Improving particle filter with support vector regression for efficient visual tracking

合集下载

萤火虫算法智能优化粒子滤波

萤火虫算法智能优化粒子滤波

第42卷第1期自动化学报Vol.42,No.1 2016年1月ACTA AUTOMATICA SINICA January,2016萤火虫算法智能优化粒子滤波田梦楚1薄煜明1陈志敏1,2吴盘龙1赵高鹏1摘要针对粒子滤波(Particlefilter,PF)重采样导致的粒子贫化以及需要大量粒子才能进行状态估计的问题,本文结合粒子滤波的运行机制,对萤火虫算法的寻优方式进行修正,设计了新的萤火虫位置更新公式和荧光亮度计算公式,并在此基础上提出了萤火虫算法智能优化粒子滤波.该方法引入了萤火虫群体的优胜劣汰机制以及萤火虫个体的吸引和移动的行为,使粒子群智能地向高似然区域移动,提高了粒子群的整体质量.实验表明该方法提高了粒子滤波的预测精度,同时大大降低了状态值预测所需的粒子数量.关键词粒子滤波,萤火虫算法,粒子贫化,状态估计引用格式田梦楚,薄煜明,陈志敏,吴盘龙,赵高鹏.萤火虫算法智能优化粒子滤波.自动化学报,2016,42(1):89−97DOI10.16383/j.aas.2016.c150221Firefly Algorithm Intelligence Optimized Particle Filter TIAN Meng-Chu1BO Yu-Ming1CHEN Zhi-Min1,2WU Pan-Long1ZHAO Gao-Peng1Abstract Given the particle impoverishment due to particlefilter(PF)resampling and given the need of a large number of particles for state estimate,the optimization mode offirefly algorithm is revised in combination with the operating mechanism of particlefilter,and a new update formula offirefly position is designed as well.On this basis,an intelligent optimized particlefilter offirefly algorithm is proposed.By means offirefly group s mechanism of survival of thefittest and individualfirefly s attraction and movement behaviors,this algorithm enables the particle swarm to move toward the high likelihood region with the purpose of improving the total mass of particle swarm.The experiment has shown that the algorithm has upgraded the prediction accuracy of particle swarm and substantially reduced the quantity of the particles required by the prediction of state value.Key words Particlefilter(PF),firefly algorithm,particle impoverishment,state estimationCitation Tian Meng-Chu,Bo Yu-Ming,Chen Zhi-Min,Wu Pan-Long,Zhao Gao-Peng.Firefly algorithm intelligence optimized particlefilter.Acta Automatica Sinica,2016,42(1):89−97非线性系统广泛存在于实际工程应用中,例如工业控制、目标跟踪、故障检测等,并且在系统中还可能存在非高斯噪声,这些因素会降低基于卡尔曼理论框架的常规滤波算法的性能[1−2].粒子滤波(Particlefilter,PF)[3]是一种基于蒙特卡罗思想的滤波技术,由于其状态函数和观测函数没有做非线性及非高斯的假设,因此粒子滤波可以不受系统非线性和非高斯噪声的限制.针对粒子滤波的权值退化问题,可以采用重采样方法进行解决[4].但是重采样算法仅复制大权值样本[5−6],会导致粒子的贫化收稿日期2015-04-13收修改稿日期2015-09-14Manuscript received April13,2015;accepted September14, 2015国家自然科学基金(61501521,U1330133,61473153,61403421,61 203266),国防重点预研资助项目(40405070102)资助Supported by National Natural Science Foundation of China (61501521,U1330133,61473153,61403421,61203266)and Key Defense Advanced Research Project of China(40405070102)本文责任编委王占山Recommended by Associate Editor WANG Zhan-Shan1.南京理工大学自动化学院南京2100942.中国卫星海上测控部江阴2144311.School of Automation,Nanjing University of Science and Technology,Nanjing2100942.China Satellite Maritime Tracking and Controlling Department,Jiangyin214431现象[7−8],即高权值粒子被多次复制,小权值粒子被直接舍弃.虽然较小权值的粒子对于目标状态估计的贡献有限,但是却代表着一定的状态信息,重采样阶段对粒子的舍弃,必将影响到状态估计的精度.针对粒子滤波的样本贫化问题,国内外学者进行了大量研究,文献[9]提出了基于权值选择的粒子滤波,该方法从大量粒子中选择权值较大的粒子用于下一时刻的状态估计,可以减轻粒子的贫化程度,但容易导致粒子权值的退化.文献[10]提出了确定性重采样粒子滤波算法,该算法避免对低权重粒子的盲目舍弃,从而确保粒子的多样性.文献[11]提出了饱和粒子滤波改进算法,根据不同系统的特点选择特定的重采样方法使粒子逼近真实值.但上述两种方法依然是基于传统重采样的框架,未能彻底解决粒子贫化的问题.基于群智能优化思想的PF是现代粒子滤波发展的一个崭新方向[12],将粒子滤波中的粒子视为生物集群中的个体,利用模拟生物集群的运动规律使粒子的分布更加合理.由于基于群智能优化的粒子滤波主要是对粒子的分布进行迭代寻优[13−14],并不90自动化学报42卷涉及对低权重粒子的舍弃,因此可以从根本上解决粒子的贫化现象.国内外学者已成功将蚁群算法、粒子群算法、遗传算法等经典群智能优化算法与粒子滤波进行结合,并在此基础上提出了各种改进算法.文献[15]将粒子群优化算法和蚁群优化算法的优化思想共同作用到粒子滤波的样本更新中,实现粒子之间信息共享,从而增强了算法的全局寻优能力.文献[16]提出了自适应粒子群优化改进粒子滤波算法,自适应地控制邻域粒子的数量,提高了样本分布的合理性和滤波的精度.文献[17]提出了基于遗传算法的粒子滤波,避免了粒子搜索区域的盲目扩大和粒子的早熟,提高了滤波算法的效率.萤火虫算法[18]由剑桥大学Yang于2009年提出,作为最新的群智能优化算法之一,该算法具有更好的收敛速度和收敛精度,且易于工程实现,但由于萤火虫算法自身运行机制的特殊性,将萤火虫算法与粒子滤波进行直接融合会存在难以避免的问题,例如粒子交互会导致运算复杂度的大幅增加、局部最优现象会导致鲁棒性的降低等,因此,目前国内外关于将萤火虫算法与PF进行融合的报道较少. 2014年,文献[19]虽然提出了基于人工萤火虫群优化的粒子滤波算法,但该算法只是利用了萤火虫算法的粒子转移公式用来重组样本,没有进行粒子的迭代寻优,并不是真正意义上的群智能优化粒子滤波算法,此外该算法仍然需要抛弃低权重的粒子,无法从根本上解决粒子的贫化现象.针对上述问题,本研究对萤火虫算法的位置更新机制和荧光亮度更新机制进行改进,利用全局最优信息指导粒子集的整体移动,成功地将萤火虫群优化思想和粒子滤波进行结合,避免粒子交互带来的运算复杂度的明显增加,同时很好地提高了粒子滤波的精度.1粒子滤波算法粒子滤波是贝叶斯估计基于抽样理论的一种近似算法,它将蒙特卡罗和贝叶斯理论结合在一起[20],其基本思想是在状态空间中寻找一组随机样本对条件后验概率密度进行近似,用样本均值代替原先需要根据后验概率密度函数所进行的积分运算,从而获得最小的方差估计.假定非线性动态过程表示如下:x k=f(x k−1,v k−1)(1)y k=h(x k,w k)(2)其中,x k为状态值,f(·)为状态函数,v k−1为系统噪声,y k为观测值,h(·)为观测函数,w k为量测噪声.设状态初始概率密度为p(x0|y0)=p(x0),则状态预测方程为p(x k|y1:k−1)=p(x k|x k−1)p(x k−1|y1:k−1)d x k−1(3)状态的更新方程为p(x k|y1:k)=p(y k|x k)p(x k|y1:k−1)p(y k|y1:k−1)(4)p(y k|y1:k−1)=p(y k|x k)p(x k|y1:k−1)d x k(5)设已知且易采样的重要性函数为q(x0:k|y1:k),将其改写成q(x0:k|y1:k)=q(x0)kj=1q(x j|x0:j−1,y1:j)(6)则权值公式为w k=p(y1:k|x0:k)p(x0:k)q(x k|x0:k−1,y1:k)q(x0:k−1,y1:k)=w k−1p(y k|x k)p(x k|x k−1)q(x k|x0:k−1,y1:k)(7)从p(x k−1|y1:k−1)中采样N个样本点{x ik−1}Ni=1,则概率密度为p(x k−1|y1:k−1)=Ni=1w ik−1δ(x k−1−x ik−1)(8)其中,δ(·)为狄拉克函数.概率密度更新公式为w ik=w ik−1p(y k|x ik)p(x ik|x ik−1)q(x ik|x ik−1,y k)(9)状态输出x k=Ni=1w ikx ik(10)从上述过程可以看出,从k=0时刻开始,粒子滤波系统首先对样本进行初始化.系统确定目标状态的先验概率,给每个粒子赋予相应的初始值.在下一时刻,系统首先进行状态转移,每个粒子按照设置的状态转移方程对自身的状态进行传播,然后进行系统观测,得到观测值,计算所有粒子的权重.最后进行粒子加权,从而得到后验概率的输出,同时样本经过重采样后继续进行系统状态的转移,构成了一个循环跟踪系统.2人工萤火虫群算法萤火虫算法是通过模拟萤火虫的群体行为构造出的一类随机优化算法[21].其仿生原理是:用搜索空间中的点模拟自然界中的萤火虫个体,将搜索和1期田梦楚等:萤火虫算法智能优化粒子滤波91优化过程模拟成萤火虫个体的吸引和移动过程,将求解问题的目标函数度量成个体所处位置的优劣,将个体的优胜劣汰过程类比为搜索和优化过程中用好的可行解取代较差可行解的迭代过程.目前公认的萤火虫算法有两种版本,一种是由印度学者Krishnanand等于2006年提出,称为GSO(Glowworm swarm optimization)[22];另一种由剑桥学者Yang等于2010年提出,称为FA(Fire-fly algorithm)[23].两种算法的仿生原理相同,但在具体实现方面有一定差异.考虑到与粒子滤波算法的相容性,本研究以FA为基础进行改进和扩展.在FA中,萤火虫发出光亮的主要目的是作为一个信号系统,以吸引其他的萤火虫个体,其假设为:1)萤火虫不分性别,它将会被吸引到所有其他比它更亮的萤火虫那去;2)萤火虫的吸引力和亮度成正比,对于任何两只萤火虫,其中一只会向着比它更亮的另一只移动,然而,亮度是随着距离的增加而减少的;3)如果没有找到一个比给定的萤火虫更亮,它会随机移动.如上所述,萤火虫算法包含两个要素,即亮度和吸引度.亮度体现了萤火虫所处位置的优劣并决定其移动方向,吸引度决定了萤火虫移动的距离,通过亮度和吸引度的不断更新,从而实现目标优化.从数学角度对萤火虫算法的主要参数进行如下描述:1)萤火虫的相对荧光亮度为I=I0×e−γr ij(11)其中,I0为萤火虫的最大萤光亮度,与目标函数值相关,目标函数值越优自身亮度越高;γ为光强吸收系数,荧光会随着距离的增加和传播媒介的吸收逐渐减弱;r ij为萤火虫i与j之间的空间距离.2)萤火虫的吸引度为β=β0×e−γr2ij(12)其中,β0为最大吸引度;γ为光强吸收系数;r ij为萤火虫i与j之间的距离.3)萤火虫i被吸引向萤火虫j移动的位置更新公式如式(13)所示:x i=x i+β×(x j−x i)+α×rand−12(13)其中,x i,x j为萤火虫i和j所处的空间位置;α∈[0,1]为步长因子;rand为[0,1]上服从均匀分布的随机数.3基于萤火虫算法智能优化的粒子滤波(F A-PF)传统的粒子滤波重采样方法通过删除小权值粒子集来避免粒子匮乏的现象,但经过多次迭代后,将带来粒子的贫化问题.针对以上问题,本研究提出利用萤火虫算法对粒子滤波进行优化的思想.萤火虫算法先将萤火虫群体随机分布在解空间中,每个萤火虫个体由于所处位置不同,其发出的荧光亮度也不同,通过比较荧光亮度,亮度高的萤火虫可以吸引亮度低的萤火虫向自身移动,移动的距离主要取决于吸引度的大小和步长的大小.根据式(4)来计算更新后的位置.这样通过多次移动后,所有个体都将聚集在亮度最高的萤火虫的位置上,从而实现最终的寻优.从上述运行机制看,可以考虑利用FA的群智能性优化粒子滤波的样本,但如果直接将萤火虫群优化思想与粒子滤波直接进行融合,会导致许多的问题(具体分析在第4.1节和第4.2节中).因此需要对萤火虫算法的内部寻优机制进行修正和改进.3.1改进位置更新公式针对FA-PF位置更新方式的设计,本文从运算复杂度和全局寻优能力两方面进行研究分析.1)在标准萤火虫群优化算法的寻优机制中,萤火虫根据其邻域中各个萤火虫的荧光素浓度来决定其移动方向,从位置更新公式可以看出,要完成该步骤,粒子滤波需要用粒子i(i=1,2,···,N,i=j)和其余粒子j(j=1,2,···,N,j=i)进行交互运算,这将使粒子滤波运算复杂度提高一阶,会严重影响滤波的实时性.2)在标准萤火虫算法的位置更新机制中,完成每次交互,都需根据最大吸引度、光强吸收系数以及距离等参数重新计算粒子i和每个粒子j之间的吸引度,这又从另外一个方面提高了粒子滤波的运算复杂度.3)萤火虫算法与其他群智能优化算法一样,都存在出现局部极值现象的可能性.Yang也意识到了这个问题,因此在位置更新公式中增加了扰动项α×(rand−1/2),该方法可以一定程度上降低局部极值出现的概率,但现有的研究均表明,在群智能优化算法中仅简单地增加rand扰动项来克服局部极值现象,效果并不理想.针对以上问题,本研究对萤火虫群优化算法的位置更新公式进行改进,设置粒子目标函数的计分板,将各个迭代子时刻的粒子目标函数值与计分板的目标函数值进行对比,从而得到当前滤波时刻所有粒子所经历的全局最优值,用全局最优值代替粒子j与粒子i进行信息交互.为此,重新定义萤火虫算法的位置更新公式:定义1.修正位置更新公式.x ik=x ik+β×gbest k−x ik+92自动化学报42卷α×rand−12(14)其中,x ik为序号为i的粒子在k时刻的状态值,β为粒子间的吸引度,α为步长因子,rand是[0,1]之间的随机数,gbest k为全局最优值.从理论上分析,首先,由于粒子群的全局最优值只有一个,因此粒子滤波中的粒子i只需与全局最优值进行对比,避免了高一阶的交互运算和对粒子间吸引度的重复计算,该阶段的运算复杂度可由原先的O(N2)减少至O(N),从而确保了滤波算法的实时性.其次,用全局最优值代替粒子j与粒子i进行信息交流,实质上是用全局最优值来指导粒子群的整体运动,可以明显提高萤火虫优化部分的全局寻优能力,从而可以明显降低出现局部极值的概率.最后,该改进思路可以使滤波算法用更少的迭代次数和粒子数寻找到更优值,这又从另一个方面明显减少粒子滤波的运算复杂度,更易于工程实现.3.2改进荧光亮度更新公式标准萤火虫算法中,每一只萤火虫都需要和其他的萤火虫对比在当前所处位置的荧光亮度,亮度高的萤火虫可以吸引亮度低的萤火虫向自己移动,若将该方式直接应用于粒子滤波,这会再次增加粒子滤波的运算复杂度.同时,本研究考虑到若要确保滤波器的精度,需在萤火虫的自适应迭代寻优中引入最新的观测值,因此本研究提出修正的荧光度计算公式.定义2.修正荧光亮度计算公式I=abs(z new−z pred(i))(15)其中,I为修正后的荧光亮度,z new为滤波器最新的观测值,z pred为滤波器预测的观测值.从修正后荧光亮度计算公式可以看出,其利用观测值和每个粒子的预测观测值进行对比,由于每个时刻的观测值只有一个,因此可以避免每一个粒子和其他的粒子对比在当前所处位置的荧光亮度所带来的运算复杂度.若要将修正荧光亮度计算公式扩充到多维情况下,其核心思路是求出预测观测值和最新观测值在多维空间中的空间差值,例如红外目标跟踪中的二维坐标信息,目标的预测坐标值为(x p,y p),最新观测坐标值为(x o,y o),则修正荧光亮度计算公式可以设计为I=abs(x p−x o)+abs(y p−y o)(16)如果是雷达目标跟踪中的三维坐标信息,目标的预测坐标值为(x p,y p,z p),最新观测坐标值为(x o, y o,z o),则修正荧光亮度计算公式可以设计为I=abs(x p−x o)+abs(y p−y o)+abs(z p−z o)(17) 3.3可行性分析修正后的萤火虫算法与原始萤火虫算法相比,其用全局最优值来代替粒子间的相互对比,这会提高萤火虫算法的全局寻优能力,且明显减少运算复杂度;但是辩证地说,这也降低了萤火虫算法的局部寻优能力,而上述修正萤火虫算法的特点是非常适用于粒子滤波的,首先,FA-PF是在标准粒子滤波的基础上进行萤火虫算法迭代寻优,而粒子滤波中状态值的分布本身就有一定的准确性,因此局部寻优能力的降低对粒子滤波影响不是很大;其次,FA-PF本身的迭代次数不是很多,因此其需要很强的全局寻优能力来指导粒子移动,而这正是修正萤火虫算法的特点;最后,修正萤火虫算法在运算实时性方面优势明显,这也是粒子滤波所迫切需要的.综上,本文提出的萤火虫算法智能优化粒子滤波是可行的.3.4算法具体实现和步骤步骤1.在初始时刻,采样N个粒子{x i,i= 1,···,N}作为算法的初始粒子.重要性密度函数用式(18)表示x ik∼qx ik|x ik−1,z k=px ik|x ik−1(18)步骤2.模拟萤火虫优化思想的吸引行为和移动行为.1)计算粒子i和全局最优值之间的吸引度.β=β0×e−γr2i(19)其中,β0为最大吸引度,γ为光强吸收系数,r i为粒子i与全局最优值gbest k之间的空间距离.2)根据吸引度更新粒子的位置.x ik=x ik+β×gbest k−x ik+α×rand−12(20)步骤3.计算并对比荧光亮度值,更新全局最优值.gbest k∈x1k,x2k,x3k,···,x Nk|I(x)=maxI(x1k),I(x2k),I(x3k),···,I(x Nk)(21)步骤4.从荧光度计算公式可以看出,荧光度值随预测观测值与真实观测值的差值呈反方向变化,本文设置迭代终止阈值为0.01,当荧光度函数值大于0.01时,则算法停止迭代,否则继续迭代至最大迭代次数.当算法符合设定的阈值ε时,说明粒子已经分布在真实值附近,或者达到最大迭代次数时,此时停止优化.否则转入步骤2.1期田梦楚等:萤火虫算法智能优化粒子滤波93步骤5.权重补偿及更新.萤火虫算法与PF结合的核心思路是对PF中的每一个粒子都进行萤火虫迭代寻优操作,使得粒子沿目标状态后验密度值更高的方向移动,提高粒子对状态估计的准确性.但萤火虫算法改变了各粒子在状态空间的位置,此时粒子集所表示的分布密度函数不再是p(x k|y1:k−1),这样贝叶斯滤波的理论基础会丢失.因此,本文借鉴文献[24]的思想,在粒子位置更新的同时对权重进行补偿及更新,其具体方式如下:w ik =p(x k=s ik|z1:k−1)q(s ik)p(z k|x k=s ik)(22)其中,s ik为k时刻的粒子i,q(·)为重要性函数.在权重补偿之后,优化前后的粒子集至少从理论上讲是服从同一分布的,即p(x k|y1:k−1),从而保持了贝叶斯滤波的理论基础.步骤6.进行归一化.w ik =w ikNi=1w ik(23)步骤7.状态输出.x=Ni=1w ikx ik(24)上述思路充分利用了整个粒子集中的有效信息,有利于粒子跳出局部极值,减少算法的迭代次数浪费在状态值变化不明显的情形,使得改进算法更多地由于达到初始设置的阈值ε而停止优化,减少了算法迭代至最大迭代次数才停止的概率,从而进一步提高了运算速度.在有效粒子样本的数量上,上述方式可以增加粒子的多样性,从而提高粒子样本的质量.由于萤火虫算法的收敛能力较强,因此我们在FA-PF中通过设置最大迭代次数和终止阈值的方式对算法的迭代次数进行限制,使得粒子群整体向真实区域移动,但又避免最终收敛,具体原因如下:1) FA-PF的核心思想是让粒子集对高似然区域有更合理的覆盖,既要有一定广度,保证能在下一时刻能捕获真实值,又要有一定集中度以保证采样效率,并不是要将粒子全部集中在真实值附近.如果所有的粒子均集中在真实值附近,反而会降低粒子的多样性.2)如果迭代次数过多,会造成FA-PF的运算复杂度较PF有明显提高,这会降低FA-PF的实时性. 4仿真实验实验硬件条件为英特尔i5-4200U处理器、8G 内存,软件环境为Matlab2010b,选取单变量非静态增长模型,仿真对象的过程模型和量测模型如下:过程模型:x(t)=0.5x(t−1)+25x(t−1)1+[x(t−1)]2+8cos[1.2(t−1)]+w(t)(25)量测模型:z(t)=x(t)220+v(t)(26)式中,w(t)和v(t)为零均值高斯噪声.由于该系统是高度非线性,并且似然函数呈双峰状,因此,传统的滤波方法很难处理此系统.设系统噪声方差Q= 1和Q=10,量测噪声方差R=1,滤波时间步数为50,在萤火虫算法中,一般设置最大吸引度为[0.8, 1]区间内的常数,本文设置最大吸引度为0.85;步长因子一般设置为[0,1]之间的常数,步长因子越高,则全局寻优能力越强,但会降低收敛精度;步长因子越低,则局部寻优能力越强,但会降低收敛速度,本文设置步长因子为0.4.此外,光强吸收系数一般情况下设置为1.上述设置均是在参考现有文献通常参数设置的基础上,经过多次实验得到.根据前期研究,目前较为通用的设置为最大吸引度为1、步长因子为0.3、最大光强吸收系数为1,萤火虫算法FA在群智能优化算法中,所需设置的参数相对较少,一般情况下该通用设置可以使得FA-PF在多数非线性问题中均取得优于PF的效果,但不一定是最佳效果,因此需要在上述通用设置的基础上利用数值法进行参数微调,这样可以取得最佳效果.本文利用PF和FA-PF 对该非线性系统进行状态估计和跟踪.均方根误差公式为RMSE=1TTt=1(x t− x t)212(27)为了证明FA-PF的优势,这里在仿真实验中将FA-PF同时和PF以及粒子群优化粒子滤波(Par-ticle swarm optimized particlefilter,PSO-PF)[25]进行对比测试.在PSO-PF部分,设置学习因子c1 =c2=2,惯性权重线性递减,其最大值为0.9,最小值为0.3.4.1精度测试1)当粒子数N=20、Q=1时,仿真结果如图1和图2所示.2)当粒子数N=50、Q=1时,仿真结果如图3和图4所示.3)当粒子数N=100、Q=1时,仿真结果如图5和图6所示.94自动化学报42卷图1滤波状态估计(N =20,Q =1)Fig.1State estimation of filter (N =20,Q =1)图2滤波误差绝对值(N =20,Q =1)Fig.2Absolute value of filter error (N =20,Q =1)图3滤波状态估计(N =50,Q =1)Fig.3State estimation of filter (N =50,Q =1)图4滤波误差绝对值(N =50,Q =1)Fig.4Absolute value of filter error (N =50,Q =1)图5滤波状态估计(N =100,Q =1)Fig.5State estimation of filter (N =100,Q =1)图6滤波误差绝对值(N =100,Q =1)Fig.6Absolute value of filter error (N =100,Q =1)1期田梦楚等:萤火虫算法智能优化粒子滤波95表1实验结果对比Table1Comparison of simulation results参数RMSE运算时间(s)PF PSO-PF FA-PF PF PSO-PF FA-PFN=20,Q=1 6.5276 4.6309 4.28620.09280.12590.1108N=50,Q=1 5.5987 4.2807 4.10670.11670.14920.1367N=100,Q=1 4.7243 4.1109 4.09290.12450.19770.1674N=20,Q=107.8860 5.3516 5.02350.09470.12840.1162N=50,Q=10 6.2733 4.8920 4.70430.11500.15760.1425N=100,Q=10 5.3569 4.5583 4.54810.12330.20310.1739从图1∼6中可以看出,相对于标准PF和PSO-PF,本文提出的FA-PF算法具有更精确的状态值预测精度,这是因为FA-PF在PF的基础上,通过迭代寻优的粒子状态更新方式提高了粒子分布的合理性.从表1中可以看出,FA-PF在粒子数为20的情况下,无论是在运算时间还是在运算精度上,均优于粒子数为100的PF,说明了FA-PF 可以用很少的粒子数达到所需的精度,且具有很高的精度速度综合性价比.但我们也看到,FA-PF与PSO-PF相比,前者在粒子数为20和50时精度优势更为明显,而当粒子数为100时,两者的精度大致相同,这说明FA-PF更适合在粒子数更少的情况下使用.此外,与PSO-PF相比,FA-PF的位置更新公式的运算操作数相对更少,因此其整体运算时间也是略小于PSO-PF.综上分析,FA-PF具有更高的运算综合效率.从理论上说,粒子滤波的运算复杂度与粒子数呈近似线性关系,但本节仿真测试的目的之一是为了证明FA-PF可以利用很少的粒子数达到所需的精度,因此在实验中设置的粒子数较少,而粒子数从20提高到100所增加的时间远小于仿真程序启动运行等动作的基本时间开销,这里不能体现出近似线性的关系,若在此基础上进一步增加粒子数,则可体现出明显的近似线性的关系.4.2粒子多样性测试为了测试FA-PF运行时的样本多样性,也结合实际应用中滤波器长时间工作的需求,这里将运行步数增加至100.取滤波器在k=10、k=25、k= 95时刻的粒子分布情况,如图7∼9所示.从图7∼9可以看出,标准PF算法的粒子多样性表现较为一般,尤其在滤波后期,粒子分布往往集中在少数的状态值上,降低了粒子的多样性,不利于滤波器的状态估计.而在FA-PF中,粒子在整体向高似然真实区域移动的同时,在低似然区域也合理地保留了部分粒子,其在整个滤波的过程中确保了粒子多样性.此外,FA-PF没有进行传统的重采样,可以避免粒子贫化现象的出现.图7k=10时粒子状态分布情况Fig.7Particle distribution when k=10图8k=25时粒子状态分布情况Fig.8Particle distribution when k=25。

滤清器常见词汇表

滤清器常见词汇表

滤清器用词德-英-中对照表第一部分 Part oneDeutsch English 中文一. 空气滤清系统-Luftversorgungssysteme für Air intake system for internal 内燃机用空气进气 Verbrennungsmotoren combustion engine 系统-Trockenluftfilter Air cleaner 空气滤清器-Trockenluftfiltermodul Air cleaner module 空气滤清器模块-Trockenluftfilter mit Air cleaner with dust unloading 带排尘阀的 Staubentleerungsventil valve 空气滤清器-Trockenluftfilter für Air cleaner for secondary air 二级泵用的空气 Sekundärluftzufürung pump 滤清器-Trockenluftfilter mit V or- Air cleaner with precleaner and 配有粗滤装置 abscheider und Sammeltopf collector pot 和集尘袋的空气滤清器-Trockenluftfilter mit V or- Air cleaner with precleaner, collector 配有粗滤 abscheider, Sammeltopf und pot and carbon fleece 装置,集尘袋和活Kohlevlies 性碳无纺布的空气滤清器-Trockenluftfiltermit V or- Aircleaner with precleaner, and 配有粗滤装置, abscheiderund Staubent- dust unloading valve 和排尘阀的空气 leerungsventil 滤清器-Einsatz für Trockenluftfilter Element for air cleaner, e.g. 空气滤清器滤 z.B. Ring- oder Platteneinsatz ring or plain element made 芯,例:纸制aus Papier u.a of paper etc 环式或板式滤芯-Sicherheitseinsatz für Safety elemnt for air cleaner 空气滤清器的 Trockenluftfilter 安全滤芯-Ölbad-Luftfilter Oil bath air filter 油浴式空气滤清器-Einsatz für Ölbad-Luftfilter, Feilterelement for oil bath air filter, 油浴式空气滤 z.B. Stahlgestrick e.g. pleated fabrics made of steel 清器滤芯,例:钢折叠丝网-Luftführungs-Baugruppe, Air box, dirty and clean air duct 进气管/出气管 Hutze-Luftfüh rungsbaugruppe mit variable intake manifold 带调节阀片的Klappen 进气歧管-Dämpfungsvolmen; Damping volume; 消声器;Resonatoren resonators 谐振腔-Saugrohre, Air ducts, air intake manifolds 进气支管,Sauganlagen 进气歧管-Luftversorgungsmodule Air intake modules 进气系统模块-Warungsschalter elektrisch electric maintenance switch 电动保养指示器-Wartungsschalter elektronisch electronic maintenance sensor 电子保养指示器-Wartungsschalter mechanisch mechanical maintenance indictor 机械式保养指示器-V orabscheider, Precleaner, 粗滤器,Zyklon cyclone 旋流管-Regeleinheit Control unit 控制单元-Lufttaktventil Air-control valve 空气控制阀-Regenkappe Rain cap 防雨罩-Verbindungsstutzen Connecting piece 连接套管-Leitungen Hoses 导管-Abscheider Separator 分离器-Ölnebelabscheider Oil mist separator 油雾分离器-Einsatz für Feinabscheider Element for fine separator 精滤器滤芯-Regelventil für Ölnebelabscheider Oil mist separator control 油雾分离器控制valve 阀-Aerosolfilter Aerosol filters 悬浮颗粒滤清器-Lufttrockner Air dryer 空气干燥器-Einsatz für Lufttrockner Element for air dryer 空气干燥器滤芯-Zylinderkopfhaube Cylinder head cover 汽缸头盖-Zylinderkopfhaubemodule Cylinder head cover modules 汽缸头盖模块二. 乘驾室用空气滤清系统(灰滤)-Fahrzeuginnenraum-Luftfilter Cabin Air Filter 乘驾室用空气滤清器-Einsatz für Partikelabscheidung Filterelemnt for particle 去除空气中微粒separating 的滤芯-Einsatz mit Rahmen Filterelement with frame 带框架滤芯-Einsatz mit Gehäuse Filterelement with housing 带外壳滤芯-Einsatz für Abscheidung von Filterelement for separating 去除微粒以及 Partikeln und gasförmigen particles and gaseous pollutants 气体污染物Schad- und Geruchsstoffen or smelling particles 和气味的滤芯-Einsatz für Abscheidung von Filterelement for separating 去除微粒以及 Partikeln und gasförmigen particles and gaseous pollutants气体污染物和 Schad- und Geruchsstoffen or smelling particles with 气味的带框架mit Rahmen frame 滤芯-Einsatz für Abscheidung von Filterelement for separating 去除微粒以及 Partikeln und gasförmigen particles and gaseous pollutants气体污染物和 Schad- und Geruchsstoffen or smelling particles with 气味的带外壳 mit Gehäuse housing 的滤芯-Rahmen ohne Einsatz Frame without filterelement 无滤芯的框架-Gehäuse ohne Einsatz Housing without filterelemnt 无滤芯的外壳-Ölfilter Oilfilter 机油滤清器-Schmierölfilter Lubrication oilfilter 润滑油滤清器-Gehäusefilter mit auswechsel- Housing filter with 可更换滤芯机 barem Einsatz replaceable filterelement 油滤清器-Auschraubgehäusefilter mit Filter-cap filter with replace- 带可更换滤芯的auswechselbarem Einsatz able fiterelement 旋盖式滤清器-Einsatz für Gehäusefilter, z.B. aus Filterelement for housing fiter, 可更换滤芯Papier, Baumwolle u.a. im Haupt-, e.g. made of paper, cotton etc, in 机油滤清器Nebenstrom oder Kombination full flow, in bypass or combined 的滤芯,纸制棉制等,全流式,半流式或两者结合-Wechselfilter Spin-on filter 旋装式滤清器-Ölfiltermodul Oilfilter module 机油滤清器模块-Filterkopf mit Wechselfilter Filter head with spin-on filter 旋装式滤清器滤座-Filterkopf Filterhead 滤清器滤座-Ölzentrifuge Oil centrifuge 离心式机油滤清器-Filterlöseschlüssel Filter mantenance tool 滤清器保养工具-Träger Bracket 支架-Wärmetauscher Heat exchanger 热交换器-Hydraulikölfilter Hydraulic oilfilter 液压油滤清器-Leitungsfilter Inline filter 管路中滤清器-Getriebeölfilter Gearbox oilfilter 变速箱用油滤清器-Einsatz Filterelement 滤芯-Getriebeölfilter Baugruppe Gearbox oilfilter assembly 变速箱用油滤清器组件-Kraftstofffilter Fuel filter 燃油滤清器-Einsatz für Gehäusefilter, z.B .Filterelement for housing filter, 可更换滤芯 Papier, Filz usw e.g. Papier, felt etc 的滤清器的滤芯例:纸,油毡等-Leitungsfilter mit Halter Inline filter with holder 带托架的管路中的滤清器-Intaknkfilter Intank filter 油箱内滤清器-Intankfiltermodul Intank filter module 油箱内滤清器模块-Kraftstoffmodul Fuel module 燃油滤清器模块-Heizadapter, Heating adapter, heat exchanger 热接受器,Wärmetauscher heat exchanger 热交换器-Temperaturschalter Temperature switch 温度开关-Ventil(Absperrventil, V orwärm- Valve (shut-off valve, preheating 阀门(切断ventil) valve) 阀,预热阀)-Regeleinheit, Druckregler Control units, pressure regulator 控制部件,压力调节阀-Wasserstandssensor Water level sensor 水位传感器-Wasserabscheider Water seperator 水分离器五. 废气再循环装置-Abgassysteme Exhaust systems 废气排气系统-AGR-Rohr EGR tube 废气再循环管-AGR-Kühler EGR cooler 废气再循环冷却器-AGR-Modul EGR module 废气再循环模块-Rußpartikelfilter Carbon particle filter 碳黑微粒滤清器-Einsatz für Rußpartikelfilter, Filterelement for carbon particle 碳黑微粒滤 z.B. aus Kemikgam, filters, e.g. made of ceramic yam 芯,例:无-matten usw or mats etc 纺布等六. 活性炭滤清系统-Aktivkohlefilter Carbon Canister 碳罐-Aktivkohlefiltermodule Carbon Canister module 碳罐模块-Aktivkohlefilterventile Carbon Canister valves 碳罐阀门-Technische Baugruppe Technical parts 技术组件-Motorabdeckung Engine cover 发动机罩盖-Wasserfilter(Wechselfilter) Water filtration cartridge 旋装式水滤清器-Produktgruppe Verpackungs- Product group kit 产品配套元件 einheit-Verpackungseinheit: Kit fuel-oil-filter 产品配套元件: Kraftstoff-Öl-Filter 燃料-机油-滤清器-Verpackungseinheit: Kit fuel-fuel-oil-filter 产品配套元件: Kraftstoff-Kraftstoff-Öl-Filter 燃料-燃料-机油滤清器-Verpackungseinheit: Kit fuel-oil-oil-water-filter 产品配套元件: Kraftstoff-Öl-Öl-Wasser-Filter 燃料-燃料-机油滤清器-Verpackungseinheit: Kit fuel-fuel-filter 产品配套元件: Kraftstoff-Kraftstoff-Filter 燃料-燃料滤清器七. 机电控制装置-Aktuatoren Actuator 驱动器-Elektrischer Steller Electrical actuator 电动驱动器-Elektrischer Steller mit Electrical actuator controlled 可调节电动驱动器 Regelung-Elektrischer Steller mit Klappe Electrical actuator with flap 带气门电动驱动器-Elektrisches Ventil ohne Electrical valve 电动阀门 Regelung-Elektrisches Ventil mit Electrical valve controlled 带调节阀门的电 Regelung 动阀门产品开发部。

筛选设计方案英文

筛选设计方案英文

筛选设计方案英文Filter Design ProposalIntroduction:This design proposal aims to provide a filter system that effectively removes particles, contaminants, and pollutants from a liquid or gas stream. The filter system will be designed to meet the specific requirements and objectives of the project.Design Objectives:1. Efficient Particle Removal: The filter system should have a high particle removal efficiency, removing particles of varying sizes from the liquid or gas stream.2. Long Filter Life: The filters should have a long life span, minimizing the need for frequent replacements and reducing maintenance costs.3. Environmental Friendliness: The filter system should be designed to minimize the environmental impact by using sustainable materials and reducing waste generation.4. Easy Maintenance: The filters should be easy to clean and maintain, allowing for quick and hassle-free replacement when needed.5. Cost-Effective: The filter system should be cost-effective, offering high-quality performance at an affordable price.Design Components:1. Filter Media: The filter system will utilize high-quality filter media, such as activated carbon, ceramic, or porous polyethylene, to effectively trap particles and contaminants. The filter media will be selected based on the specific requirements of the project.2. Filter Housing: The filter housing will be designed to accommodate the filter media securely and provide a proper seal. It will be made of a durable material that can withstand the operating conditions and has minimal potential for leakage.3. Flow Control Mechanism: The filter system will incorporate a flow control mechanism, such as a valve or adjustable regulator, to control the flow rate and ensure optimum performance.4. Filter Monitor: A filter monitor will be integrated into the system, indicating the status of the filter and alerting the user when it needs to be replaced or cleaned.5. Disposal System: A disposal system will be included to collect and dispose of the filtered particles and contaminants safely. Design Benefits:1. Improved Product Quality: The filter system will ensure the removal of particles and contaminants, resulting in a higher quality end product.2. Increased Equipment Lifespan: By removing harmful particles and contaminants, the filter system will protect the equipment from damage and extend its lifespan.3. Environmental Compliance: The filter system's design will adhere to environmental regulations and minimize the impact on the surrounding environment.4. Reduced Downtime: With easy maintenance and quick filter replacement, downtime will be minimized, ensuring continuous operation.5. Cost Savings: The long filter life and cost-effective design will result in reduced maintenance and replacement costs. Conclusion:This filter design proposal aims to create an efficient, environmentally friendly, and cost-effective filter system that meets the specific requirements of the project. The design components and benefits outlined above will ensure high-quality performance, extended equipment lifespan, and compliance with environmental regulations.。

Phamarceutical Cleanroom design

Phamarceutical Cleanroom design

S e p t e m b e r 2004A S H R A E J o u r n a l 29proper HVAC system is a critical part of pharmaceutical cleanroomdesign. Even though various design guidelines and standards are available, there is no clear-cut guidance for many crucial HVAC design parameters, particularly air changes per hour for a specific class of cleanrooms. FDA guidelines 1 only specify a minimum of 20 air changes per hour for controlled areas without providing any specifics.100 air changes per hour for all I SO 7(Class 10,000) cleanrooms while others use as low as 30 for the same classifica-tion. The question naturally arises: how can a design professional reach proper parameters with a set of given conditions when designing a cleanroom HV AC sys-tem? This article attempts to address this question by looking into the fundamen-tals of cleanroom HV AC systems.A cleanroom is defined in the new ISO standard as, “A room in which the con-centration of airborne particles is con-trolled, and which is constructed and used in a manner to minimize the introduc-tion, generation, and retention of par-ticles inside the room, and in which other relevant parameters, e.g., temperature,humidity, and pressure, are controlled as necessary.”2 For example, an I SO 7cleanroom is controlled to allow notmore than 10,000 particles of 0.5 µm or larger per ft 3 (0.02832 m 3) of air volume.The particle count in a cleanroom is pe-riodically tested to maintain the valid-ity of a cleanroom.Cleanroom Fu ndamentalsThe fundamentals of cleanroom de-sign are to control the concentration of airborne particles. The particulate mat-ter come from several sources: the sup-ply air; the internal particle generation;and infiltration from adjacent spaces. To control these airborne particles, all three sources need to be controlled.Supply Air ControlsParticles from the supply air are easily controlled by using HEP A (high-efficiency particulate air) filters. Most HEP A filters have a minimum efficiency of 99.97%tested on 0.3 micron particles. I n other words, only less than 0.03% of all particles of 0.3 microns or larger can get through such a filter. So if the return air contains 10,000 particles per ft 3 (353 000 particles per m 3), its concentration would be re-A recently published I SO Standard 2does provide some guidelines on the air change rates, but only for the microelec-tronic industry. This standard-specified air-change rate is 10 to 20 for Class 8(equivalent to Class 100,000 in Fed 209E,4 which has been repealed and re-placed with I SO 14644-1), a deviation from the earlier FDA guideline, further-ing the confusion.The I SPE Baseline Guide for sterile facilities 3 did try to cover this important design aspect by devoting Section 15.4to address the calculation of air-change rate. Unfortunately, this section has only a subtitle and not the actual equation.As a result, different pharmaceutical and biotech companies are using their own guidelines to approach cleanroom HV AC design, leading to a range of scattered design parameters. For example, some useUnderstanding Pharmaceutical Cleanroom DesignABy John Zhang, P .E.About the Author John Zhang, P .E., is a lead mechanical engineer with IDC in Portland, Ore.The following article was published in ASHRAE Journal, September 2004. © Copyright 2004 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. It is presented for educational purposes only. This article may not be copied and/or distributed electronically or in paper form without permission of ASHRAE.duced down to three particles per ft3 (106 particles per m3) after it goes through the filter. Therefore, the supply air can be consid-ered almost particulate-free.Infiltration ControlsParticles from adjacent spaces also are easy to control. If the adjacent area is less clean than the cleanroom of concern, par-ticle infiltration can be minimized by controlling the airflow direction, so that air flows from the cleanroom to its adjacent space. This can be easily accomplished by supplying more air than returning air, thus slightly pressurizing the room. Internal Generation ControlsThe internal particulate generation always is the focus of any cleanroom design. The internal generation consists of those from building elements such as walls, floor, ceiling, etc., from equipment, and most importantly from operators. The internal generation from building elements can be minimized by using hard-surfaced, non-porous materials such as polyvinyl panels, epoxy painted walls, and glass board ceilings. The internal generation from operators can be minimized with proper gown-ing to shield the human body and street clothing from the surroundings.Particles from OperatorsAs mentioned earlier, the operators are the main source of internal generation. It is well-known that thousands of dead cells are shed from the human body every minute. That would contribute millions of particulate counts into a cleanroom. As the cleanroom class becomes more stringent, so do the room finish and gowning requirements. Nevertheless, a typically cleanroom-gowned operator would still generate approximately 10,000 particles of 0.5 µm or larger per second per ft3 (353 000 particles per m3) of air volume (Reference 3, Chart A3-1). As-suming a cleanroom of 20 ft × 20 ft × 9 ft (6 m × 6 m × 2.75 m) high with four operators, the particle generation rate due to the operators would be 670 per minute per ft3 (23 660 per minute per m3), assumed with perfect mixing.However, even though a high air-change rate is provided, a completely even spread of these particulate matters is highly unlikely. The zones immediately around operators will have much higher concentrations than those far away from them. With this in mind, a reasonable estimate for internal genera-tion due to operators would be around 5,000 particles per minute per ft3 (177 000 particles per minute per m3) in a typical cleanroom.Cleanroom ControlsAlthough I SO 1 through I SO 5 cleanrooms use unidirec-tional flow designs, most pharmaceutical cleanrooms depend on the principle of dilution to control their particles. For well-mixed air, at any given moment, the particle concentration x can be expressed in the following equation, assuming no infil-tration as the room is pressurized:()dtgdtvxsdx×+××−=(1) wheres is the supply air particulate concentration in particlesper ft3 (m3);v is the supply air volume flow rate in terms of air-changerate per hour;g is the internal generation rate in particles per ft3 ( m3) perhour; andx is room or return air concentration in particles per ft3(m3).Assuming the initial room concentration is Xo and neglect-ing the variation of g with time t, the above differential equa-tion can be solved as:()()v gsvtvgsXox++−−−=exp(2) As time t goes on and the system reaches the steady state, the room final concentration x simply becomes:vgsx+=(3) or()s x gv−=(4) With Equation 4, the air-change rate can be easily calcu-lated as a function of g, s, and x.ExamplesA TA Typical ISO 7 (Class 10,000) Cleanroomypical ISO 7 (Class 10,000) CleanroomUsing a specific example, when the aforementioned ISO 7 cleanroom (x = 10,000) using 99.97% HEPA filters (s = 3) with a typical internal generation (g = 5,000 × 60), the supply air-change rate v would be approximately 30 per hour.By the same token, if the rate is increased to 50, the actual particle count in the room would be approximately 6,003. (In reality, particle counter readings would scatter within a certain range.)Filtration EffectsProper air filtration is crucial for cleanroom controls. Never-theless, once standard pharmaceutical grade HEPA filters are used, the supply air can be considered practically particle-free. This statement is in total agreement with ISPE’s guide.3 There-fore, further improving supply HEPA filter’s efficiency does not help improve the cleanliness of a cleanroom. This can be easily illustrated in the following example.In the same cleanroom, when double HEP A filters are used, as some of pharmaceutical engineers advocate (s = 0.0009), with the same air-change rate (50) and internal generation rate (5,000 × 60), the actual particle count would be improved from the previous 6,003 to 6,000, a meaningless amount.Design HintsFrom the previous analysis, it is obvious that the most effec-30A S H R A E J o u r n a l S e p t e m b e r2004S e p t e m b e r 2004A S H R A E J o u r n a l31tive way of controlling the cleanroom quality is to minimize the internal gen-eration and to supply adequate HEP A airto limit the actual particle counts underthe ISO standard-specified limit. Accord-ing to FDA guidelines,1 a minimum of20 air changes per hour should be used.While this is quite enough for a typicalISO 8 (Class 100,000) cleanroom, it may not be so for an ISO 7 cleanroom. There-fore, for ISO 7 or under, more analysesare required before an optimal air-change rate can be decided.Regardless, a design professional should keep in mind that a high air-change rate cannot be substituted by using extremelyhigh-efficiency HEP A. That would be a fundamental mistakefor a cleanroom design.Air Air-Change Rate for a T -Change Rate for a T -Change Rate for a Typical ISO 7 Spaceypical ISO 7 Space For a typical ISO 7 space with a typical internal generationof approximately 5,000 per cfm (10 600 per L/s), and supply air through 99.97% HEP A filters, the required air-change rate would be()()3000,10000,560−×=−=s x g v = 30 air changes per hourOf course, in the case that internal generation is signifi-cantly higher, more air changes would be required.Air-Change Rate for an ISO 6 SpaceWith identical conditions, an ISO 6 (Class 1,000) space would require almost 10 times as many air changes as an ISO 7 space.However, in reality, it does not. For one thing, very few phar-maceutical spaces are classified as ISO 6 (there is no ISO 6classification in EU/MCA). For those that do, they are typi-cally either an airlock or a buffer zone separating an aseptic filling room (typically an ISO 5 zone) and its adjacent ISO 7spaces. (It is absolutely acceptable to have an ISO 5 unidirec-tional flow zone within an ISO 7 room; they do not need to be separated by an intermediate ISO 6 airlock.) In this case, the internal particle generation is very small due to the absence of operators. To be conservative, assume g = 1,000 × 60 (per hour).Therefore, the required air-change rate would be())3000,1000,160−×=−=s x g v = 60 air changes per hourWhen operators are present and the space has to be vali-dated as operational, an ISO 6 room requires much higher air changes than 60 as discussed here.Air-Change Rate for an ISO 5 SpaceThe analyses so far were based purely on the dilution prin-ciple that is applicable to only ISO 6 and beyond. For ISO 5spaces, the displacement principle applies, and that renders the previous equations irrelevant. Normally, an ISO 5 space/zone is entirely covered by a HEP A ceiling or hood. In other words, the entire space is flooded by particle-free supply air that is unidi-rectional. The key to maintain such unidirectional flow is to have sufficiently high velocity out of the HEP A filters, typi-cally at 90 fpm (0.5 m/s), providing unidirectional momentum to prevent contaminated air outside the ISO 5 space from cross-ing this flooded zone boundary. Therefore, the air-change rate is not a design parameter for an ISO 5 space in most cases.Nevertheless, a rule of thumb can be derived if one wishes to relate air change rates with an ISO 5 space. T ypically, such a space is 100% covered by HEP A filters. Also, actual filter sizes are normally only 80% of the nominal ceiling space, and HEPA filter design face velocity is 90 fpm (0.5 m/s). Therefore, the supply air volume is typically 72 cfm/ft 2 (366 L/s per m 2). An ISO 5 space rarely has a high ceiling. Assuming a 9 ft (2.75 m)ceiling, this design setup would translate into 480 air changes per hour. If the ceiling height is only 8 ft (2.5 m), then the air-change rate would be increased to 540. In the light of this analy-sis, a typical ISO 5 space has roughly 500 air changes per hour.Impact of PressurizationOne of the most important parameters in cleanroom HV AC design is room differential pressure. I t is easily understood that by maintaining positive pressure over its adjacent space,the infiltration of less clean air into a cleanroom is minimized.All guidelines recommend a 0.05 in. (12.5 Pa) differential across doors separating rooms with different classification. Absolutely nothing is wrong with this design philosophy and close atten-tion should be paid to it.32A S H R A E J o u r n a l a s h r a e.o r gS e p t e m b e r 2004Supply Air Particles (s )99.97% HEPA Filter Infiltration Particles (i )Internal Generation From Operators (g 2)Return or Mixed Air (x )Internal Generation From Equipment (g3)Internal Generation From Building Materials (g 1)Let’s look at how differential pressure reversal affects a typi-cal cleanroom performance. Again, the example is an ISO 7space adjacent to an ISO 8 airlock. As is well-known, the airlock,since it is normally unoccupied, is usually cleaner than the ISO 7 space. Nevertheless, for the sake of argument, we would still treat it as an ISO 8 space with a particulate concentration of 95,000 per ft 3 (3.4 million per m 3). Also, assume a typical 3 ft ×7 ft (0.9 m × 2.1 m) door with a typical crack of 1/8 in. (3 mm).This crack results in an opening of 0.21 ft 2 (0.02 m 2). When a serious differential reversal takes place, say, 0.05 in. (12.5 Pa)the other way, the infiltration from the airlock into the ISO 7space is approximately 200 cfm (94 L/s). This would contribute about 19 million 0.5 µm or larger particles per minute into ISO 7 space. Assuming again perfect mixing with the room air (20 ×20 × 9 = 3,600 ft 3 [102 m 3]), this infiltration would require()())323000,10600,3000,000,1960=−×=−=s x g v Thirty-two additional air changes per hour are needed just to deal with this pressure reversal. It is little wonder that qual-ity assurance personnel in many companies tend to react strongly when the differential is not maintained or somehow is accidentally reversed, resulting in shutting productions down,alarming the entire manufacturing facility, or even dumping good products.Is It Really So Bad?To maintain design pressure differentials is a daunting taskfor HVAC professionals as many seasoned engineers in phar-maceutical industry can testify. In reality, the damages caused by a pressure reversal are much less than what was illustrated earlier. First, as mentioned before, the adjacent airlock is more often than not cleaner than the cleanroom of concern. Even if it is not, the cleanliness is rarely as bad as near the 100,000level. Second, doors are normally sealed with sweeping rub-ber blades, resulting in very small cracks. Third, the pressure reversal when it happens is always very slight, hardly more than –0.02 in. (–5 Pa).Now let’s examine such a more realistic condition: The airlock actual cleanness level is 30,000 (three times dirtier than 10,000,which is unusually high); the actual door crack is half the previous example, or 0.1 ft 2 (0.01 m 2); and the pressure reversal is –0.02 in. (–5 Pa). Thus, the resultant airflow reversal is 57cfm (27 L/s). The 0.5 µm or larger infiltration into this 3,600 ft 3(102 m 3) room is then merely 475/cfm (1007 per L/s). Assum-ing the internal generation is 6,000 per minute and the design air-change rate is 50, the average cleanliness of this I SO 7room is:773,750475,6603=×+=+=v g s x an acceptable level. Without airflow reversal, the level is:200,7000,6603=×+=+=v g s x This is about 8% better. In the light of this analysis, one maywonder if it is warranted to dump all products out simply due to a very minor degree of airflow reversal.V alidating Cleanroom With Reversed Air alidating Cleanroom With Reversed Airflowflow Obviously no one is willing to place his or her job on the line to say the pressure reversal is no big deal. But, many safe rectification measures exist. In addition to tightening up the door cracks, the most effective way to ensure quality is to validate the cleanroom under the deliberate condition of air-flow reversal. That is, test the space cleanness under the worst condition. If the space passes the particulate count test proto-col when the airflow is reversed, no one should need to shut down production when the problem is merely inability to main-tain designed 0.05 in. (12.5 Pa) differential. This will solve many problems facing maintenance personnel in the pharma-ceutical industry.V alidating Airlock as the Same Class as the CleanroomIf this approach seems unorthodox, another approach can be taken: make the airlock as clean as the cleanroom and validate it as such. As a matter of fact, this has become a recent trend. As EU/MCA 5 states, “The final stage of the changing room (designed as an airlock) should, in the at-rest state, be the same grade as the area into which it leads.” The air-change rate for the airlock does not have to be increased significantly since almost no internal particulate generation exists as the space is normally unoccupied. In other words,no design parameters need to be changed. Simply validate the airlock to the same class as the cleanroom.Recovery TimeAnother consideration in cleanroom HV AC design is so-called recovery time. The recovery time is inversely proportional to the air-change rate. In other words, the higher the air changes, the faster the recovery. The recovery time from one class up (say, fromFigure 1: T ypical cleanroom with HEPA supply, internal gen-eration and infiltration.ISO 8 to ISO 7) can be estimated using the following formula:vt5.2=(5) For example, the time for an ISO 7 room to recover from a shutdown condition of 100,000 level to an operational 10,000 level, assuming 30 air changes, takes approximately 0.083 hours or 5 minutes. If the air-change rate doubles to 60, then only 2.5 minutes is required. If an ISO 6 room is to recover from ISO 8 condition with the same air-change rate, twice as much time would be required. However, an ISO 6 is likely to have at least twice as many air changes and, thus, the recovery time is about the same. It is noteworthy that the recovery time for an ISO 5 zone or room is almost instant since the entire zone is covered by particulate-free supply air and no dilution but dis-placement process is involved. I t is obvious that most cleanrooms can recover in a reasonably short time. ConclusionThree main particulate contamination sources exist: supply air, infiltration air, and internal generation. Of various internal generations, operators are the main contamination source and proper gowning and operating procedure prove to be critical. Once a reasonable estimate for internal generation can be secured, the air change rates for a dilution-based cleanroom design can be achieved using the equation:xgv=for all practical purpose. I t couldn’t be emphasized more that higher efficiency HEPA filters cannot serve to reduce the designed air-change rate. More often than not, the other way around is possible.Maintaining proper pressurization is important to maintain cleanliness in a cleanroom. It is recommended that the protec-tive airlock be validated at the same class as the cleanroom itself without significantly increasing the supply air to the airlock. If feasible, cleanrooms should be tested with a slight pressure reversal but operated with proper pressurization. This article also offers a rule of thumb for estimating the recovery time using a simple formula: vt5.2=per class recov-ery. Most cleanrooms can recover from shutdown in less than 10 minutes, if they are designed properly.The suggested air changes for various cleanroom classes are based on common practice only. Extensive research would be required to reach optimal design parameters such as air changes and differential pressures. It is this author’s hope that ASHRAE and other engineering organizations such as ISPE would come up with funding to support this type of research and millions of dollars can be saved by designing better and more efficient cleanroom facilities.References1. 1987. FDA Gui deli ne on Steri le Drug Products Produced by Aseptic Processing.2. ISO 14644. 1999. “Cleanrooms and associated controlled envi-ronments.”3. 1999. ISPE Pharmaceutical Engineering Guides, V olume 3: Ster-ile Manufacturing Facilities.4. Federal Standard 209E: Clean Room and W ork Station Require-ments: Controlled Environment.5. EU/MCA. 1997. Rules and Guidance for Pharmaceutical Manu-Advertisement in the print edition formerly in this space.。

基于无迹卡尔曼滤波和权值优化的改进粒子滤波算法

基于无迹卡尔曼滤波和权值优化的改进粒子滤波算法

基于无迹卡尔曼滤波和权值优化的改进粒子滤波算法冉星浩;陶建锋;杨春晓【摘要】针对传统粒子滤波面临的重要密度函数的选取和粒子多样性丧失引起的样本贫化问题,提出基于无迹卡尔曼滤波和权值优化的改进粒子滤波算法.与传统的粒子滤波算法相比,有两点改进:首先该算法采取无迹卡尔曼滤波产生建议分布函数;其次,在重采样过程,提出基于权值优化的改进重采样算法来增加粒子的多样性.仿真结果表明,改进算法降低了粒子滤波算法的粒子退化程度并避免样本贫化现象的出现,更加接近真实值,提高了跟踪精度.%Aiming at the problems of the importance function choice and the sample impoverishment after resampling, an improved particle filter algorithm was proposed in this paper,which based on the unscented Kalman filter and weight pared with the traditional particle filter,this algorithm had two improvements,UKF was used to gen-erate the importance density function,and weight optimization was used to ensure all useful information inherited, which could maintain the diversity of particle.The theory analysis and simulation showed that the improved particle fil-ter algorithm could solve particle degeneracy and avoid sample impoverishment.【期刊名称】《探测与控制学报》【年(卷),期】2018(040)003【总页数】6页(P74-79)【关键词】粒子滤波;无迹卡尔曼滤波;权值优化;样本贫化【作者】冉星浩;陶建锋;杨春晓【作者单位】空军工程大学防空反导学院,陕西西安 710051;空军工程大学防空反导学院,陕西西安 710051;中国人民解放军93567 部队,河北保定 074100【正文语种】中文【中图分类】TN7130 引言相比于传统的卡尔曼滤波算法,粒子滤波算法不受线性化误差或高斯噪声假定的限制,适用于非线性、非高斯系统。

初效空调过滤器中英文对照

初效空调过滤器中英文对照

初效空调过滤器中英文对照初效过滤器'>过滤器中英文对照Primary Filter初效过滤网中英文对照Earlyeffect filters粗效过滤网中英文对照 Coarse filter粗效过滤网中英文对照 Coarsefilter粗效过滤器中英文对照Coarse filter粗效空气过滤网中英文对照 Coarse airfilter粗效空调过滤网中英文对照Coarse airfilters粗效中央空调过滤网中英文对照Coarse central air-conditioningfilters粗效无尘过滤网中英文对照 Coarse dustfilter尘埃中英文对照 Dust particlecounter尘埃粒子多点检测系统中英文对照 Dust particle multi-pointinspection system浮游菌采样器中英文对照 Sampling device境综合参数监测器中英文对照Monitor of environmentcomprehensive parameter常用在净化设备中初效过滤器#初效空调过滤器中英文对照FFU中央控制器'>控制器中英文对照 FFU Central controlle空气净化设备中英文对照 Air clean equipment洁净工作台中英文对照 Clean bench中英文对照Clean air shower送风单元FFU 中英文对照Fan Filter Unit FFU中英文对照Biosafe Cabinet洁净采样车中英文对照Clean samplingvehicle洁净工作站中英文对照Clean work stationASH 洁净吹淋干手器中英文对照 ASH clean hand dryer洁净新风送风机组中英文对照 Clean ventilationunit热交换回收装置中英文对照Heat exchange reclaimequipmentPSC系列洁净保管柜中英文对照 PSC serial clean maintenancecabinetPOV系列洁净烘箱'>烘箱中英文对照 POV serial cleanovenSPB/PB传递窗中英文对照SPB/PB Pass window吹淋吸尘箱中英文对照 Air shower dust absorptioncabinetPAU 移动式空气自净器中英文对照PAU Movable AirCleaner热交换器中英文对照 Heat exchangerBCZ 系列洁净层流罩中英文对照BCZ serial clean layercover消静电空气净化设备中英文对照Air clean equipment to removestaticelectricity消静电洁净工作台中英文对照 Clean bench to remove staticelectricity消静电风淋室中英文对照Air shower to remove staticelectricity消静电洁净工作站中英文对照 Clean work station to remove staticelectricity风枪中英文对照Blower gun风棒中英文对照Blower bar离子风机中英文对照 Ion blowerfan初效过滤器#初效空调过滤器中英文对照也是洁净工作人员在设计及参数设置时用到工程类中英文对照Project洁净室工程中英文对照 Clean roomProject洁净厂房空调工程中英文对照 Air Conditioner Project of CleanPlant除尘通风系统工程中英文对照 Dust removal and ventilationsystemproject新风换风类工程中英文对照 VentilationProject无菌病房和洁净手术室工程等的设计中英文对照 Asepsis ward and cleansurgeryroomproject design洁净耗材中英文对照Clean material系列中英文对照 Medium effect air filter中效袋式空气过滤器中英文对照 Mediumeffect package air filter大风量中效过滤器中英文对照 Large wind volume and mediumeffectivefilter系列有隔板高效空气过滤器中英文对照 GK Serial Highly EffectiveAirFilterwith Partition系列高效无隔板空气过滤器中英文对照GK Serial Highly E检测仪器中英文对照Inspection instrument。

2019转载 粒子滤波 PF Particle Filte.doc

2019转载 粒子滤波 PF Particle Filte.doc

转载粒子滤波PF Particle Filte原文地址:粒子滤波(PF:Particle Filter)作者:Geoinformatics粒子滤波(PF:Particle Filter)的思想基于蒙特卡洛方法(Monte Carlo methods),它是利用粒子集来表示概率,可以用在任何形式的状态空间模型上。

其核心思想是通过从后验概率中抽取的随机状态粒子来表达其分布,是一种顺序重要性采样法(Sequential Importance Sampling)。

简单来说,粒子滤波法是指通过寻找一组在状态空间传播的随机样本对概率密度函数进行近似,以样本均值代替积分运算,从而获得状态最小方差分布的过程。

这里的样本即指粒子,当样本数量N→∝时可以逼近任何形式的概率密度分布。

尽管算法中的概率分布只是真实分布的一种近似,但由于非参数化的特点,它摆脱了解决非线性滤波问题时随机量必须满足高斯分布的制约,能表达比高斯模型更广泛的分布,也对变量参数的非线性特性有更强的建模能力。

因此,粒子滤波能够比较精确地表达基于观测量和控制量的后验概率分布,可以用于解决SLAM问题。

粒子滤波的应用粒子滤波技术在非线性、非高斯系统表现出来的优越性,决定了它的应用范围非常广泛。

另外,粒子滤波器的多模态处理能力,也是它应用广泛有原因之一。

国际上,粒子滤波已被应用于各个领域。

在经济学领域,它被应用在经济数据预测;在军事领域已经被应用于雷达跟踪空中飞行物,空对空、空对地的被动式跟踪;在交通管制领域它被应用在对车或人视频监控;它还用于机器人的全局定位。

粒子滤波的缺点虽然粒子滤波算法可以作为解决SLAM问题的有效手段,但是该算法仍然存在着一些问题。

其中最主要的问题是需要用大量的样本数量才能很好地近似系统的后验概率密度。

机器人面临的环境越复杂,描述后验概率分布所需要的样本数量就越多,算法的复杂度就越高。

因此,能够有效地减少样本数量的自适应采样策略是该算法的重点。

波士加斯特汽车 Taycan 4 跨国科技说明书

波士加斯特汽车 Taycan 4 跨国科技说明书

Individual optionsTechnical dataStandard optionsVehicle pictures Vehicle informationS-GO 802EP o r s c h e T a y c a n4C r o s s T u r i s m oI m p o r t a n t I n f o r m a t i o nA l t h o u g h t h i s i m a g e i s i n t e n d e d t o r e f l e c t y o u r a c t u a l v e h i c l e c o n f i g u r a t i o n,t h e r e m a y b e s o m e v a r i a t i o n b e t w e e n t h i s p i c t u r e a n d t h e a c t u a l v e h i c l e.S o m e i t e m s s h o w n a r e E u r o p e a n s p e c i f i c a t i o n s.T e c h n i c a l d a t aS i n g l e -S p e e d T r a n s m i s s i o n o n t h e F r o n t A x l e , 2-S p e e d T r a n s m i s s i o n o n t h e R e a r A x l eP o w e r u n i tP o w e r u p t o (k W )280 kW P o w e r u p t o (P S )380 PS P o w e r u p t o (H P ) (o n l y f o r N A R )375 hpO v e r b o o s t P o w e r w i t h L a u n c h C o n t r o l u p t o (k W )350 kW O v e r b o o s t P o w e r w i t h L a u n c h C o n t r o l u p t o (P S )476 PS O v e r b o o s t P o w e r w i t h L a u n c h C o n t r o l u p t o (H P ) (o n l y f o r N A R )469 hpM a x . t o r q u e w i t h L a u n c h C o n t r o l500 NmC o n s u m p t i o n /E m i s s i o n sE l e c t r i c i t y c o n s u m p t i o n c o m b i n e d28.1 kWh/100 kmC o n s u m p t i o n /E m i s s i o n s W L T PE l e c t r i c a l c o n s u m p t i o n l o w (W L T P )21.9 - 19.1 kWh/100 km E l e c t r i c a l c o n s u m p t i o n m e d i u m (W L T P )21.4 - 18.4 kWh/100 km E l e c t r i c a l c o n s u m p t i o n h i g h (W L T P )22.4 - 18.9 kWh/100 km E l e c t r i c a l c o n s u m p t i o n e x t r a -h i g h (W L T P )28.4 - 24.0 kWh/100 km E l e c t r i c a l c o n s u m p t i o n c o m b i n e d (W L T P )26.4 - 22.4 kWh/100 km E l e c t r i c a l c o n s u m p t i o n C i t y (W L T P )21.6 - 18.7 kWh/100 km C O 2-e m i s s i o n c o m b i n e d (W L T P )0 - 0 g/kmR a n g eR a n g e c o m b i n e d (W L T P )389 - 456 km R a n g e C i t y (W L T P )463 - 541 km L o n g -d i s t a n c e r a n g e360 kmC h a r g i n gG r o s s b a t t e r y c a p a c i t y 93.4 kWh N e t b a t t e r y c a p a c i t y83.7 kWh M a x i m u m c h a r g i n g p o w e r w i t h d i r e c t c u r r e n t (D C )270 kW C h a r g i n g t i m e f o r a l t e r n a t i n g c u r r e n t (A C ) w i t h 9.6k W (0 t o u p t o 100%)10.5 h C h a r g i n g t i m e f o r a l t e r n a t i n g c u r r e n t (A C ) w i t h 11k W (0 t o u p t o 100%)9.0 h C h a r g i n g t i m e f o r a l t e r n a t i n g c u r r e n t (A C ) w i t h 22k W (0 t o u p t o 100%)5.0 h C h a r g i n g t i m e f o r d i r e c t c u r r e n t (D C ) w i t h 50k W f o r u p t o 100k m (W L T P )28.5 min C h a r g i n g t i m e f o r d i r e c t c u r r e n t (D C ) w i t h 50k W (5 t o u p t o 80%)93.0 minT e c h n i c a l d a t a (c o n t i n u e d )S i n g l e -S p e e d T r a n s m i s s i o n o n t h e F r o n t A x l e , 2-S p e e d T r a n s m i s s i o n o n t h e R e a r A x l eC h a r g i n g t i m e f o r d i r e c t c u r r e n t (D C ) w i t h m a x i m u m c h a r g i n g p o w e r f o r u p t o 100k m (W L T P )5.25 min C h a r g i n g t i m e f o r d i r e c t c u r r e n t (D C ) w i t h m a x i m u m c h a r g i n g p o w e r (5 t o u p t o 80%)22.5 minB o d yL e n g t h4,974 mm W i d t h1,967 mm W i d t h (w i t h m i r r o r s )2,144 mm H e i g h t 1,409 mm W h e e l b a s e2,904 mm F r o n t t r a c k 1,718 mm R e a r t r a c k1,698 mm U n l a d e n w e i g h t (D I N )2,245 kg U n l a d e n w e i g h t (E U )2,320 kg P e r m i s s i b l e g r o s s w e i g h t 2,885 kg M a x i m u m l o a d640 kg M a x i m u m p e r m i s s i b l e r o o f l o a d w i t h P o r s c h e r o o f t r a n s p o r t s y s t e m75 kgC a p a c i t i e sL u g g a g e c o m p a r t m e n t v o l u m e , f r o n t84 lO p e n l u g g a g e c o m p a r t m e n t v o l u m e (u p t o t h e u p p e r e d g e o f t h e r e a r s e a t s )446 l L a r g e s t l u g g a g e c o m p a r t m e n t v o l u m e (b e h i n d f r o n t s e a t s ,u p t o r o o f )1,212 lP e r f o r m a n c eT o p s p e e d220 km/h A c c e l e r a t i o n 0 - 60 m p h w i t h L a u n c h C o n t r o l4.8 s A c c e l e r a t i o n 0 - 100 k m /h w i t h L a u n c h C o n t r o l5.1 sA c c e l e r a t i o n 0 - 160 k m /h w i t h L a u n c h C o n t r o l 10.1 s A c c e l e r a t i o n 0 - 200 k m /h w i t h L a u n c h C o n t r o l 15.6 s A c c e l e r a t i o n (80-120k m /h ) (50-75 m p h )2.6 sS t a n d a r d o p t i o n sP o w e r u n i t• Porsche E-Performance Powertrain with a Permanent Magnet Synchronous Motor on the Front and Rear Axle • Single-Speed Transmission on the Front Axle• Performance Battery Plus• 2-Speed Transmission on the Rear Axle• Porsche Traction Management (PTM)• Porsche Recuperation Management (PRM)• Sport Mode for the Activation of dynamic Performance Settings including Launch Control• Range Mode for the Activation of efficiency-oriented Settings• Gravel Mode for the Activation of Settings with increased Bad Road CapabilitiesC h a s s i s• Aluminium Double Wishbone Front Axle• Aluminium Multi-Link Rear Axle• Vehicle Stability System Porsche Stability Management (PSM) with ABS and extended Brake Functions • Integrated Porsche 4D Chassis Control• Adaptive Air Suspension including Porsche Active Suspension Management (PASM) and Smart Lift• Increased Ground Clearance in Comparison to Taycan Limousine (+20 mm)• Power SteeringW h e e l s• 19-Inch Taycan Aero Wheels• Wheel Centres with monochrome Porsche Crest• Tyre Pressure Monitoring (TPM)B r a k e s• 6-Piston Aluminium Monobloc fixed Brake Calipers at Front• 4-Piston Aluminium Monobloc fixed Brake Calipers at Rear• Brake Discs internally vented with 360 mm Diameter at Front and 358 mm Diameter at Rear• Brake Calipers painted in Black• Anti-Lock Brake System (ABS)• Electric Parking Brake• Brake Pad Wear Indicator• Auto Hold Function• Multi-Collision BrakeB o d y• Fully galvanised Steel-Aluminium-Hybrid lightweight Bodyshell• Bonnet, Tailgate, Doors, Side Sections and front Wings in Aluminium• Roof in Aluminium, contoured Design (with dynamic Recess Profile)S t a n d a r d o p t i o n s(c o n t i n u e d)• Full-surface aerodynamic Underbody Panelling• Upper Valance with vertical Air Intakes (Air Curtain)• Auto-deploying Door Handles• Side Window Trims in Black• Door Sill Guards in Black• Exterior Mirror Lower Trims including Mirror Base in Black• ‘PORSCHE' Logo in Glass Look integrated into Light Strip• Model Designation on Tailgate in Silver• Wheel Arch Cover in Black• Porsche Active Aerodynamics (PAA) with active Air Intake Flaps• Roof Spoiler painted in Black (high-gloss)• Cross Turismo specific Lower Valance with Inlay painted in Brilliant Silver• Cross Turismo specific Sideskirts in Black with Inlays painted in Brilliant Silver• Cross Turismo specific Rear Diffusor in Louvered Design with Inlay painted in Brilliant SilverL i g h t s a n d v i s i o n• LED headlights• Four-Point LED Daytime Running Lights• Automatic Headlight Activation including ‘Welcome Home’ lighting• Light Strip• Third Brake Light• LED-Innenraumbeleuchtungskonzept: Abschaltverzögerung, Innenleuchte (Dachkonsole) vorne mit Lesespots rechts und links, Auflicht in der Dachkonsole, beleuchteter Make-up-Spiegel in den Sonnenblenden (Fahrer- undBeifahrerseite), Leseleuchten hinten links und rechts, Auflicht in den Leseleuchten, Fußraumleuchte vorne und hinten, Gepäckraumleuchten vorne und hinten, Handschuhkastenleuchte, Türfachbeleuchtung• Automatically dimming Interieur and Exterior Mirrors• Illuminated Vanity Mirror for Driver and Front Passenger• Electrically adjustable and heatable Exterior Mirrors, aspherical on Driver’s Side• Front Wiper System including Rain Sensor and Washer Jets• Rear Wiper including Washer Jet• Heated Rear Screen with "Auto-Off" FunctionA i r c o n d i t i o n i n g a n d g l a z i n g• Advanced Climate Control (2 Zone) with separate Temperature Settings and Air Volume Control for Driver and Front Passenger, automatic Air-Recirculation Mode including Air Quality Sensor as well as comfortable Control of the Airflow via PCM• Parking Pre-Climatisation including Pre-Conditioning of the Battery• Thermally insulated Glass all round• Particle/pollen filter with active carbon filter, traps particles, pollen and odours and thoroughly filters fine dust out of the outside airS t a n d a r d o p t i o n s(c o n t i n u e d)S e a t s• Comfort seats in front (8-way, electric) with electric adjustment of seat height, squab and backrest angle and Fore/Aft position• Integrated Headrests front• Rear Seats with 2 Seats in Single-Seat Look, fold-out Centre Armrest and split-folding Backrests (60:40)S a f e t y a n d s e c u r i t y• Active Bonnet System Note: only in markets with legal requirements• 4 Doors with integrated Side Impact Protection• Bumpers comprising high-strength Cross Members and two Deformation Elements each with two threaded Fixture Points for Towing Eye contained in on-board Tool Kit• Full-size Airbags for Driver and Front Passenger• Knee Airbags for Driver and Front Passenger• Side Airbags in front• Curtain Airbags along entire Roof Frame and Side Windows from the A-Pillar to the C-Pillar• Rollover Detection for Activation of Curtain Airbags and Seat Belt Pretensioners• Three-Point automatic Seat Belts with Pretensioners (front and outer rear Seats) and Force Limiters• Manual Adjustment of Seat Belt Height for Driver and Front Passenger Seats• Seat Belt Warning System for Driver, Front Passenger and Rear Seat System• Immobiliser with Remote Central Locking, Alarm System with radar-based Interior Surveillance• ISOFIX Mounting System for Child Seats on outer Rear SeatsA s s i s t a n c e s y s t e m s• Lane Keeping Assist including Traffic Sign Recognition• Cruise Control including adaptive Speed Limiter• Warn and Brake Assist incl. Pedestrian protection Detects the area ahead of the vehicle. Within the system limitations, an impending frontal collision with other vehicles, pedestrians or cyclists can be detected both in the urban and extra-urban speed range. The system warns the driver visually, acoustically and if necessary through a braking jolt. Where required, the system can support the driver's braking or initiate partial or full deceleration in order to reduce the collision speed or prevent the collision in some circumstances.• ParkAssist (front and rear) with visual and audible Warning• Keyless Drive• Driver Personalisation for Ergonomic, Comfort, Infotainment and Lighting Functions as well as Assistance and Display Systems Note: Country-specific availability• Distance warning If the system detects a safety hazard due to following too close, the system can warn the driver in a vehicle speed range from approx. 65 – 250 km/h (40 – 156 mph) by displaying the symbol on the instrument clusterI n s t r u m e n t s• 16.8-Inch Curved Display - contains up to five different and freely configurable views, depending on the equipment -including external touchscreen control panels for controlling the light and chassis functions• Centre Console with Direct Touch Control - climate settings - opening and closing of the charge port doors - battery level indicator - handwriting panelS t a n d a r d o p t i o n s(c o n t i n u e d)I n t e r i o r• Partial Leather Interior• 'Taycan' Badge in the Centre Console• Accent Package Black• Storage Package Additional storage compartments in vehicle interior: - storage tray below the ascending centre console in front - storage tray on the middle tunnel in rear - net and bag hook in rear luggage compartment• Fabric roof lining• Multifunction Sports Steering Wheel Leather• Centre Console Armrest front with integrated Storage Compartment• Floor Mats• Sun Visors for Driver and Front PassengerA u d i o a n d c o m m u n i c a t i o n• Porsche Communication Management (PCM) including Online Navigation¹ - high-resolution 10.9-Inch touchscreen display in full HD resolution - multi-touch gesture control: for example, you can control the size of the map view with two fingers using the PCM touchscreen display or Direct Touch Control in the handwriting input field in the centre console -mobile phone preparation with Bluetooth® interface for telephone and music - two USB-C connectivity and charge ports in the storage compartment in the centre console, for example for connecting various iPod® and iPhone®models², as well as two USB-C charge ports in the rear - radio with RDS twin-tuner and Diversity for optimum reception - control of vehicle and comfort functions such as charging timers and climate settings - central display of notifications from the vehicle and connected external devices - voice control with natural speech interaction, activation via “Hey Porsche” and multimodal map operation Online navigation¹ with: - maps for most European countries - 3D map display and 3D navigation map supporting city³ and terrain models with satellite image overlay - dynamic route calculation with online real-time traffic and route monitor for a clear overview of charging stops and traffic conditions Note: ¹ requires Porsche Connect ² for information on compatibility with the latest iPod® and iPhone® models, please contact your Porsche Centre ³ not available in all cities• LTE Communication Module with embedded SIM Card, Internet Access and Smartphone Compartment including Inductive Charging (Qi Standard)• Porsche Connect with Apple® CarPlay - online navigation (see Porsche Communication Management) - musicstreaming and online radio - Remote Services - E-mobility services including charge management, control of vehicle parking pre-climatisation or range management - a wide range of other Porsche Connect Services Note: Porsche Connect includes a free subscription period of 36 months. The full range of Porsche Connect services or individual services thereof may not be available in some countries. An integrated LTE-enabled SIM card with data allowance for use of selected Porsche Connect services will be included in some countries. For use of the WiFi hotspot via the integrated, LTE-enabled SIM card, in some of these countries a data package is available to purchase from thePorsche Connect Store. For further information on free subscription periods, follow-on costs and availability ofindividual services in your country, please visit /connect or consult your Porsche Centre.• 2 USB-C Connectivity and Charge Ports in the Storage Compartment in the Centre Console• 2 USB-C Charge Ports in the Rear• Sound Package Plus with 10 Speakers and a total Output of 150 Watts• Digital Radio Note: Standard EU 28S t a n d a r d o p t i o n s(c o n t i n u e d)L u g g a g e c o m p a r t m e n t• Luggage Compartment front and rear• Automatic Tailgate• Tailgate Button• Storage Compartments - glove compartment - storage compartment in the front centre console - storage tray below the ascending centre console in front - storage tray between the rear seats - storage tray on the middle tunnel in rear -storage compartments in the doors front and rear - storage compartments in the sides of the rear luggage compartment and luggage compartment recess - net and two fastener straps in rear luggage compartment - bag hooks in rear luggage compartment• 12 V Electrical Socket in Storage Compartment in the Centre Console• 12 V Electrical Socket in Luggage Compartment rear• Two integrated Cupholders front and rear• Clothes Hook at B-Pillars on Driver's and Passenger's Side• Functional Luggage Compartment Cover, foldableC o l o u r s• Solid Paint Exterior Colours - White (0Q) - Black (A1)E-P e r f o r m a n c e• Charge Port on Driver and Front Passenger Side• On-Board AC-Charger with 11 kW for Alternating Current (AC)• On-Board DC-Charger with up to 150 kW for Direct Current (DC) at public Charging Stations with a Voltage of 400 V • Charging with Direct Current (DC) at public Charging Stations with a Voltage of 800 V• Mobile Charger Plus (11 kW) for charging at household and industrial electrical outlets. Compatible with the Home Energy Manager. 4.5 m cable• Supply Cable for Domestic Electrical Socket• Supply Cable for Red Industrial Electrical Outlet (400 V, 32 A, 5 Pin)I n d i v i d u a l o p t i o n sO r d e r n o.M o d e l y e a r V e h i c l eY1BBD12021Taycan 4 Cross TurismoI n d i v i d u a l i s a t i o nC a t e g o r y O r d e r n o.I n d i v i d u a l e q u i p m e n tExterior Colour1I Frozenberry MetallicInterior Colour QD Two-Tone Leather Interior, Smooth-Finish Leather, Bramble/Slate Grey Equipment Packages2J0Offroad Design PackageExterior3S2Roof Rails in Black Aluminium6XV Electric folding Exterior MirrorsQJ4Side Window Trims in Black (high-gloss)NG1Preliminary Setup for Rear Bike Carrier Drive train / Chassis G1X Single-Speed Transmission on the FrontAxle, 2-Speed Transmission on the RearAxleGM3Porsche Electric Sport Sound8LC Sport Chrono Package includingCompass Display on Dashboard1N3Power Steering PlusWheels F5320-Inch Offroad Design Wheels Wheel Accessories1G8Tyre Sealing Compound and Electric AirCompressorLights and vision8IS LED Main Headlights including PorscheDynamic Light System Plus (PDLS Plus)4L6Automatically Dimming Interieur andExterior Mirrors3FG Panoramic Roof, fixedVW6Thermally and Noise insulated Glassincluding Privacy GlassComfort and assistance systems KS1Head-Up DisplayKA6ParkAssist including Surround ViewP4W Active Parking Support4F2Comfort AccessInterior KH5Advanced Climate Control (4-Zone)5KA4+1 Seats2V4IoniserQQ1Ambient LightingQ2J Comfort Seats in Front (14-Way, Electric)with Memory Package4A3Seat Heating (front)4X4Side Airbags in Rear CompartmentGT5Accent Package DarksilverFX1Seat Belts Bramble Porsche ExclusiveManufakturI n d i v i d u a l i s a t i o n(c o n t i n u e d)C a t e g o r y O r d e r n o.I n d i v i d u a l e q u i p m e n t3X1Ski BagInterior Aluminium5MD Aluminium Rhombus Interior Package7M9Door Sill Guards brushed Aluminium inSilverAudio / Comm.JH1Passenger DisplayE-Performance2W9Electric Charging CoverKB4On-Board AC-Charger with 22 kW9M3Heat PumpQW5Porsche Intelligent Range ManagerNW2Mobile Charger ConnectEH2Cable Connection between Control Unitand Vehicle: 7.5m76H Charging Cable (Mode 3)Y o u r P o r s c h e C o d e /PML7C558I m p o r t a n t i n f o r m a t i o nThe models illustrated show equipment for the Federal Republic of Germany. For example they also include special equipment which is not supplied as standard and is only obtainable for an additional charge. Not all models are available in every country as there may be regulations and orders which are country-specific. Please obtain information about the models available through your Porsche dealer or importer. We reserve the right to change design, equipment and delivery specifications as well as vary colours.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Improving Particle Filter with Support Vector Regression for Efficient Visual Tracking
Guangyu Zhu1, Dawei Liang1, Yang Liu1, Qingming Huang2, and Wen Gao1,2
1
ห้องสมุดไป่ตู้
Department of Computer Science, Harbin Institute of Technology, Harbin, P. R. China 2 Graduate School of Chinese Academy of Sciences, Beijing, P. R. China {gyzhu, dwliang, yliu, qmhuang, wgao}@ posterior density. This will degrade the efficiency and diversity of samples more rapidly and seriously. Existing schemes use forward filter backward smoothing technology [5] or Markov Chain Monte Carlo method [6] to counteract this problem. In this paper, we propose an improved particle filter by integrating support vector regression (SVR) into sequential Monte Carlo framework to achieve satisfied performance of particle filter with small sample set. Unlike [5, 6], the proposed particle filter adopts a simple but effective sample re-weighting scheme based on SVR. At each iteration stage, the regression function over the weighted sample set is obtained by SVR after update step. Then, each sample is re-weighted. Finally, the posterior density of the state evolution is re-approximated. Since sample weights are reevaluated, the posterior density reapproximated is more proper than the one in classical particle filter. Thus the effectiveness and diversity of the sample set is maintained and the problem of sample impoverishment is avoided. The rest of the paper is organized as follows. In Section 2, we analyze the mechanism of particle filter in detail with an example of sampling importance resampling (SIR) filter and highlight the key issues of particle filter running with small sample set. In Section 3, SVR solution is introduced and the improved particle filter is proposed. In Section 4, experimental results on a real world visual tracking are presented. Conclusions are summarized in Section 5. II. PARTICLE FILTER WITH SAMLL SAMPLE SET Particle filter utilizes sequential Monte Carlo method for online inference within Bayesian framework. Monte Carlo simulation is used to approximate the probability density via a set of weighted samples. Prediction and Update are executed alternately at each time step. Resampling method is used to reduce the influence of the degeneracy problem. Exampling with SIR particle filter [7], Markovian transition kernel p(x k | x k −1 ) is used to generate the sample set at current time step k and then updates the sample weights using likelihood function p( z k | x k ) , where x k is the state vector and z k is the observation vector respectively. The algorithm of SIR filter is summarized in Fig. 1. The posterior density of state p (x k | z 1:k ) at time step k is
i given by x ik , wk
Abstract—Particle filter is a powerful visual tracking tool based on sequential Monte Carlo framework, and it needs large numbers of samples to properly approximate the posterior density of the state evolution. However, its efficiency will degenerate if too many samples are applied. In this paper, an improved particle filter is proposed by integrating support vector regression into sequential Monte Carlo framework to enhance the performance of particle filter with small sample set. The proposed particle filter utilizes an SVR based re-weighting scheme to re-approximate the posterior density and avoid sample impoverishment. Firstly, a regression function is obtained by support vector regression method over the weighted sample set. Then, each sample is re-weighted via the regression function. Finally, ameliorative posterior density of the state is reapproximated to maintain the effectiveness and diversity of samples. Experimental results demonstrate that the proposed particle filter improves the efficiency of tracking system effectively and outperforms classical particle filter. Keywords-visual tracking; particle filter; support vector regression
I.
INTRODUCTION
In recent years, particle filter [1, 2] has been successfully applied in computer vision community for visual tracking [3, 4] due to its ability to carry multiple hypotheses and relaxation of linearity/Gaussian assumption. Particle filter is based on sequential Monte Carlo approach, where the probability density is represented by a set of weighted samples (called particles). Large numbers of samples are needed in practice for two reasons: 1) to properly approximate posterior density of the state evolution over time steps and 2) to be able to recover from object loss. However, the size of sample set is directly related to the computational cost and should be kept as small as possible in order to improve the efficiency of particle filter. When particle filter is running with a small sample set, the major problem is how to properly approximate the posterior density of state evolution so that the effectiveness and diversity of samples can be maintained to avoid the emergence of sample impoverishment. In classical particle filter, the posterior density cannot be approximated with small sample set properly due to inaccuracy of the sample weights. Moreover, sample degeneracy is an unavoidable phenomenon in particle filter. Resampling [1] can be implemented to solve this problem, but it will introduce sample impoverishment consequently that leads to the loss of effectiveness and diversity among the samples. When a small sample set is employed, impoverishment will be aggravated due to the improper
相关文档
最新文档