,从而①错.反思与感悟算法实际上是解决问题的一种程序性方法,它通常解决某一个或某一类问题,在用算法解决问题时,体现了特殊与一般的数学思想.跟踪训练1下列说法中是算法的有________(填序号).①从上海到拉萨旅游,先坐飞机,再坐客车;②解一元一次不等式的步骤是去分母、去括号、移项、合并同类项,系数化为1;③求以A(1,1),B(-1,-2)两点为端点的线段AB的中垂线方程,可先求出AB中点坐标,再求k AB及中垂线的斜率,最后用点斜式方程求得线段AB的中垂线方程;④求1×2×3×4的值,先计算1×2=2,再计算2×3=6,6×4=24,得最终结果为24;⑤12x>2x+4.答案①②③④解析①说明了从上海到拉萨的行程安排.②给出了解一元一次不等式这类问题的解法.③给出了求线段的中垂线的方法及步骤.④给出了求1×2×3×4的值的过程并得出结果.故①②③④都是算法.题型二算法的设计例2所谓正整数p为素数是指:p的所有约数只有1和p.例如,35不是素数,因为35的约数除了1,35外,还有5与7;29是素数,因为29的约数就只有1和29.试设计一个能够判断一个任意正整数n(n>1)是否为素数的算法.解算法如下:第一步,给出任意一个正整数n(n>1).第二步,若n=2,则输出“2是素数”,判断结束.第三步,令m=1.第四步,将m的值增加1,仍用m表示.第五步,如果m≥n,则输出“n是素数”,判断结束.第六步,判断m能否整除n,①如果能整除,则输出“n不是素数”,判断结束;②如果不能整除,则转第四步.反思与感悟设计一个具体问题的算法,通常按以下步骤:(1)认真分析问题,找出解决该问题的一般数学方法;(2)借助有关变量或参数对算法加以表述;(3)将解决问题的过程划分为若干步骤;(4)用简练的语言将这个步骤表示出来.跟踪训练2判断一个大于2的整数是否为质数的算法步骤如何设计?解第一步,给定大于2的整数n.第二步,令i=2.第三步,用i除n,得到余数r.第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示.第五步,判断“i>n-1”是否成立.若是,则n是质数,结束算法;否则,返回第三步.题型三算法的应用例3一位商人有9枚银元,其中有1枚略轻的是假银元,你能用天平(无砝码)将假银元找出来吗?解方法一算法如下.第一步,任取2枚银元分别放在天平的两边,若天平左、右不平衡,则轻的一枚就是假银元,若天平平衡,则进行第二步.第二步,取下右边的银元放在一边,然后把剩下的7枚银元依次放在右边进行称量,直到天平不平衡,偏轻的那一枚就是假银元.方法二算法如下.第一步,把9枚银元平均分成3组,每组3枚.第二步,先将其中两组放在天平的两边,若天平不平衡,则假银元就在轻的那一组;否则假银元在未称量的那一组.第三步,取出含假银元的那一组,从中任取2枚银元放在天平左、右两边称量,若天平不平衡,则假银元在轻的那一边;若天平平衡,则未称量的那一枚是假银元.反思与感悟对于查找、变量代换、文字处理等非数值型计算问题,设计算法时,首先建立过程模型,然后根据过程设计步骤,完成算法.跟踪训练3“韩信点兵”问题:韩信是汉高祖手下的大将,他英勇善战,谋略超群,为汉朝的建立立下了不朽功勋.据说他在一次点兵的时候,为保住军事秘密,不让敌人知道自己部队的军事实力,采用下述点兵方法:①先令士兵从1~3报数,结果最后一个士兵报2;②又令士兵从1~5报数,结果最后一个士兵报3;③又令士兵从1~7报数,结果最后一个士兵报4.这样韩信很快算出自己部队里士兵的总数.请设计一个算法,求出士兵至少有多少人.解第一步,首先确定最小的满足除以3余2的正整数:2;第二步,依次加3就得到所有除以3余2的正整数:2,5,8,11,14,17,20,…第三步,在上列数中确定最小的满足除以5余3的正整数:8.第四步,然后在自然数内,在8的基础上依次加上15的倍数,得到8,23,38,53,….第五步,在上列数中确定最小的满足除以7余4的正整数应为53.对算法的含义及特征的理解例4计算下列各式中的S值,能设计算法求解的是________________.(1)S=1+2+3+ (100)(2)S=1+2+3+…+100+…;(3)S=1+2+3+…+n(n∈N*).错解算法是为解决某一类问题而设计的一系列操作或可计算的步骤,也就是说在实际的算法中的值是具体的,因此(1)正确;而(3)中的值不具体,错误;对于(2)显然不符合算法的有限性,故只有(1)正确.错解分析错识的根本原因在于对算法的理解不透彻.自我矫正算法是为解决某一类问题而设计的一系列操作或可计算的步骤,也就是说在实际的算法中n的值是具体确定的,因此(1)(3)是正确的,而算法又是具有有限性的,即执行有限步操作后一定能解决问题,而(2)显然不符合算法的有限性,所以(2)不正确.答案(1)(3)1.下列关于算法的说法中正确的是()A.算法是某个具体的解题过程B.算法执行后可以不产生确定的结果C.解决某类问题的算法不是唯一的D.算法可以无限地操作下去不停止答案 C解析算法与一般意义上具体问题的解法,既有区别,又有联系,算法的获得要借助一类问题的求解方法,而这一类具体问题都可以用这种方法来解决,因此A不对;算法中的每一步都应该是确定的,并且能有效执行,得到确定的结果,而不能含糊其辞或有歧义,所以B不正确;算法的操作步骤必须是有限的,必须在有限的步骤内完成,因此D不对;算法具有不唯一性,C正确.2.下列四种自然语言叙述中,能称为算法的是()A.在家里一般是妈妈做饭B.做米饭需要刷锅、淘米、添水、加热这些步骤C.在野外做饭叫野炊D.做饭必须要有米答案 B解析算法是做一件事情或解决一个问题等的程序或步骤,故选B.3.在用二分法求方程零点的算法中,下列说法正确的是()A .这个算法可以求所有的零点B .这个算法可以求任何方程的零点C .这个算法能求所有零点的近似解D .这个算法可以求变号零点近似解 答案 D解析 二分法的理论依据是函数的零点存在定理.它解决的是求变号零点的问题,并不能求所有零点的近似值.4.已知直角三角形两直角边长为a ,b ,求斜边长c 的一个算法分下列三步: (1)计算c =a 2+b 2;(2)输入直角三角形两直角边长a ,b 的值; (3)输出斜边长c 的值. 其中正确的顺序是________. 答案 (2)(1)(3)解析 算法的步骤是有先后顺序的,第一步是输入,最后一步是输出,中间的步骤是赋值、计算.5.下面是解决一个问题的算法: 第一步:输入x .第二步:若x ≥4,转到第三步;否则转到第四步. 第三步:输出2x -1. 第四步:输出x 2-2x +3.当输入x 的值为________时,输出的数值最小值为________. 答案 1 2解析 所给算法解决的问题是求分段函数f (x )=⎩⎪⎨⎪⎧2x -1(x ≥4),x 2-2x +3(x <4)的函数值问题,当x ≥4时,f (x )=2x -1≥2×4-1=7;当x <4时,f (x )=x 2-2x +3=(x -1)2+2≥2,所以f (x )min =2,此时x =1.即输入x 的值为1时,输出的数值最小,最小值为2.1.算法的特点:有限性、确定性、顺序性与正确性、不唯一性、普遍性. 2.算法设计的要求:(1)写出的算法必须能够解决一类问题,并且能够重复使用. (2)要使算法尽量简单,步骤尽量少.(3)要保证算法正确,且算法步骤能够一步一步执行,在有限步后能得到结果.。
2018秋新版高中数学北师大版必修3:第二章算法初步 2.1

目标导航
知识梳理
典型透析
随堂演练
12345
4.给出下面的算法: 1.输入x. 2.若x<0,则y=x+2;否则,y=x-1. 3.输出y. 当输入的x的值为-1,0,1时,输出的结果分别为 , , . 解析:根据输入的x的值与0的关系,选择执行不同的步骤. 答案:1 -1 0
§1 算法的基本思想
目标导航
解析:①中说明了从广州到北京的行程安排,完成了任务;③中给 出了求1+2+3+4的一个过程,最终得出结果.对于②,并没有说明如 何去算,故①③是算法,②不是算法.
答案:C
§1 算法的基本思想
目标导航
知识梳理
典例型透析
随堂演练
题型一
题型二
题型三
题型四
算法的概念 【例1】 下列关于算法的叙述中,不正确的是( ) A.计算机解决任何问题都需要算法 B.只有将要解决的问题分解为若干个步骤,并且用计算机能够识 别的语言描述出来,计算机才能解决问题 C.算法执行后可以不产生确定的结果 D.解决同一个问题的算法并不唯一,而且每一个算法都要一步一 步地执行,每一步都要产生确切的结果 解析:算法的主要特征是确定性,确定性包括结果明确,每一步产 生的结果和最后的结果都是明确的.因此,C项不正确,故选C. 答案:C
§1 算法的基本思想
目标导航
知识梳理
题型一
题型二
题型三
题型四
典例型透析
随堂演练
【变式训练3】 有两个杯子A,B分别盛放酒和水,要求将两个杯 子中液体互换,请设计一个算法.
解:算法步骤如下. 1.先取一个空杯子C. 2.将A杯中的酒倒入C杯内. 3.将B杯中的水倒入A杯内. 4.将C杯中的酒倒入B杯内.
2018版高中数学北师大版必修三学案第二章 章末复习课

学习目标.加深对算法思想的理解.加强用算法框图清晰条理地表达算法的能力.进一步体会由自然语言到算法框图再到程序的逐渐精确的过程.
.算法的概念
算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或看成按要求设计好的、计算序列,并且这样的步骤或序列能够解决.
.算法框图
算法框图由组成,按照用将框图连接起来.结构可分为结构、结构和结构.
.算法语句
基本算法语句有语句、语句、语句、语句、语句五种,它们对应于算法的三种逻辑结构:顺序结构、选择结构、循环结构.用基本语句编写程序时要注意各种语句的,条件语句应注意与配套使用,缺一不可,而可选;循环语句应注意的准确表达以及的步长设置.
类型一算法设计
例已知平面直角坐标系中两点(-),(),写出求线段的垂直平分线方程的一个算法.
反思与感悟算法设计应注意:
()与解决问题的一般方法有联系,从中提炼出算法;
()将解决问题的过程分为若干个可执行步骤;
()引入有关的参数或变量对算法步骤加以表达;
()用最简练的语言将各个步骤表达出来;
()算法的执行要在有限步内完成.
跟踪训练某工厂年生产小轿车万辆,技术革新后预计每年的生产数量比上一年增加,问最早哪一年该厂生产的小轿车数量超过万辆?写出解决该问题的一个算法.
类型二算法框图及设计
例给出以下个数:.要求把大于的数找出来并输出.试画出该问题的算法框图.。
2018版高中数学北师大版必修三学案:第二章 算法初步 2.2 变量与赋值

2.2变量与赋值[学习目标] 1.掌握赋值语句的概念及表示形式.2.会用变量和赋值语句将具体问题的框图转化为算法语句.3.体会变量与赋值语句在算法中的重要作用.知识点一常量与变量的概念1.在算法过程中,其值不能被改变的量称为常量.2.在研究问题的过程中,可以取不同数值的量叫做变量,变量的名称一般要用一个或几个英文字母组成,或一个或几个英文字母后面跟着一个数字组成.知识点二赋值语句1.赋值语句和算法框图中表示赋值的处理框对应,用来给变量赋值.2.赋值语句的格式及功能赋值语句变量=表达式将表达式所代表的值赋给变量,一般先计算“=”右边表达式的值,然后把这个值赋给“=”左边的变量答(1)赋值号与等号意义不同,若把“=”看作等号,则N=N+1不成立,若看作赋值号,则成立.(2)赋值号两边内容不能对调.(3)虽然赋值语句具有计算和赋值双重功能,但不能利用它进行代数式的演算.题型一赋值语句的判断例1判断下列赋值语句是否正确:(1)1=m;(2)x-y=3;(3)A=B=2;(4)N=M.解由赋值语句中的“=”左边是变量,右边是表达式知(1)(2)错误;由赋值语句只能给一个变量赋值,不能出现两个或多个“=”知(3)错误;(4)是正确的.故(1)错误;(2)错误;(3)错误;(4)正确.反思与感悟 1.赋值语句的格式:变量=表达式,先计算右边表达式的值,然后把这个值赋给“=”左边的变量.2.赋值号左边只能是变量名称,如:X+Y=3是不正确的,3=X也是不正确的.3.在一个赋值语句中,不能出现两个或多个“=”.跟踪训练1下列赋值语句中正确的是()A.4=M B.x+y=10C.A=B=2 D.N=N2答案D题型二赋值语句的应用例2(1)下列给出的赋值语句正确的有________个.①x=2*y+z;②x=3; ②x+y=7;②y=3.14*4(2)下列程序的运行结果为________.x=1x=x*2x=x*3x=x*4输出x*5答案(1)3(2)120解析(1)赋值语句的格式是:变量=表达式,故①②④正确,③错误.(2)由赋值语句的特点,可知结果为1×2×3×4×5,故答案为120.反思与感悟赋值号与数学中的等号的意义是不完全相同的,是以赋值号右边表达式的值代替该变量的原值,即将原值“冲掉”.如:N=N+1,是将N的原值加1再赋给N.跟踪训练2设计一种算法,从5个不同的数中找出最大数,并用框图描述这个算法.解设这5个不同的数分别为:a1,a2,a3,a4,a5;1.b=a1;2.比较b与a2,如果b<a2,则b=a2;3.比较b与a3,如果b<a3,则b=a3;4.比较b与a4,如果b<a4,则b=a4;5.比较b与a5,如果b<a5,则b=a5;6.输出b,b就是这5个数中的最大数.算法框图如下:。
高中数学 第二章 算法初步 2.1 算法的基本思想教案 北师大版必修3(1)

第一节算法的基本思想本节教材分析一、三维目标1、知识与技能(1)通过对解决具体问题过程与步骤的分析,体会算法的思想,了解算法的含义;(2)能够用语言叙述算法;(3)会写出将自然数分解成素因数乘积的算法;(4)会写出求两个自然数的最大公因数的算法和两个自然数的最小公倍数的算法.2.过程与方法通过对物品价格的猜测,体会猜测者的基本思路,得到一个一般步骤,而这个步骤就是一个算法.结合具体问题,模仿算法步骤,写出将自然数分解成素因数乘积的算法和求两个自然数的最大公因数的算法,从而体会算法的基本思想,了解算法的含义.3.情感态度与价值观通过本节的学习,使学生对算法的思想有一个初步的认识,体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力,从而进一步体会算法与现实世界的密切关系.二、教学重点:算法的含义及应用.三、教学难点:写出解决一类问题的算法.四、教学建议算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固.新课导入设计导入一一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法.导入二大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念.导入三算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始.【教学过程】1.情境导入:算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。
高中数学北师大版必修三教学案第二章§1 算法的基本思想 Word版含答案

[核心必知].算法的概念在解决某些问题时,需要设计出一系列可操作或可计算的步骤,通过实施这一系列步骤来解决问题,我们把这一系列步骤称为解决这个问题的一个算法..算法的作用现代算法的作用之一是使计算机能代替人完成某些工作,这是学习算法的重要原因之一.[问题思考].是不是任何一个算法都有明确结果?提示:是,因为算法的步骤是明确的和有限的,有时可能需大量重复的计算,但只要按部就班地去做,总能得到确定的结果..一个具体问题的算法唯一吗?提示:解决一个具体问题的算法可有多个,但我们可以选择其中最优的、最简单的、步骤尽量少的算法.讲一讲.下列语句中是算法的有( )①做饭需要刷锅、淘米、加水、加热这些步骤;②解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为;③方程+-=有两个实根;④求+++的值,先计算+=,再由+=+=得最终结果是..个.个.个.个[尝试解答] ①说明了做饭的步骤;②中给出了一元一次方程这一类问题的解决方式;④中给出了求+++的一个过程,最终得出结果;对于③,并没有说明如何去算,故①②④是算法,③不是算法.[答案]解答这类问题的方法为特征判断法,主要从以下三方面判断:()看是否满足顺序性.算法实际上就是顺序化的解题过程,是指可以用计算机来解决某一类问题的程序或步骤.()看是否满足明确性.算法的每一步都是确定的,而不是含糊的、模棱两可的.()看是否满足有限性.一个算法必须在有限步后结束.如果一个解题步骤永远不能结束,那么就永远得不到答案.因此,有始无终的解题步骤不是算法.此外,算法的不唯一性也要考虑到.练一练.下列语句表达中是算法的有( )①从济南到巴黎可以先乘火车到北京,再坐飞机抵达;②>+;③求()与(-,-)两点连线的方程,可先求的斜率,再利用点斜式方程求得..个.个.个.个解析:选①中说明了从济南到巴黎的行程安排,完成任务.对于②没有说明如何去做.③说明了求直线的方程的算法步骤.讲一讲.给出解方程++=(、、为实常数)的一个算法.[尝试解答] 算法步骤如下:.当=,=,=时,解集为全体实数;.当=,=,≠时,原方程无实数解;.当=,≠时,原方程的解为=-;.当≠且->时,方程有两个不等实根=,=;.当≠,-=时,方程有两个相等实根==-;.当≠且-<时,方程没有实数根.设计算法的基本要求是:()设计的算法必须能解决一类问题并且能重复使用;()算法的过程需能一步步执行,每步执行的操作必须确切,不能含糊不清,而且经过有限步运算后能得出结果;()任何算法都必须输出结果,否则是无意义的算法;()如果需要分类讨论解决的问题,那么设计的算法中,要根据条件是否成立来决定执行任务的步骤;()如果需要重复做同一种动作,那么设。
北师大版高中数学必修三学案:第二章疑难规律方法:第二章算法初步

解 第一步,输入摄氏温度C;
第二步,代入F=C×+32;
第三步,输出华氏温度F.
点评 平时计算我们只注重第二步,其他步骤往往忽略了,算法却讲究“按部就班”,这类问题的算法一般分为三步:第一步输入值,第二步套用公式,第三步输出结果.
3.判断性质型问题的算法
第四步,将第三步中的运算结果24与5相乘得120;
第五步,将第四步中的运算结果120与6相乘得720.
点评以算法好不好,还分让谁来执行,对人来讲是奇笨无比的办法,对计算机却可能是一个好办法.
思维拓展 该算法包含一个重复操作的过程是循环结构,我们可将算法改造得更为简练、科学.
北师大版高中数学必修三学案:第二章疑难规律方法:第二章算法初步
同学们也许对算法这个概念很陌生,但其实大家在日常生活中已经接触过很多算法了,广义地说,算法就是做某一件事情的步骤或程序.菜谱是做菜肴的“算法”,洗衣机的使用说明书是操作洗衣机的“算法”.每个算法都闪耀着人类的智慧,阅读和学习这些东西会给我们带来一种难以用语言表达的满足感和快感.在以后的学习和工作中我们会不断从实际应用中了解和领会算法是如何解决各个领域的实际问题,推动人类文明的发展的.
一、算法的特征
1.确定性
算法中的每条运算规则必须是明确定义的、可行的,每一个步骤只能有一个确定的后继步骤,运行终止应得到问题的解答或指出问题没有解答.
2.有限性
一个算法必须保证在执行有限步后结束,至少不能出现无限循环或死循环.在此基础上越简洁越快越好.越简洁,占用内存越少,对设备的要求越基本;越快,这个意义就不用说了吧.比如一个计算对方导弹轨迹的算法,如果等你算出来,那边导弹已经落地了,那还有什么意义?
高中数学北师大版必修3第二章《算法初步》(算法的基本思想)word教案

算法的基本思想一、教学内容:新课程高中数学(北师大版)必修3第二章《算法初步》第一节:算法的基本思想。
二、教学目标:1、通过对解决具体问题过程与步骤的分析,体会算法的思想,了解算法的含义及其基本特征;2、通过分析具体问题,抽象出算法的过程,培养抽象概括能力、语言表达能力和逻辑思维能力;3、通过算法的学习,进一步让学生体验到数学与现实世界的关系、数学与计算机技术的关系、提高学生学习数学的兴趣。
三、教学重点:1、了解算法的含义及其基本特征;2、掌握算法的表示形式。
四、教学难点:算法的表示形式。
五、教学方法:任务驱动法。
六、教学过程:(一)情景导入:在与学生的寒暄中引入今天的课题,并让学生来猜猜老师衣服的价格,提出问题:“怎样才能在有限的次数范围内猜中衣服的价格呢?”师:采用对半价格区间去猜数比较合理,在数学上我们称这种方法为“二分法”下节课我们要重点学习这种方法的应用。
师:可见我们在处理一个问题时,若是有一个好的指导思想,我们在具体行动中就不会显得很盲目,按照既定的策略,在有限的步骤内就可以达到目的。
今天我们这节课的课题就是研究有关解决问题的基本思想方法,在数学上,我们称之为“算法”。
这里的“算法”不是指狭义上的计算方法,而是广义范围内一切解决问题的思想方法。
下面我们再通过几个实例来体会一下算法的基本思想及其算法具有哪些特征。
(二)新课:师:我们先看一下书上的例子例:请设计算法,将936分解成素因素的乘积。
师:请同学们在最短的时间内分解好,提问。
=⨯⨯⨯⨯⨯生:9362223313师:请用语言描述你的思路过程。
若是学生很难用语言描述,老师要及时引导。
解:算法步骤如下:1. 判断936是否为素数:否=⨯2. 确定936的最小素因数:2. 93624683. 判断468是否为素数:否=⨯⨯4. 确定468的最小素因数:2. 936222345. 判断234是否为素数:否=⨯⨯⨯6. 确定234的最小素因数:2. 9362221177. 判断117是否为素数:否=⨯⨯⨯⨯8. 确定234的最小素因数:3. 9362223399. 判断39是否为素数:否=⨯⨯⨯⨯⨯10.确定234的最小素因数:3. 936222331311. 判断13是否为素数:是素数,分解结束 .师:以上就是分解素因数的一个算法,其实算法就是解决问题的一系列步骤,依照这些步骤,按部就班就可以完成任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[核心必知]
1.算法的概念
在解决某些问题时,需要设计出一系列可操作或可计算的步骤,通过实施这一系列步骤来解决问题,我们把这一系列步骤称为解决这个问题的一个算法.
2.算法的作用
现代算法的作用之一是使计算机能代替人完成某些工作,这是学习算法的重要原因之一.
[问题思考]
1.是不是任何一个算法都有明确结果?
提示:是,因为算法的步骤是明确的和有限的,有时可能需大量重复的计算,但只要按部就班地去做,总能得到确定的结果.
2.一个具体问题的算法唯一吗?
提示:解决一个具体问题的算法可有多个,但我们可以选择其中最优的、最简单的、步骤尽量少的算法.
讲一讲
1.下列语句中是算法的有( )
①做饭需要刷锅、淘米、加水、加热这些步骤;
②解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1;
③方程x2+2x-3=0有两个实根;
④求1+2+3+4的值,先计算1+2=3,再由3+3=6,6+4=10得最终结果是10.
A.1个B.2个 C.3个 D.4个
[尝试解答] ①说明了做饭的步骤;②中给出了一元一次方程这一类问题的解决方式;④中。