初一数学培优训练18
初一数学培优练习18

1乙甲N M P D C B A B ()D C A DC B A 初一数学培优练习班级 姓名一、选择题1.将半圆绕它的直径旋转一周形成的几何体是 ( )A .圆柱B .圆锥C .球D .正方体2.下列现象中是平移的是 ( )A .将一张纸沿它的中线折叠B .飞蝶的快速转动C .电梯的上下移动D .翻开书中的每一页纸张3. 方程2x+a-4=0的解是x=-2,则a= ( )A.-8B.8C.0D.24. 下列方程变形正确的是 ( )A.若2x-3=7,那么2x=7-3B.若3x-2=x+1 ,则3x+x=1+2C.若-2x=5,那么x=5+2D.若131=-x ,那么x=-3 5. 如图,已知线段AB=10cm ,点C 是AB 上任一点,点M 、N 分别是AC 和CB 的中点,则MN 的长度为( )A.6cm B.6 cm C.4 cm D. 3 cm6.下列说法中,正确的有( )。(1)过两点有且只有一条线段(2)连结两点的线段叫做两点的距离 (3)两点之间,线段最短(4)AB=BC,则点B 是线段AC 的中点 (5) 射线比直线短A.1个B.2个C.3个D.4个7.下列语句正确的是( )A .由两条射线组成的图形叫做角B .如右图,∠A 就是∠BACC .角的大小与这个角的两边长短有关D .角的两边是射线,所以角不可以度量8.一张桌子上摆放着若干个碟子,从三个方向上看到的三种视图如下图所示,则这张桌子上共有碟子为 ( )A .17个B .12个C . 8个D .6个9.甲、乙两人各用一张正方形的纸片ABCD 折出一个45°的角(如图),两人做法如下: 甲:将纸片沿对角线AC 折叠,使B 点落在D 点上,则∠1=45°;乙:将纸片沿AM 、AN 折叠,分别使B 、D 落在对角线AC 上的一点P ,则∠MAN =45°。
对于两人的做法,下列判断正确的是( ) A.甲乙都对 B.甲对乙错 C.甲错乙对 D.甲乙都错 10. 下列说法中,①延长直线AB 到C;②延长射线OC 到D;③反向延长射线OC 到D;④延长线段AB 到C.正确的是 .11. 若23b a m 与n ab 32是同类项,则=m ;=n .12. 从下午4时30分到4时50分,时钟的分针转了 度,时针转了 度。
初中七年级数学知识点专题讲解与练习18---简单的不定方程、方程组(培优版)

入某个一位数后变成的三位数是原来两位数的 9 倍,这样的两位数有( )个.
A.1 B.4 C.10 D.超过 10
9.李林在银行兑换了一张面额为 l00 元以内的人民币支票,兑换员不小心将支票上的 元与角、分数字看倒置了(例如,把 12.34 元看成了 34.12 元),并按着错的数字支付,
6 / 11
对.
(全国初中数学联赛试题)
解题思路:由方程特点,联想到平方差公式,利用因数分解来解答.
1 / 11
【例 2】电影票有 10 元,15 元,20 元三种票价,班长用 500 元买了 30 张电影票,其 中票价为 20 元的比票价为 10 元的多( ).
A.20 张 B.15 张 C.10 张 D.5 张 (“希望杯”邀请赛试题)
A.32 千米 B.37 千米 C.55 千米 D.90 千米
7.给出下列判断:
x = −3t
①不定方程 2x + 3y = 0 的整数解可表示为
( t 为整数).
y = 2t
②不定方程 2x + 4 y = 5 无整数解.
③不定方程 2x + 3y = 1无整数解.
其中正确的判断是( ).
A.①② B.②③ C.①③ D.①②③
8.小英在邮局买了 10 元的邮票,其中面值 0.10 元的邮票不少于 2 枚,面值 O.20 元的
4 / 11
邮票不少于 5 枚,面值 0.50 元的邮票不少于 3 枚,面值 2 元的邮票不少于 1 枚,则小
英最少买了(
)枚邮票.
A.17 B.18 C.19 D.20
(“五羊杯”邀请赛试题)
9.小孩将玻璃弹子装进两种盒子,每个大盒子装 12 颗,每个小盒子装 5 颗,若弹子
初一培优数学试题及答案

初一培优数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -2B. 0C. 3D. -5答案:C2. 以下哪个方程的解是x=2?A. 2x + 3 = 7B. 3x - 1 = 5C. x^2 - 4 = 0D. x + 4 = 6答案:D3. 如果一个数的平方是25,那么这个数是?A. 5B. -5C. 5或-5D. 0答案:C4. 一个角的补角是它的余角的两倍,这个角的度数是多少?A. 30°C. 90°D. 120°答案:B5. 一个数的绝对值是它本身,这个数是?A. 正数B. 负数C. 非负数D. 非正数答案:C6. 以下哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形答案:C7. 一个数的相反数是-3,这个数是?A. 3B. -3C. 0D. 6答案:A8. 以下哪个选项是不等式?B. 3y + 5 > 0C. 7z - 2 = 5D. 8w = 16答案:B9. 一个数的立方是-8,这个数是?A. 2B. -2C. 4D. -4答案:B10. 如果一个角的正弦值是0.5,那么这个角可能是?A. 30°B. 60°C. 90°D. 120°答案:A二、填空题(每题2分,共20分)11. 一个数的相反数是它本身,这个数是______。
答案:012. 一个角的余角是60°,那么这个角的度数是______。
答案:30°13. 如果一个数的绝对值是5,那么这个数可能是______或______。
答案:5,-514. 一个数的平方根是3,那么这个数是______。
答案:915. 一个数的立方根是2,那么这个数是______。
答案:816. 如果一个角的补角是120°,那么这个角的度数是______。
答案:60°17. 一个数的倒数是1/4,那么这个数是______。
七年级数学培优班试题及答案

七年级数学培优班选拔试题填空题(共25题,满分100)1、有一只手表每小时比准确时间慢3分钟,若在清晨4:30与准确时间对准,则当天上午手表指示的时间是10:50,准确时间应该是。
2、将正方形纸片由下往上对折,再由左向右对折,称为完成一次操作(见下图).按上边规则完成五次操作以后,剪去所得小正方形的左下角. 问:当展开这张正方形纸片后,一共有个小孔3、已知关于x的整系数的二次三项式ax2+bx+c,当x分别取1,3,6,8时,某同学算得这个二次三项式的值分别为1,5,25,50,经过验算,只有一个结果是错误的,这个错误的结果是。
4、下表记录了某次钓鱼比赛中,钓到n条鱼的选手数:n 0 1 2 3 …13 14 15 钓到n条鱼的人数9 5 7 23 … 5 2 1已知:(1)冠军钓到了15条鱼; (2)钓到3条或更多条鱼的所有选手平均钓到6条鱼; (3)钓到12条或更少鱼的所有选手平均钓到5条鱼;则参加钓鱼比赛的所有选手共钓到条鱼。
5、如图,在一个正方体的两个面上画了两条对角线AB,AC,那么这两条对角线的夹角等于度。
6、一个木制的立方体,棱长为n(n是大于2的整数),表面涂上黑色,用刀片平行于立方体的各面,将它切成3n个棱长为1的小立方体,若恰有一个面涂黑色的小立方体的个数等于没有一个面涂黑色的小立方体的个数,则n= .7、把8张不同的扑克牌交替的分发成左右两叠:左一张,右一张,左一张,右一张,……;然后把左边一叠放在右边一叠上面,称为一次操作。
重复进行这个过程,为了使扑克牌恢复到最初的次序,至少要进行操作的次数是。
8、一台大型计算机中排列着500个外形相同的同一种元件,其中有一只元件已损坏,为了找出这一元件,检验员将这些元件按1-500的顺序编号,第一次先从中取出单数序号的元件,发现其中没有坏元件,他将剩下的元件在原来的位置上又按1-250编号。
(原来的2号变成1号,原来的4号变成2号…)又从中取出单数序号的元件进行检查,仍没有发现…如此下去,检查到最后一个元件,才是坏元件。
初一数学培优经典试题及答案

初一数学培优经典试题及答案试题一:有理数的加减法题目:计算下列有理数的和:\[ 3 + (-2) + 4 + (-1) \]答案:首先,我们可以将正数和负数分别相加:\[ 3 + 4 = 7 \]\[ -2 + (-1) = -3 \]然后,将两个结果相加:\[ 7 + (-3) = 4 \]所以,最终结果是4。
试题二:绝对值的计算题目:求下列数的绝对值:\[ |-5|, |-(-3)|, |0| \]答案:绝对值表示一个数距离0的距离,不考虑正负号。
因此:\[ |-5| = 5 \]\[ |-(-3)| = |3| = 3 \]\[ |0| = 0 \]所以,这三个数的绝对值分别是5, 3, 和0。
试题三:一元一次方程的解法题目:解下列方程:\[ 2x - 3 = 7 \]答案:首先,将方程中的常数项移到等号的另一边:\[ 2x = 7 + 3 \]\[ 2x = 10 \]然后,将等式两边同时除以2,得到x的值:\[ x = \frac{10}{2} \]\[ x = 5 \]所以,方程的解是x = 5。
试题四:代数式的值题目:当a=3,b=-2时,求代数式\( ab + a - b \)的值。
答案:将给定的a和b的值代入代数式中:\[ ab + a - b = 3 \times (-2) + 3 - (-2) \]\[ = -6 + 3 + 2 \]\[ = -1 \]所以,代数式的值是-1。
试题五:几何图形的周长和面积题目:一个长方形的长是10厘米,宽是5厘米,求这个长方形的周长和面积。
答案:长方形的周长是长和宽的两倍之和:\[ 周长 = 2 \times (长 + 宽) \]\[ 周长 = 2 \times (10 + 5) \]\[ 周长 = 2 \times 15 \]\[ 周长 = 30 \] 厘米长方形的面积是长乘以宽:\[ 面积 = 长 \times 宽 \]\[ 面积 = 10 \times 5 \]\[ 面积 = 50 \] 平方厘米结束语:以上是初一数学培优的经典试题及答案,希望同学们能够通过这些题目加深对数学概念的理解和应用。
初一数学培优练习测试题(有理数)

初一数学培优练习测试题(有理数)正文第一篇:初一数学培优练习测试题(有理数)初一培优训练题(有理数)一、基础提升训练:1.关于“零”说法正确的个数有()①是整数,也是有理数;②不是正数,也不是负数;③是非正数,也是非负数;④是整数,是最小的自然数;⑤是正整数,又是负整数,不是自然数;A.5个B.4个C.3个D.2个2.在数轴上-3和+3之间的有理数有()A.3个B.4个C.5个D.无数个3.数轴上点P对应的数是-2,那么与点P的距离等于4个单位长度的点所对应的数是____4.数轴上的点A、B分别表示-1和7,数轴上的点C到A、B两点的距离相等,则点C表示的数是_____5.若|x|2,则x____;若|x|1,则x_____6.下列说法中,正确的有()①的相反数是 3.14;②符号相反数的数互为相反数;③0.5的相反数是④一个数和它的相反数不可能相等;⑤ 3.8的相反数是3.8A、0个B、1个C、2个D、3个7.绝对值小于或等于2的所有整数是______,它们的和为______8.若|x|2,|y|3,且x y,则x___,y___9.表示x,y的两点在数轴上的位置如图所示,用“<”、“=”或“>”填空:x0y1;2|x|____x,y___|y|,|x|__|y|,y___x 10.2231与的差的相反数是____,比小的数的绝对值是___,比9的相反数小33552的数是_____11.某城市的上午的气温为2℃,下午比中午下降了3℃,则此时的气温为___,晚上的最低气温下降到12℃,这天最大温差是___12.两个互为相反数的数之积()A.符号必为负B.符号必为正C.一定为非负数D.一定为非正数13.若m,n满足m n0,mn0,则()A.|m||n|B.|m||n|C.m0,n0时,|m||n|D.m0,n0时,|m||n|14.绝对值不大于4的所有负整数的积是____15.设a,b,c为三个有理数,若a b,a b0,且ac0,则a c的符号为___16.若m,n互为相反数,则5m5n5___17.若一个数比它的相反数小,则这个数是()A.正数B.负数C.整数D.非负数18.已知a,b,c,d都是有理数,且a,b互为相反数,c,d互为倒数,则3a3b2cd=__5二、提高训练题:19.如图所示,数轴上的点A、B表示的数为a和b,则点A 到原点的距离是___,点B到原点的距离为___Aa0Bb2021果4个不同的整数m,n,p,q满足7m7n7p7q4,那么m n p q__21.若ab0,则A.1 ab的值不可能是()|a||b| B.2C.0D.-222.如果abc0,b,c异号,那么a__0(填“>”、“<”、“=”)23.(111111)(1)(1)(1)(1)=___5049484324.有理数a,b,c在数轴上的位置如图所示,则|a b||b c||c a|___ab0c第二篇:新初一数学有理数的加减法——计算题练习新初一衔接数学有理数的加减法——计算题练习1、加法计算(直接写出得数,每小题1分):(1) (-6)+(-8)=(4) (-7)+(+4)=(7) -3+2=(10) (-4)+6=(2) (-4)+2.5=(5) (+2.5)+(-1.5)=(8) (+3)+(+2)=(3) (-7)+(+7)=(6) 0+(-2)=(9) -7-4=(11) 31=(12) a a=2、减法计算(直接写出得数,每小题1分):(1) (-3)-(-4)=(4) 1.3-(-2.7)=(7) 13-(-17)=(10) 0-6=(2) (-5)-10=(5) 6.38-(-2.62)=(3) 9-(-21)=(6) -2.5-4.5=(8) (-13)-(-17)=(9) (-13)-17=(11) 0-(-3)=(12) -4-2=11(15) 1 (13) (-1.8)-(+4.5)=(14) ( 6.25)=3=4433、加减混合计算题(每小题3分):(1) 4+5-11;(2) 24-(-16)+(-25)-15(3) -7.2+3.9-8.4+12(4) -3-5+7(5) -26+43-34+17-48(6) 91.26-293+8.74+191(7) 12-(-18)+(-7)-15(8) (83)(26)(41)(15)(9) ( 1.8)(0.7)(0.9) 1.3(0.2)(10) (-40)-(+28)-(-19)+(-24)-(32)(11) (+4.7)-(-8.9)-(+7.5)+(-6)(12) -6-8-2+3.54-4.72+16.46-5.28第1页4、加减混合计算题:153141(1)15(2) (-1.5)++(+3.75)+353264676742 21122231(3)551(4) 48312 3431341355第2页第3页第4页第三篇:初一数学上册有理数乘除法练习初一数学上册有理数乘除法一、计算11124111、( 1.5)4 2.75(5)2、()()()4223523115723113、484、131268248246665、(81)( 2.25)()166、(5)(3)3(7)12 397771111311187、38318、455667788382427二、填空:⑴若m,n互为相反数,则m +n =. ⑵某人转动转盘,如果沿逆时针转5圈记作+5圈,那么沿顺时针转12圈可表示成;⑶某次乒乓球质量检测中,一只乒乓球超出标准0.02克记作+0.02克,那么-0.03可表示成;三、选择题、如图,两点所表示的两数的()A.和为正数B.和为负数C.积为正数D.积为负数3、.如果,那么下列关系式中正确的是(). A. B. C.D.4. 下列说法中不正确的是()A.-5表示的点到原点的距离是5B. 一个有理数的绝对值一定是正数;C. 一个有理数的绝对值一定不是负数D. 互为相反数的两个数的绝对值一定相等. 5.一定是正数的是()A.|m|+2B.|m|C.m-3D.-|m| 6. 如果有理数a,b满足a+b>0,ab0,b|b|B.当a0时,|a|>|b|C.a>0,b>0D.a -3B、0 > mC、0> m> -3D、-3 > m4、如果0<x<1,则下列不等式成立的是()1111A、x2>>xB、>x2>xC、x>>x2D、>x>x2 xxxx5、若等式x+k=-12x+2的解x大于0,则k的取值范围是()A、-2<k<2B、-2<k<0C、k>2D、k<26、已知A、7、若二元一次方程是方程组B、的解,则、间的关系是()C、D、有正整数解,则的取值应为()A、正奇数B、正偶数C、正奇数或正偶数D、08、若关于x,y的二元一次方程组值范围是()A.-70,则k的取9、若方程组的解满足>0,则的取值范围是()A、<-1B、<1C、>-1D、>1三、计算题:(2*4分=8分)(1)2310532(2)3a3·a5a24四:因式分解:(2*4分=8分)(1) x2+5x+6(2) ac-bc+3a-3b五、先化简,再求值:(5分)(x-1)(x-2)-3x(x+3)+2(x+2)(x-1),其中x=.31六、解方程组:(4*3分=12分)x y53x4y5(1)(2)x z7x3y6y2z13(3)(4)七、(本题7分)1、如图,已知∠AOB=12021OM平分∠AOB,将等边三角形的一个顶点P放在射线OM上,两边分别与OA、OB(或其所在直线)交于点C、D.如图①,当三角形绕点P旋转到PC⊥OA时,证明:PC=PD.八、应用题:(共计20211. 某牛奶加工厂现有鲜奶9吨.若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润12021;制成奶片销售,每吨可获取利润2021元.该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨.受人员限制,两种加工方式不可同时进行.受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多,为什么?(5分)2、学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房也不满。
七年级培优班试卷数学

一、选择题(每题5分,共50分)1. 下列数中,有理数是()A. √16B. √-16C. πD. 0.1010010001…2. 下列各数中,绝对值最小的是()A. -2B. 2C. -1/2D. 1/23. 已知a、b、c是等差数列的前三项,且a=3,b=5,则c=()A. 7B. 8C. 9D. 104. 若等比数列的公比为q,首项为a,则第n项an=()A. a q^(n-1)B. a q^nC. a / q^(n-1)D. a / q^n5. 下列函数中,有最小值的是()A. y = x^2B. y = -x^2C. y = |x|D. y = √x6. 已知二次函数y = ax^2 + bx + c(a≠0),若a>0,b=0,则该函数的图像()A. 在x轴上方B. 在x轴下方C. 与x轴有两个交点D. 与x轴只有一个交点7. 在直角坐标系中,点A(2,3)关于原点的对称点是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (3,-2)8. 若直角三角形的两个锐角分别为30°和45°,则该三角形的边长比为()A. 1:√3:2B. √3:1:2C. 2:√3:1D. 2:1:√39. 在△ABC中,若∠A=45°,∠B=60°,则∠C=()A. 45°B. 60°C. 75°D. 90°10. 下列方程中,无解的是()A. 2x + 3 = 5B. 3x - 2 = 7C. 5x + 2 = 2x + 5D. 2x^2 + 3x - 2 = 0二、填空题(每题5分,共50分)11. 已知数列{an}的前三项分别为1,-1,1,则该数列的通项公式是______。
12. 若等差数列的公差为d,首项为a1,则第n项an=______。
13. 在等比数列中,若首项为a,公比为q,则第n项an=______。
2022-2023学年初一数学第二学期培优专题训练18 多项式乘多项式中的图形面积

专题18 多乘多与图形面积【例题讲解】如图,有足够多的边长为a 的小正方形(A 类),长为b 、宽为a 的长方形(B 类)及边长为b 的大正方形(C 类). 发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式,比如图②可以解释为()()22232a b a b a ab b ++=++.(1)取图①中的若干个(三种材料都要取到)拼成一个长方形,使其面积为()()22a b a b ++,画出图形,并根据图形回答:()()22a b a b ++=______________.(2)若取其中的若干个(三种材料都要取到)拼成一个长方形,使其面积为2256a ab b ++, ①你画的图中需C 类卡片___________张;②可将多项式2256a ab b ++分解因式为_____________;(3)如图③,大正方形的边长为m ,小正方形的边长为n .若用,x y 表示四个相同的长方形的两边长()x y >,观察图形并判断下列关系式:①224m n xy -=;②x y m +=;③22x y mn +=;④22222m n x y -+=,其中正确的是____________. 【解答】(1)解:拼图如图所示:所以(2a +b )(a +2b )=2a 2+5ab +2b 2,故答案为:2a 2+5ab +2b 2;(2)①a 2+5ab +6b 2即用A 型的1张,B 型的5张,C 型的6张,故答案为:6 可以拼成如图所示的图形,因此可得等式:a 2+5ab +6b 2=(a +3b )(a +2b ),故答案为:a 2+5ab +6b 2=(a +3b )(a +2b );(3)由图③可知,m =x +y ,n =x -y ,故②符合题意;因此有m +n =2x ,m -n =2y ,2222,444m n m n m n x y xy 故①符合题意;mn =(x +y )(x -y )=x 2-y 2;故③不符合题意;22222,222m n m n m n x y xy 故④不符合题意;故答案为:①②.【综合解答】1.观察图形,用两种不同的方法计算大长方形面积,我们可以验证等式( )A .(a +b )(a +2b )=a2+3ab +2b2B .(a +b )(2a +b )=2a2+3ab +b2C .(a +b )(a +2b )=2a2+3ab +b2D .(a +b (2a +b )=a2+3ab +2b22.如图,在长为32a +,宽为21b -的长方形铁片上,挖去长为24a +,宽为b 的小长方形铁片,则剩余部分面积是( )A .634ab a b -+B .432ab a --C .6382ab a b -+-D .4382ab a b -+-3.如图,请根据图中标的数据,计算大长方形的面积.通过面积不同的计算方法,可以得到的等式关系是:_____.4.(1)【观察、填空】七(1)班数学学习兴趣小组的同学在研究课本第九章的“数学活动”《拼图、公式》时,利用如图所示的正方形纸片A 类,正方形纸片B 类和长方形纸片C 类若干张(如图1),拼成一个长为(2)a b +、宽为()a b +的长方形(如图2),并用不同的方法计算面积,从而得出相应的等式.()()2a b a b ++=________,2232a ab b ++=________.(2)【拼图、填空】①请你根据上述方法,用这三类卡片在下面的方框内拼出面积为2234a ab b ++的长方形,画出拼好后的图形.(画图痕迹用2B 铅笔加粗加黑,并仿照①中图2,标出边长及各个小图形对应名称A 、B 、C );②观察拼图,通过拼图直接写出分解因式结果2234a ab b ++=________.5.学习整式乘法时,老师拿出三种型号的卡片,如图1:A 型卡片是边长为a 的正方形,B 型卡片是边长为b 的正方形,C 型卡片是长和宽分别为a ,b 的长方形.(1)选取1张A 型卡片,2张C 型卡片,1张B 型卡片,在纸上按照图2的方式拼成一个长为()a b +的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式____________;(2)请用这3种卡片拼出一个面积为2243a ab b ++的长方形(数量不限),在图3的虚线框中画出示意图,并在示意图上按照图2的方式标注好长方形的长与宽;(3)选取1张A 型卡片,4张C 型卡片按图4的方式不重叠地放在长方形DEFG 框架内,图中两阴影部分(长方形)为没有放置卡片的部分.已知GF 的长度固定不变,DG 的长度可以变化,图中两阴影部分(长方形)的面积分别表示为1S ,2S .若21S S S =-,则当a 与b 满足____时,S 为定值,且定值为______.(用含b 的代数式表示)6.将图1中的长方形纸片剪成1号、2号、3号、4号四个正方形和5号长方形,1号正方形的边长为x ,2号正方形的边长为y .(1)求5号长方形的面积(用含x ,y 的代数式表示);(2)若图1中长方形的周长为24.①若2号正方形与1号正方形的面积差为3,求5号长方形的面积;②将图1中的1号、2号、3号、4号四个正方形和5号长方形按图2的方式放入周长为40的长方形中,则没有覆盖的阴影部分的周长为________.7.提出问题:怎么运用矩形面积表示(y +2)(y +3)与2y +5的大小关系(其中y >0)?几何建模:(1)画长y +3,宽y +2的矩形,按图方式分割(2)变形:2y +5=(y +2)+(y +3)(3)分析:图中大矩形的面积可以表示为(y +2)(y +3);阴影部分面积可以表示为(y +3)×1,画点部分的面积可表示为y +2,由图形的部分与整体的关系可知:(y +2)(y +3)>(y +2)+(y +3),即(y +2)(y +3)>2y +5归纳提炼:当a >2,b >2时,表示ab 与a +b 的大小关系.根据题意,设a =2+m ,b =2+n (m >0,n >0),要求参照上述研究方法,画出示意图,并写出几何建模步骤(用铅笔画图,并标注相关线段的长)8.(1)探究:我们小学时学过乘法分配律a (b +c )=ab +ac .下面我们用等积法证明乘法分配律:如图,方法一:长方形ABCD 的一边长为a ,另一边长为(b +c ),所以长方形ABCD 的面积为a (b +c ); 方法二,长方形ABFE 的面积为ab ,长方形CDEF 的面积为ac ,所以长方形ABCD 的面积为(ab +ac ),所以a (b +c )=ab +ac .我们把这种用两种不同的方式表示同一图形面积的方法称为等积法.(2)应用请你用等积法,画出图形,并仿照上面的说理方法证明:(a +b )(c +d )=ac +ad +bc +bd ;(3)拓展请直接写出(a +b )(c +d +e )= .9.我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式,例如图1可以得到222()2a b a ab b +=++,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:____________________;(2)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,求222a b c ++的值;(3)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张宽、长分别为a ,b 的长方形纸片拼出一个面积为(2)(2)a b a b ++长方形,请画出图形并根据图形回答:x y z ++=__________;(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x 的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:__________.10.我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到222()2a b a ab b +=++,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式: .(2)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++= .(3)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张宽、长分别为a 、b 的长方形纸片拼出一个面积为(2a +b )(a +2b )长方形,则x +2y +z = .(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x 的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式: .11.数学活动活动材料现有若干块如图①所示的正方形和长方形硬纸片.活动要求用若干块这样的正方形和长方形硬纸片拼成一个新的长方形,通过不同的方法计算面积,探求相应的等式.例如,由图②,我们有()()22322a ab b a b a b ++=++或()()22232a b a b a ab b ++=++.问题:(1)选取正方形、长方形硬纸片共8块,拼出一个如图③的长方形,计算它的面积,并写出相应的等式;(2)试借助拼图的方法,把二次三项式2223a ab b ++分解因式,并把所拼的图形画在虚线方框内.(3)将2223b ab a -+分解因式(直接写出结果,不需要画图).12.学习整式乘法时,老师拿出三种型号的卡片,如图1;A 型卡片是边长为a 的正方形,B 型卡片是边长为b 的正方形,C 型卡片是长和宽分别为a ,b 的长方形.(1)选取1张A 型卡片,2张C 型卡片,1张B 型卡片,在纸上按照图2的方式拼成一个长为()a b +的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式_______;(2)请用这3种卡片拼出一个面积为2256a ab b ++的长方形(数量不限),在图3的虚线框中画出示意图,并在示意图上按照图2的方式标注好长方形的长与宽;(3)选取1张A 型卡片,4张C 型卡片按图4的方式不重叠地放在长方形DEFG 框架内,图中两阴影部分(长方形)为没有放置卡片的部分,已知GF 的长度固定不变,DG 的长度可以变化,图中两阴影部分(长方形)的面积分别表示为1S ,2S .若21S S S =-,则当a 与b 满足______时,S 为定值,且定值为________.(用含a 或b 的代数式表示)13.【活动材料】若干个如图1所示的长方形和正方形硬纸片【活动要求】用若干块这样的长方形和正方形硬纸片拼成一个新的长方形,通过不同的方法计算面积,探求相应的等式.例如,由图2,我们可以得到22(32)()2a ab b a b a b ++=++,或22(2)()32a b a b a ab b ++=++.【问题解决】(1)选取正方形、长方形硬纸片共8块,拼出如图3的长方形,直接写出相应的等式______;(2)尝试借助拼图的方法,把二次三项式2223a ab b ++分解因式,并把所拼的图形画在图4的虚线方框内.(3)将2223b ab a -+分解因式:______(直接写出结果,不需要画图).14.把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b )(a+b )=a 2+3ab+2b 2.(1)由图2,可得等式 ;(2)利用(1)所得等式,解决问题:已知a+b+c =11,ab+bc+ac =38,求a 2+b 2+c 2的值.(3)如图3,将两个边长为a 、b 的正方形拼在一起,B ,C ,G 三点在同一直线上,连接BD 和BF ,若这两个正方形的边长a 、b 如图标注,且满足a+b =10,ab =20.请求出阴影部分的面积.(4)图4中给出了边长分别为a 、b 的小正方形纸片和两边长分别为a 、b 的长方形纸片,现有足量的这三种纸片.①请在下面的方框中用所给的纸片拼出一个面积为2a 2+5ab+2b 2的长方形,并仿照图1、图2画出拼法并标注a 、b ;②研究①拼图发现,可以分解因式2a 2+5ab+2b 2= .15.一天,小明和小玲玩纸片拼图游戏,发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式,比如图②可以解释为:22(2)()32a b a b a ab b ++=++(1)图③可以解释为等式:.(2)要拼出一个长为a+3b,宽为2a+b的长方形,需要如图所示块,块,块.(3)如图④,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个小长方形的两边长(x>y),观察图案,以下关系式正确的是(填序号).①224m nxy-=,②x y m+=,③22x y m n-=⋅,④22222m nx y++=16.一天,小明和小红玩纸片拼图游戏.发现利用图①中的三种材料各若干可以拼出一些图形来解释某些等式,比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2.(1)图③可以解释为等式:.(2)图④中阴影部分的面积为.观察图④请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是.(3)如图⑤,小明利用7个长为b,宽为a的长方形拼成如图所示的大长方形;①若AB=4,若长方形AGMB的面积与长方形EDHN的面积的差为S,试计算S的值(用含a,b 的代数式表示)②若AB为任意值,且①中的S的值为定值,求a与b的关系.17.我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题:(1)根据如图2,写出一个代数恒等式:.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.(3)小明同学用如图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b 的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z=.(4)两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成如图4.请你根据如图中图形的关系,写出一个代数恒等式,并写出推导过程.18.当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式.例如:由图①,可得等式(a+2b)(a+b)=a2+3ab+2b2.(1)由图②,可得等式_________________________________________________;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)利用图③中的纸片(足够多)画出一种拼图,使该拼图可用来验证等式:2a2+5ab+2b2=(2a+b)(a +2b);(4)小明用2张边长为a的正方形、3张边长为b的正方形、5张邻边长分别为a,b的长方形纸片重新拼出一个长方形,那么该长方形较长的一条边长为____________.19.我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请回答下列问题:(1)写出图2中所表示的数学等式:_____________.(2)利用(1)中所得的结论,解决下列问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)图3中给出了若干个边长为a和边长为b的小正方形纸片及若干个长为b、宽为a的长方形纸片.①请按要求利用所给的纸片拼出一个几何图形,并画在所给的方框内,要求所拼的几何图形的面积为2a2+5ab+2b2;②再利用另一种计算面积的方法,可将多项式2a2+5ab+2b2分解因式,即2a2+5ab+2b2=________.专题18 多乘多与图形面积【例题讲解】如图,有足够多的边长为a 的小正方形(A 类),长为b 、宽为a 的长方形(B 类)及边长为b 的大正方形(C 类). 发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式,比如图②可以解释为()()22232a b a b a ab b ++=++.(1)取图①中的若干个(三种材料都要取到)拼成一个长方形,使其面积为()()22a b a b ++,画出图形,并根据图形回答:()()22a b a b ++=______________.(2)若取其中的若干个(三种材料都要取到)拼成一个长方形,使其面积为2256a ab b ++, ①你画的图中需C 类卡片___________张;②可将多项式2256a ab b ++分解因式为_____________; (3)如图③,大正方形的边长为m ,小正方形的边长为n .若用,x y 表示四个相同的长方形的两边长()x y >,观察图形并判断下列关系式:①224m n xy -=;②x y m +=;③22x y mn +=;④22222m n x y -+=,其中正确的是____________.【解答】(1)解:拼图如图所示:所以(2a +b )(a +2b )=2a 2+5ab +2b 2, 故答案为:2a 2+5ab +2b 2;(2)①a 2+5ab +6b 2即用A 型的1张,B 型的5张,C 型的6张, 故答案为:6 可以拼成如图所示的图形,因此可得等式:a 2+5ab +6b 2=(a +3b )(a +2b ), 故答案为:a 2+5ab +6b 2=(a +3b )(a +2b );(3)由图③可知,m =x +y ,n =x -y ,故②符合题意; 因此有m +n =2x ,m -n =2y ,2222,444m n m nm n x y xy 故①符合题意;mn =(x +y )(x -y )=x 2-y 2;故③不符合题意;22222,222m n m nm n x y xy 故④不符合题意;故答案为:①②.【综合解答】1.观察图形,用两种不同的方法计算大长方形面积,我们可以验证等式( )A .(a +b )(a +2b )=a2+3ab +2b2B .(a +b )(2a +b )=2a2+3ab +b2C .(a +b )(a +2b )=2a2+3ab +b2D .(a +b (2a +b )=a2+3ab +2b2 【答案】A【分析】根据图形,大长方形面积等于三个小正方形面积加上三个小长方形的面积和,列出等式即可.【解答】解:∵长方形的面积=(a +b )(a +2b ) 长方形的面积=a 2+ab +ab +ab +b 2+b 2= a2+3ab +2b2, ∴(a +b )(a +2b )= a 2+3ab +2b 2 故选:A .【点评】本题考查多项式乘以多项式的几何意义,通过几何图形之间的数量关系对多项式乘以多项式做出几何解释.2.如图,在长为32a +,宽为21b -的长方形铁片上,挖去长为24a +,宽为b 的小长方形铁片,则剩余部分面积是( )A .634ab a b -+B .432ab a --C .6382ab a b -+-D .4382ab a b -+-【答案】B【分析】根据长方形的面积公式分别计算出大长方形、小长方形的面积,再进行相减即可得出答案. 【解答】解:(32)(21)(24)a b b a +--+ 634224ab a b ab b =-+---432ab a =--,故剩余部分面积是432ab a --, 故选B .【点评】本题考查了多项式乘多项式、整式的混合运算,解题的关键是掌握长方形的面积公式. 3.如图,请根据图中标的数据,计算大长方形的面积.通过面积不同的计算方法,可以得到的等式关系是:_____.【答案】()()2232325a b a b a b ab ++=++【分析】先利用长乘以宽表示大长方形的面积,再利用3个边长为a 的小正方形、2个边长为b 的小正方形、5个长宽分别为b 和a 的长方形面积和表示即可得到等式. 【解答】解:长方形的面积可以表示为()()32a b a b ++, 长方形的面积还可以表示为22325a b ab ++,∴()()2232325a b a b a b ab ++=++.故答案为:()()2232325a b a b a b ab ++=++.【点评】本题考查了用代数式表示图形的面积,解题关键是理解整体与局部的关系,即局部面积之和等于整体面积.4.(1)【观察、填空】七(1)班数学学习兴趣小组的同学在研究课本第九章的“数学活动”《拼图、公式》时,利用如图所示的正方形纸片A 类,正方形纸片B 类和长方形纸片C 类若干张(如图1),拼成一个长为(2)a b +、宽为()a b +的长方形(如图2),并用不同的方法计算面积,从而得出相应的等式.()()2a b a b ++=________,2232a ab b ++=________.(2)【拼图、填空】①请你根据上述方法,用这三类卡片在下面的方框内拼出面积为2234a ab b ++的长方形,画出拼好后的图形.(画图痕迹用2B 铅笔加粗加黑,并仿照①中图2,标出边长及各个小图形对应名称A 、B 、C );②观察拼图,通过拼图直接写出分解因式结果2234a ab b ++=________.【答案】(1) 2232a ab b ++ ()()2a b a b ++ (2)①见解析;②()()3a b a b ++【分析】(1)根据长方形的面积公式可以写出长方形的面积,六个图形的面积之和也等于长方形的面积,即可得出答案;(2)①根据2234a ab b ++为3个边长为a 的正方形、4个长方形和1个边长为b 的正方形的面积之和,用这些图形拼成一个大长方形即可;②根据拼成的长方形的长和宽表示出长方形的面积,即可得出结果. (1)解:∵大长方形由1个正方形A、三个长方形C和2个正方形B组成, ∴大长方形的面积为:2232S a ab b =++,∴()()2223a b a b a ab b ++=++;()()2232a ab b a b a b ++=++.故答案为:2232a ab b ++;()()2a b a b ++. (2)①∵大长方形的面积为2234a ab b ++,∴大长方形由3个A ,4个C 和1个B 组成,如图所示:②根据上图可知,大长方形的长为3a b +,宽为a b +,面积为()()3a b a b ++,∴()()22343a ab b a b a b ++=++.故答案为:①见解析;②()()3a b a b ++.【点评】本题主要考查了用图形法分解因式,根据示例和多项式的特点构建几何图形,拼接大长方形是解题的关键.5.学习整式乘法时,老师拿出三种型号的卡片,如图1:A 型卡片是边长为a 的正方形,B 型卡片是边长为b 的正方形,C 型卡片是长和宽分别为a ,b 的长方形.(1)选取1张A 型卡片,2张C 型卡片,1张B 型卡片,在纸上按照图2的方式拼成一个长为()a b +的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式____________;(2)请用这3种卡片拼出一个面积为2243a ab b ++的长方形(数量不限),在图3的虚线框中画出示意图,并在示意图上按照图2的方式标注好长方形的长与宽;(3)选取1张A 型卡片,4张C 型卡片按图4的方式不重叠地放在长方形DEFG 框架内,图中两阴影部分(长方形)为没有放置卡片的部分.已知GF 的长度固定不变,DG 的长度可以变化,图中两阴影部分(长方形)的面积分别表示为1S ,2S .若21S S S =-,则当a 与b 满足____时,S 为定值,且定值为______.(用含b 的代数式表示) 【答案】(1)()2a b +=222a ab b ++ (2)见解析(3)2a b =时,24S b【分析】(1)用两种方法表示图2的面积,即可得出公式;(2)由a 2+4ab +3b 2可得A 型卡片1张,B 型卡片3张,C 型卡片4张,根据题意画出图形即可; (3)设DG 的长为x ,求出S 1,S 2即可解决问题. (1)解:方法1:大正方形的面积为(a +b )2, 方法2:图中四部分的面积和为a 2+2ab +b 2, ∴(a +b )2=a 2+2ab +b 2, 故答案为:(a +b )2=a 2+2ab +b 2; (2)解:如图3,(3)解:设DG 的长为x ,∵S 1=a [x -(a +2b )]=ax -a 2-2ab ,S 2=2b (x -a )=2bx -2ab , ∴S =S 2-S 1=2bx -2ab -(ax -a 2-2ab ) =(2b -a )x +a 2, 若S 为定值,则2b -a =0, ∴a =2b ,∴当a 与b 满足a =2b 时,S 为定值,且定值为24b , 故答案为:a =2b ,24b .【点评】本题考查了完全平方公式,完全平方公式的几何背景,掌握完全平方公式的特点,数形结合的数学思想是解决问题的关键.6.将图1中的长方形纸片剪成1号、2号、3号、4号四个正方形和5号长方形,1号正方形的边长为x ,2号正方形的边长为y .(1)求5号长方形的面积(用含x ,y 的代数式表示); (2)若图1中长方形的周长为24.①若2号正方形与1号正方形的面积差为3,求5号长方形的面积;②将图1中的1号、2号、3号、4号四个正方形和5号长方形按图2的方式放入周长为40的长方形中,则没有覆盖的阴影部分的周长为________. 【答案】(1)2223xy y x +- (2)①2223xy y x +-;②34【分析】(1)表示出5号长方形的长和宽即可;(2)①根据2号正方形与1号正方形的面积差为3,以及图1中长方形的周长为24可以列方程求出x 、y 的值,代入第(1)问式子中计算即可; ②表示出阴影部分周长,最后整体代入求值即可 (1)由图形可知:3号正方形的边长为:x y +, 4号正方形的边长为:2x y +5号长方形的长为:3x y +,宽为:y x -∴5号长方形的面积为:22(3)()23+-=+-x y y x xy y x (2)①∵长方形的长为:232+++=+x y x y x y ,宽为:2++=+x y y x y 又长方形的周长为24, ∴2(322)24+++=x y x y , ∴3x y +=∵2号正方形与1号正方形的面积差为3, ∴223y x -=, ∴()()3+-=y x y x ∵3x y +=, ∴1y x -=,∴12x y =⎧⎨=⎩把1,2x y ==代入2223xy y x +-得5号长方形的面积为5 ②∵图1中长方形的周长为24 ∴2(322)24+++=x y x y , ∴3x y +=如图,可得:没有覆盖的阴影部分的周长为四边形ABCD 的周长,∵()(2)()23BC x y x y y x x y =++++-=+ 且图2的大长方形周长为40,∴()402AB x y BC +++=, ∴20()17AB BC x y -+=+=∴四边形ABCD 的周长为2()34AB BC +=【点评】本题考查整式加减的应用,设出未知数,列代数式表示各线段进而解决问题是关键. 7.提出问题:怎么运用矩形面积表示(y +2)(y +3)与2y +5的大小关系(其中y >0)? 几何建模:(1)画长y +3,宽y +2的矩形,按图方式分割 (2)变形:2y +5=(y +2)+(y +3)(3)分析:图中大矩形的面积可以表示为(y +2)(y +3);阴影部分面积可以表示为(y +3)×1,画点部分的面积可表示为y +2,由图形的部分与整体的关系可知: (y +2)(y +3)>(y +2)+(y +3),即(y +2)(y +3)>2y +5 归纳提炼:当a >2,b >2时,表示ab 与a +b 的大小关系.根据题意,设a =2+m ,b =2+n (m >0,n >0),要求参照上述研究方法,画出示意图,并写出几何建模步骤(用铅笔画图,并标注相关线段的长)【答案】ab >a +b .见解析【分析】画长为2+m ,宽为2+n 的矩形,并按图方式分割.图中大矩形面积可表示为(2+m )(2+n ),阴影部分面积可表示为2+m 与2+n 的和.由图形的部分与整体的关系可知ab >a +b . 【解答】解:(1)画长为2+m ,宽为2+n 的矩形,并按图方式分割. (2)变形:a +b =(2+m )+(2+n )(3)分析:图中大矩形面积可表示为(2+m )(2+n );阴影部分面积可表示为2+m 与2+n 的和.由图形的部分与整体的关系可知,(2+m )(2+n )>(2+m )+(2+n ),即ab >a +b .【点评】本题主要考查了作图-应用与设计作图及整式的混合运算,解题的关键是利用数形结合思想建立了代数(速算、方程与不等式等)与几何图形之间的内在联系. 8.(1)探究:我们小学时学过乘法分配律a (b +c )=ab +ac .下面我们用等积法证明乘法分配律:如图,方法一:长方形ABCD 的一边长为a ,另一边长为(b +c ),所以长方形ABCD 的面积为a (b +c ); 方法二,长方形ABFE 的面积为ab ,长方形CDEF 的面积为ac ,所以长方形ABCD 的面积为(ab +ac ),所以a (b +c )=ab +ac .我们把这种用两种不同的方式表示同一图形面积的方法称为等积法.(2)应用请你用等积法,画出图形,并仿照上面的说理方法证明:(a +b )(c +d )=ac +ad +bc +bd ;(3)拓展请直接写出(a +b )(c +d +e )= .【答案】(2)证明见解析;(3)ac ad ae bc bd be +++++【分析】(2)画出图形,并仿照(1)的说理方法证明即可;(3)根据(1)的方法画出图形,进行计算即可.【解答】(2)如图,方法一:长方形ABCD 的一边长为()a b +,另一边长为()c d +,所以长方形ABCD 的面积为()()a b c d ++;方法二,长方形AGOE 的面积为ac ,长方形EODH 的面积为ad ,长方形GOFB 的面积为bc ,长方形OFCH 的面积为bd ,所以长方形ABCD 的面积为(ac ad bc bd +++),所以()()a b c d ac ad bc bd ++=+++.(3)如图,同理可得:方法一可得长方形ABCD 的面积为()()a b c d e +++,方法二可得长方形ABCD 的面积为ac ad ae bc bd be +++++∴()()a b c d e ac ad ae bc bd be +++=+++++故答案为:ac ad ae bc bd be +++++【点评】本题考查了多项式乘法与图形面积的关系,数形结合是解题的关键.9.我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式,例如图1可以得到222()2a b a ab b +=++,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:____________________;(2)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,求222a b c ++的值;(3)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张宽、长分别为a ,b 的长方形纸片拼出一个面积为(2)(2)a b a b ++长方形,请画出图形并根据图形回答:x y z ++=__________;(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x 的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:__________.【答案】(1)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;(2)30;(3)9;(4)x 3−x =(x +1)(x −1)x 【分析】(1)依据正方形的面积=(a +b +c )2;正方形的面积=a 2+b 2+c 2+2ab +2ac +2bc ,可得等式;(2)依据(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ,进行计算即可;(3)依据画出图形,即可得到x ,y ,z 的值,进而即可求解;(4)根据原几何体的体积=新几何体的体积,列式可得结论.【解答】解:(1)由图2得:正方形的面积=(a +b +c )2;正方形的面积=a 2+b 2+c 2+2ab +2ac +2bc ,∴(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ,故答案为:(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;(2)∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ,∵10a b c ++=,35ab ac bc ++=,∴102=a 2+b 2+c 2+2×35,∴a 2+b 2+c 2=100−70=30;(3)如图所示:∴x =2,y =2,z =5,∴x +y +z =9,故答案为:9;(4)∵原几何体的体积=x 3−1×1•x =x 3−x ,新几何体的体积=(x +1)(x −1)x ,∴x 3−x =(x +1)(x −1)x .故答案为:x 3−x =(x +1)(x −1)x .【点评】本题主要考查的是整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.10.我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到222()2a b a ab b +=++,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式: .(2)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++= .(3)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张宽、长分别为a 、b 的长方形纸片拼出一个面积为(2a +b )(a +2b )长方形,则x +2y +z = .(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x 的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式: .【答案】(1)()2222222a b c a b c ab ac bc ++=+++++;(2)30;(3)11;(4)3(1)(1)x x x x x -=-+【分析】(1)依据正方形的面积=(a +b +c )2;正方形的面积=a 2+b 2+c 2+2ab +2ac +2bc ,可得等式;(2)依据a 2+b 2+c 2=(a +b +c )2-2ab -2ac -2bc ,进行计算即可;(3)依据所拼图形的面积为:xa 2+yb 2+zab ,而(2a +b )(a +2b )=2a 2+4ab +ab +2b 2=2a 2+5b 2+2ab ,即可得到x ,y ,z 的值.(4)根据原几何体的体积=新几何体的体积,列式可得结论.【解答】解:(1)由图2得:正方形的面积可表示为(a +b +c )2,正方形的面积也可表示为a 2+b 2+c 2+2ab +2ac +2bc ,∴(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ,故答案为:(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;(2)∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ,∵a +b +c =10,ab +ac +bc =35,∴102=a 2+b 2+c 2+2×35,∴a 2+b 2+c 2=100-70=30,故答案为:30;(3)由题意得:(2a +b )(a +2b )=xa 2+yb 2+zab ,∴2a 2+5ab +2b 2=xa 2+yb 2+zab ,∴x =2,y =2,z =5,∴x +2y +z =11,故答案为:11;(4)∵原几何体的体积=x 3-1×1•x =x 3-x ,新几何体的体积=(x +1)(x -1)x ,∴x 3-x = x (x +1)(x -1).故答案为:x 3-x = x (x +1)(x -1).【点评】本题主要考查的是整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.11.数学活动活动材料现有若干块如图①所示的正方形和长方形硬纸片.活动要求用若干块这样的正方形和长方形硬纸片拼成一个新的长方形,通过不同的方法计算面积,探求相应的等式.例如,由图②,我们有()()22322a ab b a b a b ++=++或()()22232a b a b a ab b ++=++.问题:(1)选取正方形、长方形硬纸片共8块,拼出一个如图③的长方形,计算它的面积,并写出相应的等式;(2)试借助拼图的方法,把二次三项式2223a ab b ++分解因式,并把所拼的图形画在虚线方框内.(3)将2223b ab a -+分解因式(直接写出结果,不需要画图).【答案】(1)2243a ab b ++,()()22343a b a b a ab b ++=++或()()22433a ab b a b a b ++=++;(2)()()22232a ab b a b a b ++=++,作图见解析;(3)()()22232b ab a b a b a -+=--.【分析】(1) 根据图形分析,正方形、长方形硬纸片8块拼成了一个大长方形的面积,利用面积相等即可求得等式;(2)根据题意得这个图形有6块纸片构成,2个小正方形,1个大正方形,3个长方形,拼成一个大长方形,画出长方形即可;(3)依据代数式画出图形,注意式子中有一个减号,所以拼出来的图形是一个长方形,减去了一部分,然后根据图形可以分解因式.【解答】解:(1)由图③的,共有8块硬纸片拼成,其中1个小正方形,3个大正方形,4个长方形,所以面积为:2243a ab b ++,∴()()22343a b a b a ab b ++=++或()()22433a ab b a b a b ++=++;(2)()()22232a ab b a b a b ++=++,所拼图形如图:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学培优训练----期末专练●一.填空题1.我市某天最高气温是9°,最低气温是零下2°C ,那么当天的最大温差是 °C . 2.若a 、b 互为相反数,且都不为零,则ba的值为 . 3.写出一个系数为负数,含字母x 、y 的五次单项式,这个单项式可以为 . 4.若144+n y x 与25y x m -的和仍为单项式,则=+n m .5.小明的家在车站O 的东偏北18°方向300米A 处,学校B 在车站O 的南偏西10°方向200米处,小明上学经车站所走的角∠AOB = .6.如图,若∠AOC = 90°,∠AOB =∠COD ,则∠BOD 的度数为_________.7.已知有理数a 在数轴上的位置如图:则=+a a .8.已知点B 在线段AC 上,AB =6cm ,BC =12cm , P 、Q 分别是AB 、AC 中点,则PQ = cm. 9.当x =_________时,代数式x -1与2x +10的值互为相反数.10.一列火车匀速行驶,经过一条长300m 的隧道需要19 s 的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是9 s .则火车的长度是 m . 11.如图,CD AB ⊥于点BE B ,是ABD ∠的平分线,则=∠CBE °. 二.选择题(下列各小题均有四个答案,其中只有一个是正确的) 12.-2012的倒数是( )A .20121 B .20121- C .2012 D .2012- 13.光年是天文学中的距离单位,1光年大约是9500 000 000 000km ,用科学计数法表示为( )A .1010950⨯ km B .111095⨯ km C .12105.9⨯ km D .131095.0⨯ km 14.如下图是一块带有圆形空洞和正方形空洞(圆面直径与正方形边长相等)的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的可能是 ( )a10 (第7题)(第11题)OABCD(第6题)15.下列关系一定成立的是( )A .若b a =,则b a =B .若b a =,则b a =C .若b a -=,则b a =D .若b a -=,则b a =16.某项工作,甲单独做4天完成,乙单独做6天完成.若甲先做1天,然后甲、乙合作完成此项工作.若设甲一共做了x 天,则所列方程为( )A .1641=++x x B .1614=++x x C . 1614=-+x x D .161414=+++x x 17.下列四种说法:①因为AM=MB ,所以M 是AB 中点;②在线段AM 的延长线上取一点B ,如果AB=2AM ,那么M 是AB 的中点;③因为M 是AB 的中点,所以AM=MB=21AB ;④因为A 、M 、B 在同一条直线上,且AM=BM ,所以M 是AB 中点,其中正确的是( )A . ②③④B . ④C .①③④D . ③④三.解答题 1.计算题(1)248()(48)(8)3⨯---÷- (2)23(35)(2)5(2)--+-⨯+-2.解下列方程(1)29)5(25=--x x (2)3+1322210x x --=3.已知352+=a A ,b a a B 2223-=,2622-+=b a a C ,求2,1=-=b a 时,C B A +-2的值.4.请观察下面的点阵图和相应的等式,探究其中的规律:⑴ 211=;②2231=+;③23531=++;… ⑴ 别写出④和⑤相应的等式;⑵通过猜想写出与第n 个点阵图相对应的等式.5.如图,∠AOB 是平角,OM 、ON 分别是∠AOC、∠BOD 的平分线. (1)已知∠AOC =30°,∠BOD =60°,求∠MON 的度数;(2)如果只已知“∠COD =90°”,你能求出∠MON 的度数吗?如果能,请求出;如果不能,请说明理由.期末专练2 一 选择题1.在代数式 -2x 2、3xy 、a b 、-3xy、0、mx -ny 中,整式的个数是( ) A.2 B.3 C.4 D.5 2.如果一个有理数的绝对值是5,那么这个数一定是( ) A.5 B.-5 C.-5或5 D.以上都不对 3.下列各组数中,互为相反数的是( )A.2与21B .(- 1)2与1 C.-1与(- 1)2 D.2与| -2|4.下列结论正确的是( )A.xyz 的系数为0B.3x 2-x+1 中一次项系数为-1C.a 2b 3c 的次数为5D.a 2-33是一个三次二项式OBNDC MA①②③④⑤5.下列各组整式中,不属于同类项的是( )A.—1和2B.x 2y 和4×105 x 2yC.a 54 b 和54 b 2a D.3x 2y 和—3x 2y6.现规定一种运算:a*b=ab+a-b ,其中a 、b 为有理数,则3*5的值为( ) A.11 B.12 C.13 D.14 7.下列变形正确的是( )25x 2x 5(A)--=-=得由 51y 05y (B)==得由 2x 3x 553x 2x )C (-=-+=得由23x 23x )D -=-=得由( 8.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店 ( ) A.不赔不赚 B.赚了10元 C.赔了10元 D.赚了50元9.如图的几何体,从左面看到的是( )DC B A10.方程532=+x ,则106+x 等于( ).A.15B.16C.17D.3411A .618B .638C .658 D .67812.如图所示的正方体的展开图是( )13.如图,把弯曲的河道改直,能够缩短航程这样做依据的道理是( ) A.两点之间,直线最短 B.两点确定一条直线 C.两点之间,线段最短 D.两点确定一条线段 14.如图,点A位于点O 的( )方向上A.南偏东35° B.北偏西65° C.南偏东65° D.南偏西65°二 填空题1.水星和太阳的平均距离约为57900000 km 用科学记数法表示为 km.2.收割一块小麦,第一组需要5小时收割完,第二组需要7小时收割完.第一组收割1小时后再增加第二组一起收割,两组共同收割了x 小时完成任务,列方程得 .C B3.已知x=1是关于x 的方程2x )x a (32=+-的解,则a= . 4.如果2-a +2)1(+b =0,那么=a ,=b . 5.①°; ②0.5°=______′=______″.③3.760=___°___′____″;④15°48′36″+37°27′59″=________. 三 解答题 1.计算题(1)22)10(5512--⨯÷- (2))21(2)4(23)2()5(2008)1(-÷--⎥⎦⎤⎢⎣⎡+-⨯-+-2.解方程(1)0262921=---x x (2)1352=+-xx3.化简求值:5(3a 2b -ab 2) -(ab 2+3a 2b), 其中a=21,b=31.4.某班准备外出春游,有3名教师参加.有甲乙两家旅行社,其收费标准都一样,但都表示可以优惠师生.甲旅行社承诺:教师免费,学生按8折收费;乙旅行社承诺:师生一律按7折收费.问:(1)如果由旅行社筹办春游活动,在什么条件下,两家旅行社所收费用相等. (2)如果这个班有45名学生,选择哪家旅行社较恰当.请说明选择的理由.5.如图,点A 、O 、E 在同一直线上,∠AO B=40°,∠EOD=28°46′,OD 平分∠COE , 求∠CO B 的度数.6.用如图所示的曲尺形框框(有三个方向),可以套住下表中的三个数.设被框住的三个数中(第一个框框住的最小的数为a 、第二个框框住的最小的数为b 、第三个框框住的最小的数为c ).(1)第一个框框住的三个数中最小的数为a,三个数的和是: .第二个框框住的三个数中最小的数为b,三个数的和是: . 第三个框框住的三个数中最小的数为c,三个数的和是: ,(2)这三个框框住的数的和能是48吗?若能,请求出最小的数a 、b 、c 的值.●1.A 厂库存钢材为100吨,每月用去15吨;B 厂库存钢材82吨,每月用去9吨.若经过x 个月后,两厂库存钢材相等,则x 是( )A .3B .5C .2D .42.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( )A .80元B .85元C .90元D .95元 3.下列等式变形正确的是( )A.如果ab s =,那么asb =B.如果x=6,那么x=3C.如果x -3=y -3,那么x -y =0D.如果m x =m y ,那么x =yOED CB A⋅⋅⋅⋅⋅282726252324222120191817161514131211109876543214.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中的一支是另一支的一半,停电时间为( )小时.A.2 B .512C.3D. 255.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分,若一个队打了14场比赛得17分,其中负了5场,那么这个队胜了( )场。
A .3B .4C .5D .66.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船3h ,已知船在静水中的速度是8km/h ,水流速度是2km/h ,若A 、C 两地距离为2km,则A 、B 两地间的距离是_________km.7.某服装专卖店老板对第一季度男、女服装的销售收入进行统计,并绘制了如图的扇形统计图.由于三月份展开促销活动,男女服装的销售收入分别比二月份增长了40%,64%,已知第一季度男女服装的销售总收入为20万元.(1)二月份销售收入为_______万元.三月份销售收入为______万元.(2)二月份男女服装的销售收入分别是多少万元?8.已知关于x 的方程432x m -=的解是x m =,则m 的值是( )A.2 B .-2 C .27 D .-27.9.一天,小明在家和学校之间行走.他测了一下在无风时的速度是50米/分,从家到学校用了15分钟,从原路返回用了18分钟20秒,设风的速度是x 米/分,则所列方程为( ) A .)50(2.18)50(15x x -=+ B .)50(2.18)50(15x x +=- C .)50(355)50(15x x -=+ D .)50(355)50(15x x +=- 10.某专卖店2014年的营业额统计发现第二个月比第一个月增长10%,第三个月比第二个月减少10%,那么第三个月比第一个月( )A.增加10%B.减少10%C.不增不减D.减少1%11.若x=-3是方程3(x-a)=7的解,则a=________.12.如果方程2x +1=3的解也是方程2-3a x=0的解,那么a 的值是( ) A.7 B.5 C.3 D.213.某商店的老板销售一种商品,他要以不低于进价20%的价格才能出售,但为了获取更多的利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降低( )A.80元 B.100元 C.120元 D.160元14.甲仓库存煤200吨,乙仓库存煤70吨,若甲仓库每天运出15吨煤,乙仓库每天运进25吨煤,几天后乙仓库存煤比甲仓库多1倍?设x 天后乙仓库存煤比甲仓库存煤多1倍,则有( )A.2×15x =25xB.70+25x -15x =200×2C.2(200-15x )=70+25xD.200-15x =2(70+25x )15.某商店将某种品牌的DVD 按进价提高35%,然后打出“八折酬宾,外送50元出租车费”的广告,结果每台DVD 仍可获利166元,那么每台DVD 的进价是多少元?16.下图的数阵是由77个偶数排成:(1)图中平行四边形框内的4个数有什么关系?(2)在数阵图中任意作一类似(1)中的平行四边形框,设其中一个数为x ,那么其他3个数怎样表示?(3)小红说4个数的和是415,你能求出这4个数吗?(4)小明说4个数的和是420,存在这样的4个数吗?若存在,请求出这4个数.17.如图,B 、C 两点在线段AD 上,(1)BD=BC+ ;AD=AC+BD- ;(2)如果CD=4cm,BD=7cm,B 是AC 的中点,则AB 的长为 .18.初中生的视力状况受到全社会的广泛关注,某市有关部门对全市6万名初中生视力状况进行了一次抽样调查,如图是利用所得数据绘制的频数分布直方图(长方形的高表示该组人数),根据图中所提供的信息,回答下列问题:(1)本次调查共抽测了 名学生,占该市初中生总数的百分比是 ; (2)从左到右五个小组的频率之比是 ;(3)如果视力在4.9~5.1(含 4.9,5.1)均属正常,则全市有 名初中生的视力正常,视力正常的合格率是 .。