2017-2018学年河北省衡水市武邑中学高三数学上第四次调研考试(文)试题(附答案)

合集下载

2017届高三上学期四调数学(文科)试卷(附答案与解析)

2017届高三上学期四调数学(文科)试卷(附答案与解析)

i ,则复数 z 的共轭复数 z 在复平面内对应的点在(, 1 ⎫A . ,⎪B . 0, ⎪⎭ D . 0, ⎪⎛ 3 ⎫ ⎛ 3 ⎫ ⎛ 1 ⎫ ⎛⎝ 12 ,0 ⎪4 ⎭C . 2B . -8B .x 2 + a 的图象可能是(河北省衡水中学 2017 届高三上学期四调数学(文科)试卷一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数 z = -2i + 3 - i)A .第一象限B .第二象限C .第三象限D .第四象限2.设 A , B 是全集 I = {1,2,3,4 }的子集, A = {1,2},则满足 A ⊆ B 的 B 的个数是(A .5B .4C .3D .23.抛物线 y = 3x 2的焦点坐标是()0 ⎝ 4 ⎭⎝ ⎝ 12 ⎭4.设向量 a = (-1,2 ) , b = (m ,1) ,若向量 a + 2b 与 2a - b 平行,则 m = ())A . - 71 2 C . 3 2 D .525.圆 x 2 + y 2 = 1 与直线 y = kx - 3 有公共点的充分不必要条件是()A . k ≤ -2 2或k ≥ -2 2B . k ≤ -2 2C . k ≥ 2D . k ≤ -2 2或k ≥ 26.设等比数列 {a n }的前 n 项和为 Sn,若 a = 3 ,且 a32016+ a2017= 0 ,则 S 等于(101)A .3B .303C .﹣3D .﹣303 7.阅读如图所示程序框图,运行相应程序,则输出的 S 值为()A . - 11 8 C .1 16D . 1328.函数 f (x ) = x)1 25555:1A .(1)(3)B .(1)(2)(4)C .(2)(3)(4)D .(1)(2)(3)(4)9.在四棱锥 P - ABCD 中,底面 ABCD 是正方形, P A ⊥ 底面 ABCD , P A = AB = 4 , E , F , Q 分别是棱 PB , BC , PD 的中点,则过 E , F , H 的平面截四棱锥 P ﹣ABCD 所得截面面积为()A . 2 6B . 4 6C . 5 6D . 2 3 + 4 610.设 F ,F 是椭圆 E 的两个焦点,P 为椭圆 E 上的点,以 PF 为直径的圆经过 F ,若 tan ∠PF F =12 1 2则椭圆 E 的离心率为()A .B .C .D .6 5 4 32 5 15,11.四棱锥 P - ABCD 的三视图如图所示,四棱锥 P - ABCD 的五个顶点都在一个球面上, E 、 F 分别是棱 AB , CD 的中点,直线 EF 被球面所截得的线段长为 2 2 ,则该球表面积为()A .12 πB . 24πC . 36πD . 48π12.已知抛物线C :y 2 = 4x 的焦点为 F ,定点 A (0,- 2 ),若射线 F A 与抛物线 C 交于点 M ,与抛物线C 的准线交于点 N ,则 MN : FN 的值是()A .( 5 - 2)5 B . 2 : 5 C .1: 2 5D . 5 : ( + 5 ))二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)13.已知直线 l : (m + 1)x + 2 y + 2m - 2 = 0 , l : 2 x + (m - 2 ) y + 2 = 0 ,若直线 l ∥l ,则 m = ________.121214.在 △ABC 中,角 A 、 B 、C 所对的边分别为 a ,b ,c ,且 A = 3C ,c = 6 ,(2a - c )cosB - b cosC = 0 ,则 △ABC 的面积是________.y ≥ 0 15.若不等式组 ⎨表示的平面区域是一个四边形,则实数 a 的取值范围是________. 1] ),且 S = 2n 2 + n , n ∈ N * ,数列 {b }满足 a = 4log b n + 3 , n ∈ N * .18.设 f (x ) = 4sin 2 x - ⎪+ 3 .(1)求 f (x ) 在 ⎢0, ⎥ 上的最大值和最小值; = 1(a > b > 0)的短轴长为 2,离心率为 ,直线 l 过点 (-1,0 ) 交椭圆 E 于 A 、 B ⎧ x ≥ 1 ⎪ ⎪⎪2 x + y ≤ 6 ⎪⎩ x + y ≤ a16.已知函数 f (x ) = e x + ae x, (a ∈ R ) 在区间 [0,上单调递增,则实数 a 的取值范围是________.三、解答题(本大题共 5 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{a n}的 n 项和为 S nn n n 2(1)求 a , b ;nn (2)求数列 {a b nn}的前 n 项和 T n.⎛ π ⎫ ⎝2 ⎭⎡ π ⎤ ⎣ 2 ⎦(2)把 y = f (x )的图像上所有点的横坐标伸长到原来的 2 倍(纵坐标不变),再把得到的图像向左平移2π 3个单位,得到函数 y = y = f (x )的图像,求 y = f (x ) 的单调减区间.19.如图所示的几何体 Q PABCD 为一简单组合体,在底面 ABCD 中,∠DAB = 60︒ ,AD ⊥ DC ,AB ⊥ BC ,QD ⊥ 平面 ABCD , P A ∥QD , P A = 1 , AD = AB = QD = 2 .(1)求证:平面 PAB ⊥ 平面 QBC ; (2)求该组合体 QPABCD 的体积.20.已知椭圆 E : x 2 y 2 6 +a 2b 2 3两点, O 为坐标原点.(1)求椭圆 E 的方程;(2)求 △OAB 面积的最大值.21.已知函数 f (x ) = ln x - a 2 x 2 = ax , a ∈ R ,且 a ≠ 0 .极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程为 ρ = 2cos θ - ⎪ .(2)若直线 l 与曲线 C 交于 A , B 两点,设点 P  0, ⎪⎪ ,求 P A + PB .⎫(1)若函数 f (x ) 在区间[1,+∞)上是减函数,求实数 a 的取值范围;(2)设函数 g (x ) = (3a +1)x - (a 2 + a )x 2 ,当 x > 1 时, f (x ) < g (x ) 恒成立,求 a 的取值范围.[选修 4-4:坐标系与参数方程]⎧ ⎪22.已知直线 l 的参数方程为 ⎨ ⎪ y = ⎩ x = t 2+ 3t 2 ( t 为参数),若以直角坐标系 xOy 的 O 点为极点, Ox 方向为⎛π ⎝4 ⎭(1)求直线 l 的倾斜角和曲线 C 的直角坐标方程;⎛ 2 ⎫ ⎝ 2 ⎭[选修 4-5:不等式选讲]23.设函数 f (x ) = 2 x + 1 - x - 2 .(1)求不等式 f (x ) > 2 的解集;(2) ∀x ∈ R ,使 f (x ) ≥ t 2 - 11t ,求实数 t 的取值范围.2)⎥⎦ = = (4n - 1) 2n - ⎡⎣3 + 4 2n - 2 ⎤⎦ = (4n - 5) 2n + 5河北省衡水中学 2017 届高三上学期四调数学(文科)试卷答 案一、 选择题:本大题共 12 个小题,每小题 5 分,共 60 分.1~5.BBDBB6~10.ABCCD 11~12.AD二、 填空题(每题 5 分,满分 20 分,将答案填在答题纸上)13.﹣214.18 3 15.(3,5)16. a ∈ [-1,1]三、解答题(本大题共 5 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.17.解:(Ⅰ)由 S = 2n 2 + n 可得,当 n = 1 时, a = S = 3n11当 n ≥ 2 时, a = S - Snnn -1= 2n 2+ n - 2 (n - 1)2 - (n - 1) = 4n - 1而 n = 1 , a = 4 - 1 = 3 适合上式,1故 a = 4n - 1 ,n又∵ a = 4log b n + 3 = 4n - 1n2∴ b = 2n -1n(Ⅱ)由(Ⅰ)知, a b = (4n - 1) 2n -1n nT = 3 ⨯ 20 + 7 ⨯ 2 +n2T = 3 ⨯ 2 + 7 ⨯ 22 +n+ (4n - 1) 2n -1+ (4n - 5) 2n∴ T n = (4n - 1) 2n - ⎡⎣3 + 4(2 + 22 + + 2n -1)⎤⎦⎡= (4n - 1) 2n - ⎢3 + 4⎢⎣2 (1 - 2n -1 )⎤ ⎥ 1 - 2()18.解:(1) f (x ) = 4sin 2 x - ⎪+ 3 .sin 2x - ⎪ = 1 时, f (x ) 取得最大值 4 + 3 ; sin 2x -⎪ = -1 时,函数 f (x ) 取得最小值 4 - 3 . (2)把 y = f (x )的图象上所有点的横坐标伸长到原来的 2 倍(纵坐标不变),得到 y = 4sin x - ⎪ + 3 的π ⎫ 3 ⎭ 个单位,得到 y = 4sin x + ⎪ + 3 的图象. g (x )= 4sin x + ⎪ + 3 . 由 2k π + π7π ⎤( ) ∴ g (x) 的单调减区间是 ⎢2k π + ,2 k π + ⎥ k ∈ Z .⎛ π ⎫ ⎝3 ⎭⎛ ⎛ π ⎫ ⎝ ⎝3 ⎭⎛ π ⎫ ⎝3 ⎭图象.再把得到的图象向左平移 2π⎛ π ⎫3 ⎝ 3 ⎭∴⎛ π ⎫ ⎝ 3 ⎭π 3π π 7π≤ x + ≤ 2k π + ⇒ 2k π + ≤ x ≤ 2k π + . 2 3 2 6 6⎡π ⎣66 ⎦19.证明:(1)∵ QD ⊥ 平面 ABCD , P A QD ,∴ P A ⊥ 平面 ABCD ,又∵ BC ⊂ 平面 ABCD ,∴ P A ⊥ BC ,又 BC ⊥ AB , P A ⊂ 平面 PAB ⊥ , AB ⊂ 平面 PAB ⊥ , P A∴ BC ⊥ 平面 PAB ,又∵ BC ⊂ 平面 QBC , 解:(2)连接 BD ,过 B 作 BO ⊥ AD 于 O ,∵ P A ⊥ 平面 ABCD , BO ⊂ 平面 ABCD ,AB=A,又BO⊥AD,AD⊂AD平面P ADQ,P A⊂平面P ADQ,P A AB=A,∴BO⊥平面P ADQ,∵AD=AB=2,∠DAB=60,∴ABC是等边三角形,∴BO=3.∴VB-P ADQ1=S3梯形P ADQ1132∵∠ADC=∠ABC=90∴∠CBD=∠CDB=30︒,又BD=AB=2,∴BC=CD=233,6/22BO=⨯⨯(1+2)⨯2⨯3=3.= ⨯ 2 ⨯ ⨯ sin30︒ .= . ⎩ + y = 2mm 2 + 3 m 2 + 323= -3 - ⎪ + , 1 1 6 1 -2a 2 x + ax + 1 - (2ax + 1)(ax - 1)①当 a = 0 时, f '(x ) = > 0 ,∴ SBCD 1 2 32 3∵ QD ⊥ 平面 ABCD ,∴ V Q -BCD 1 = S 3 BCD 1 3 2 3QD = ⨯ ⨯ 2 =3 3 9 .∴该组合体的体积V = V Q -BCD+ V 11 39⎧ c 6 ⎪ =20.解:(1)由题意得 b = 1 ,由 ⎨ a 3 得 a = 3 , c = 2 , b = 1 ,⎪a 2 = 1 + c 2x 2∴椭圆 E 的方程为 + y 2 = 1 ;3(2)依题意设直线 l 的方程为 x = my - 1 , 联立椭圆方程,得 (m 2 + 3)y 2 - 2my - 2 = 0 ,设 A (x , y ), B (x , y1122),则 y1 , y y =-2 1 2 2,S△AOB 1= ⨯1⨯ y - y =1 2 3m 2 + 6(m 2+ 3),设 m 2 + 3 = t (t ≥ 3),则△SAOB⎛ 1 1 ⎫23 ⎝ t 2 ⎭ 41 1∵ t ≥ 3 ,∴ 0 < ≤ t 3,∴当 = ,即 t = 3 时, OAB 面积取得最大值为 ,此时 m = 0 .t 3 321.解:(1)∵ f (x ) = ln x - a 2 x 2 = ax ,其定义域为(0,+∞),∴ f '(x ) = - 2a 2 x + a = =x x x1 x∴ f (x ) 在区间(0,+∞)上为增函数,不合题意..a.此时f(x)的单调递减区间为 ,∞⎪.⎛1⎫⎪≤1此时f(x)的单调递减区间为⎝2a,+∞⎪.2a≤1解之,得a≤-1⎩1⎤[综上所述,实数a的取值范围是 -∞,-⎥1,+∞).()x-1<0h′x)=②当a>0时,f'(x)<0(x>0)等价于(2ax+1)(ax-1)>0(x>0),即x>1+⎝a⎭⎧1依题意,得⎨a⎪⎩a>0解之,得a≥1.③当a<0时,f'(x)<0(x>0)等价于(2ax+1)(ax-1)>0(x>0),即x>-1 2a⎛1⎫⎭.⎧1⎪-依题意,得⎨⎪a<02.⎛⎝2⎦(2)∵g(x)=(3a+1)x-a2+a x2,∴f(x)-g(x)=ln x-(2a+1)x+ax2<0,即ln x-x<2ax-ax2,在[1,+∞)恒成立,设h(x)=ln x-x,则h'(x)=1(1x﹣1<0恒成立,∴h(x)在(1,+∞)为减函数,∴h(x)<h(1)=-1,∴ax2-2ax-1<0,在(1,+∞)上恒成立,设ϕ(x)=ax2-2ax-1当a=0时,-1<0,符合题意,当a>0时,显然不满足题意,当a<0,由于对称轴x=1,则ϕ(1)<0,即a-2a-1<0,解得-1<a<0,综上所述,a的取值范围为(-1,0].由曲线 C 的极坐标方程得到: ρ 2 = 2ρcos θ - ⎪ ,利用 ρ 2 = x 2 + y 2 ,得到曲线 C 的直角坐标方程为x - + y - 2 ⎪⎭ 2 ⎪⎭(2)点 P  0, ⎪⎪ 在直线 l 上且在圆 C 内部,所以 P A + PB = AB , ⎪⎪ 到直线 l 的距离 d = 6 .所以 AB = 10 ,即 P A + PB = 10 所以圆心 - x - 3, x < - 2 23.解:(1) f (x ) = ⎨3x - 1,- ≤ x < 2 2{ }= - ,若 ∀x ∈ R , f (x ) ≥ t 2 -22.解 (1)直线的斜率为 3 ,直线 l 倾斜角为π3⎛ π ⎫ ⎝4 ⎭⎛ 2 ⎫2 ⎛ 2 ⎫2= 1⎝⎝⎛ 2 ⎫ ⎝ 2 ⎭直线 l 的直角坐标方程为 y = 2 2+ 3x⎛ 2 2 ⎫ ⎝ 2 2 ⎭4 2 2⎧1 ⎪ ⎪⎪1⎪⎪ x + 3, x ≥ 2 ⎪ ⎩当 x <- 1 2, - x - 3 > 2 , x < -5 ,∴ x < -5当 - 1 2≤ x < 2 , 3x - 1 > 2 , x > 1 ,∴1 < x < 2当 x ≥ 2 , x + 3 > 2 , x > -1 ,∴ x ≥ 2综上所述 x x > 1或x < -5 .(2)由(1)得 f (x ) min5 2 11 2t 恒成立,则只需 f (x ) min 5 11 1= - ≥ t 2 - t ⇒ 2t 2 - 11t + 5 ≤ 0 ⇒ ≤ t ≤ 5 ,2 2 2综上所述 1 2≤ t ≤ 5 .河北省衡水中学2017届高三上学期四调数学(文科)试卷解析一、选择题:本大题共12个小题,每小题5分,共60分.1.【考点】复数的代数表示法及其几何意义.【分析】利用复数的运算法则、共轭复数的定义、几何意义即可得出.【解答】解:复数z=﹣2i+=﹣2i+=﹣2i﹣3i﹣1=﹣1﹣5i,则复数z的共轭复数=﹣1+5i在复平面内对应的点(﹣1,5)在第二象限.故选:B.2.【考点】集合的包含关系判断及应用.【分析】由题意可知:集合B中至少含有元素1,2,即可得出.【解答】解:A,B是全集I={1,2,3,4}的子集,A={l,2},则满足A B的B为:{1,2},{1,2,3},{1,2,4},{1,2,3,4}.故选:B.3.【考点】抛物线的简单性质.【分析】先把方程化为标准方程,可知焦点在y轴上,进一步可以确定焦点坐标.【解答】解:化为标准方程为x,∴2p=,∴=,∴焦点坐标是(0,).故选D4.【考点】平面向量共线(平行)的坐标表示.【分析】根据题意,由向量、的坐标计算可得与2的坐标,进而由向量平行的坐标计算公式可得(﹣2﹣m)×4=3×(﹣1+2m),解可得m的值,即可得答案.【解答】解:根据题意,向量=(﹣1,2),=(m,1),则若向量=(﹣1+2m,4),2与2=(﹣2﹣m,3),平行,则有(﹣2﹣m)×4=3×(﹣1+2m),解可得 m=﹣ ;故选:B .5.【考点】必要条件、充分条件与充要条件的判断.【分析】先求出圆 x 2+y 2=1 与直线 y=kx ﹣3 有公共点的等价条件,然后根据充分不必要条件的定义进行判断.【解答】解:若直线与圆有公共点,则圆心到直线 kx ﹣y ﹣3=0 的距离 d=,即,∴k 2+1≥9,即 k 2≥8,∴k或 k ,∴圆 x 2+y 2=1 与直线 y=kx ﹣3 有公共点的充分不必要条件是 k,故选:B .6.【考点】等比数列的前 n 项和;等比数列的通项公式.【分析】由等比数列的通项公式列出方程组,求出首项和公比,由此能求出 S 101.【解答】解:∵等比数列{a n }的前 n 项和为 S n ,a 3=3,且 a 2016+a 2017=0,∴,解得 a 1=3,q=﹣1,∴a 101==3×(﹣1)100=3.故选:A .7.【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量 S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次进行循环体后,S=cos ,n=1 不满足输出的条件,则 n=2,S=cos•cos ;当 n=2,S=cos•cos 时,不满足输出的条件,则 n=3,S=cos •cos•cos;当 n=3,S=cos•cos•cos 时,满足输出的条件,故 S=cos•cos•cos=sin= = =sinsinsin•cos•cos•cos•cos÷sin•cos•cos÷sin÷sin÷sin=故选:B8.【考点】函数的图象.【分析】分别令a=0,a>0,a<0,根据导数和函数的单调性即可判断.【解答】解:f(x)=,可取a=0,f(x)==,故(4)正确;∴f′(x)=,当a<0时,函数f′(x)<0恒成立,x2+a=0,解得x=±故函数f(x)在(﹣∞,﹣),(﹣,),(,+∞)上单调递减,故(3)正确;取a>0,f′(x)=0,解得x=±当f′(x)>0,即x∈(﹣,当f′(x)<0,即x∈(﹣∞,﹣,)时,函数单调递增,),(,+∞)时,函数单调递减,故(2)正确函数f(x)=的图象可能是(2),(3),(4),故选:C9.【考点】棱柱、棱锥、棱台的体积;平面的基本性质及推论.【分析】取CD的中点G,PA的四等分点I,顺次连接E,F,G,H,I,则平面EFGHI即为过E,F,H 的平面截四棱锥P﹣ABCD所得截面,求其面积,可得答案.【解答】解:取CD的中点G,PA的四等分点I,顺次连接E,F,G,H,I,则平面EFGHI即为过E,F,H的平面截四棱锥P﹣ABCD所得截面,如图所示:∵四棱锥 P ﹣ABCD 中,底面 ABCD 是正方形,PA ⊥底面 ABCD ,P A=AB=4,∴EF=HG= PC=2EH=FG= BD=2且 EF ∥HG ∥PC ,且 EH ∥FG ∥BD ,故四边形 EFGH 为矩形,面积是 4 ,△EIH 中,EI=HI=故△EIH 的面积为,故 EH 上的高 IJ=,,即平面 EFGHI 的面积为 5,故选:C .10.【考点】椭圆的简单性质.【分析】由题意画出图形,结合已知及椭圆定义把|PF 1|、|PF 2|用 a ,c 表示,再由勾股定理求得答案.【解答】解:如图,∵以 PF 1 为直径的圆经过 F 2,∴PF 2⊥F 1F 2,又 tan ∠PF 1F 2= ,∴,则由|PF 1|+|PF 2|=2a ,得|PF 1|=,,在 △Rt PF 2F 1 中,得 ,即 ,解得:或(舍).∴椭圆 E 的离心率为.故选:D.11.【考点】球内接多面体;由三视图还原实物图.【分析】将三视图还原为直观图,得四棱锥P﹣ABCD的五个顶点位于同一个正方体的顶点处,且与该正方体内接于同一个球.由此结合题意,可得正文体的棱长为2,算出外接球半径R,再结合球的表面积公式,即可得到该球表面积.【解答】解:将三视图还原为直观图如右图,可得四棱锥P﹣ABCD的五个顶点位于同一个正方体的顶点处,且与该正方体内接于同一个球.且该正方体的棱长为a设外接球的球心为O,则O也是正方体的中心,设EF中点为G,连接OG,OA,AG,即正方体面对角线长也是2,根据题意,直线EF被球面所截得的线段长为2∴得AG==a,所以正方体棱长a=2∴△Rt OGA中,OG=a=1,AO=,即外接球半径R=,得外接球表面积为4πR2=12π.故选A.12.【考点】抛物线的简单性质.【分析】求出抛物线C的焦点F的坐标,从而得到AF的斜率k=2.过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|.△Rt MPN中,根据tan∠NMP=k=2,从而得到|PN|=2|PM|,进而算出|MN|=|PM|,再求得|FN|=|MN|+|MF|=|MN|+|PM|=()|PM|,则答案可求.【解答】解:∵抛物线 C :y 2=4x 的焦点为 F (1,0),点 A 坐标为(0,﹣2),∴抛物线的准线方程为 l :x=1,直线 AF 的斜率为 k=2,过 M 作 MP ⊥l 于 P ,根据抛物线物定义得|FM|=|PM|,∵△Rt MPN 中,tan ∠NMP=k=2,∴得|MN|=,可得|PN|=2|PM|,|PM|,而|FN|=|MN|+|MF|=|MN|+|PM|=()|PM|,∴|MN|:|FN|=:(1+ ),故选:D .二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)13. 【考点】直线的一般式方程与直线的平行关系.【分析】根据直线的平行关系得到关于 m 的方程,解出即可.【解答】解:直线 l 1:(m+1)x+2y+2m ﹣2=0,l 2:2x+(m ﹣2)y +2=0,m=2 时,l 1:3x+2y+2=0,l 2:x+1=0,不合题意,m≠2 时,若直线 l 1∥l 2,则= ≠ ,即(m+1)(m ﹣2)=4,解得:m=3(舍)或 m=﹣2,故答案为:﹣2.14.【考点】余弦定理;正弦定理.【分析】已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式变形,根据 sinA不为 0 求出 cosB 的值,即可确定出 B 的度数,利用三角形内角和定理可求 A ,C ,进而利用正弦定理可求a ,利用三角形面积公式即可计算得解.【解答】解:已知等式(2a ﹣c )cosB ﹣bcosC=0,利用正弦定理化简得:(2sinA ﹣sinC )cosB=sinBcosC ,整理得:2sinAcosB=sinBcosC+cosBsinC=sin (B+C )=sinA ,∵sinA≠0,∴cosB=,则B=60°.∵A=3C,c=6,可得:C=30°,A=90°,∴a===12,∴S△ABC=故答案为:acsinB=.=.15.【考点】简单线性规划.【分析】作出不等式组对应的平面区域,根据平面区域是四边形,即可确定a的取值范围.【解答】解:作出不等式组对应的平面区域,当直线x+y=a经过点A(3,0)时,对应的平面区域是三角形,此时a=3,当经过点B时,对应的平面区域是三角形,由,解得,即B(1,4),此时a=1+4=5,∴要使对应的平面区域是平行四边形,则3<a<5,故答案为:(3,5)16.【考点】利用导数研究函数的单调性.【分析】求函数的导数,利用函数的单调性和导数之间的关系进行求解,注意要对a进行讨论.【解答】当a>0时,f(x)=|e x+|=e x+,则函数的导数f′(x)=e x﹣=,且f(x)>0恒成立,由f′(x)>0解得e2x>a,即x>lna,此时函数单调递增,)由 f′(x )<0 解得 e 2x <a ,即 x < lna ,此时函数单调递减,若 f (x )在区间[0,1]上单调递增,则 lna≤0,解得 0<a≤1,即 a ∈(0,1]当 a=0 时,f (x )=|e x + |=e x 在区间[0,1]上单调递增,满足条件.当 a <0 时,y=e x + 在 R 单调递增,令 y=e x +=0,则 x=ln,则 f (x )=|e x + |在(0,ln]为减函数,在[ln ,+∞)上为增函数则 ln≤0,解得 a≥﹣1综上,实数 a 的取值范围是[﹣1,1]故答案为:a ∈[﹣1,1]三、解答题(本大题共 5 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.17.【考点】数列的求和;等差关系的确定;等比关系的确定.【分析】(Ⅰ)由 S n =2n 2+n 可得,当 n=1 时,可求 a 1=3,当 n≥2 时,由 a n =s n ﹣s n ﹣1 可求通项,进而可求 b n(Ⅱ)由(Ⅰ)知,【解答】解:(Ⅰ)由 S n =2n 2+n 可得,当 n=1 时,a 1=s 1=3 当 n≥2 时,a n =s n ﹣s n ﹣1=2n 2+n ﹣2(n ﹣1)2﹣(n ﹣1)=4n ﹣1 而 n=1,a 1=4﹣1=3 适合上式, 故 a n =4n ﹣1,又∵a n =4log 2b n +3=4n ﹣1∴(Ⅱ)由(Ⅰ)知,,利用错位相减可求数列的和2T n =3×2+7×22+…+(4n ﹣5)•2n ﹣1+(4n ﹣1)•2n∴,=(4n ﹣1)•2n=(4n ﹣1)•2n ﹣[3+4(2n ﹣2)]=(4n ﹣5)•2n +518.【考点】函数 y=Asin (ωx+φ)的图象变换;正弦函数的图象.【分析】(1)利用三角函数的单调性与值域即可得出.(2)利用坐标变换得到 性即可得出.【解答】解:(1)f (x )=4sin (2x ﹣的图象.可得 .再利用三角函数的单调)+ .sin (2x ﹣ )=1 时,f (x )取得最大值 4+;sin (2x ﹣ )=﹣1 时,函数 f (x )取得最小值 4﹣ .(2)把 y=f (x )的图象上所有点的横坐标伸长到原来的2 倍(纵坐标不变) 得到象.的图再把得到的图象向左平移∴由个单位,得到.的图象..∴g (x )的单调减区间是.19.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(1)推导出 PA ⊥BC ,BC ⊥AB ,从而 BC ⊥平面 PAB ,由此能证明平面 PAB ⊥平面 QBC .(2)连接 BD ,过 B 作 BO ⊥AD 于 O ,该组合体的体积 V=V B ﹣P ADQ +V Q ﹣BCD .由此能求出结果.【解答】证明:(1)∵OD ⊥平面 ABCD ,PA ∥QD ,∴PA ⊥平面 ABCD ,又∵BC ⊂平面 ABCD ,∴PA ⊥BC ,又 BC ⊥AB ,PA ⊂平面 PAB ,AB ⊂平面 PAB ,PA∩AB=A ,∴BC ⊥平面 PAB ,又∵BC ⊂平面 QBC ,∴平面 PAB ⊥平面 QBC .解:(2)连接 BD ,过 B 作 BO ⊥AD 于 O ,∵PA ⊥平面 ABCD ,BO ⊂平面 ABCD ,∴PA ⊥BO ,又BO⊥AD,AD⊂平面P ADQ,PA⊂平面P ADQ,PA∩AD=A,∴BO⊥平面P ADQ,∵AD=AB=2,∠DAB=60°,∴△ABD是等邊三角形,∴.∴.∵∠ADC=∠ABC=90°,∴∠CBD=∠CDB=30°,又BD=AB=2,∴,∴.∴∵QD⊥平面ABCD,.∴该组合体的体积.20.【考点】直线与圆锥曲线的关系;椭圆的标准方程.【分析】(1)由题意得b=1,由得a=,c=,b=1求得椭圆方程;(2)设直线l的方程为x=my﹣1,将直线方程代入椭圆方程,消去x,根据韦达定理代入三角形面积公式即可求得△AOB的面积,再换元配方即可得出结论.【解答】解:(1)由题意得b=1,由得a=,c=,b=1,∴椭圆E的方程为+y2=1;(2)依题意设直线 l 的方程为 x=my ﹣1,联立椭圆方程,得(m 2+3)y 2﹣2my ﹣2=0, 设 A (x 1,y 1),B (x 2,y 2),则 y 1+y 2= ,y 1y 2=﹣,S △AOB = |y 1﹣y 2|= ,设 m 2+3=t (t≥3),则 S △AOB =,∵t≥3,∴0< ≤ ,∴当 = ,即 t=3 时,△OAB 面积取得最大值为,此时 m=0.21.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)先求导,再分类讨论,根据导数和函数的单调性的关系即可求出 a 的取值范围,(2)当 x >1 时,f (x )<g (x )恒成立,转化为 lnx ﹣x <2ax ﹣ax 2,在(1,+∞)恒成立,构造函数 h (x )=lnx ﹣x ,利用导数求出函数最值,得到 ax 2﹣2ax ﹣1<0,在(1,+∞)上恒成立,再分类讨论,根据二次函数的性质即可求出 a 的取值范围.【解答】解:(1)∵f (x )=lnx ﹣a 2x 2+ax ,其定义域为(0,+∞),∴f′(x )= ﹣2a 2x+a= = .①当 a=0 时,f′(x )=>0,∴f (x )在区间(0,+∞)上为增函数,不合题意.②当 a >0 时,f′(x )<0(x >0)等价于(2ax+1)(ax ﹣1)>0(x >0),即 x >此时 f (x )的单调递减区间为(,+∞).依题意,得解之,得 a≥1..③当 a <0 时,f′(x )<0(x >0)等价于(2ax+1)(ax ﹣1)>0(x >0),即 x >﹣此时 f (x )的单调递减区间为(,+∞).依题意,得解之,得 a≤﹣ ..20 / 22.所以|AB|=综上所述,实数 a 的取值范围是(﹣∞,﹣ ]∪[1,+∞).(2)∵g (x )=(3a+1)x ﹣(a 2+a )x 2, ∴f (x )﹣g (x )=lnx ﹣(2a+1)x+ax 2<0,即 lnx ﹣x <2ax ﹣ax 2,在(1,+∞)恒成立,设 h (x )=lnx ﹣x ,则 h′(x )= ﹣1<0 恒成立,∴h (x )在(1,+∞)为减函数,∴h (x )<h(1)=﹣1,∴ax 2﹣2ax ﹣1<0,在(1,+∞)上恒成立,设 φ(x )=ax 2﹣2ax ﹣1当 a=0 时,﹣1<0,符合题意,当 a >0 时,显然不满足题意,当 a <0,由于对称轴 x=1,则 φ(1)<0,即 a ﹣2a ﹣1<0,解得﹣1<a <0,综上所述,a 的取值范围为(﹣1,0].[选修 4-4:坐标系与参数方程]22. 【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)直线 l 的参数方程为 (t 为参数),消去参数 t 化为普通方程可得,进而得到倾斜角.由曲线 C 的极坐标方程得到:ρ2=2ρcos (θ﹣ ),利用 ρ2=x 2+y 2,即可化为直角坐标方程.(2)将|P A|+|PB|转化为求|AB|来解答.【解答】解 (1)直线的斜率为 ,直线 l 倾斜角为 …由曲线 C 的极坐标方程得到:ρ2=2ρcos (θ﹣2+(y ﹣ )2=1…),利用 ρ2=x 2+y 2,得到曲线 C 的直角坐标方程为(x ﹣)(2)点 P (0,)在直线 l 上且在圆 C 内部,所以|PA|+|PB|=|AB|…直线 l 的直角坐标方程为 y=x+ …所以圆心(, )到直线 l 的距离 d= ,即|P A|+|PB|=…21 / 22[选修4-5:不等式选讲]23.【考点】一元二次不等式的应用;分段函数的解析式求法及其图象的作法;函数的最值及其几何意义.【分析】(1)根据绝对值的代数意义,去掉函数f(x)=|2x+1|﹣|x﹣2|中的绝对值符号,求解不等式f(x)>2,(2)由(1)得出函数f(x)的最小值,若∀x∈R,可,求出实数t的取值范围.【解答】解:(1)恒成立,只须即当当当x≥2,x+3>2,x>﹣1,∴x≥2综上所述{x|x>1或x<﹣5}.,∴x<﹣5,∴1<x<2(2)由(1)得,若∀x∈R,恒成立,则只需综上所述.,22/22。

2017年河北省衡水市武邑中学高考数学四模试卷(文科)(解析版)

2017年河北省衡水市武邑中学高考数学四模试卷(文科)(解析版)

2017年河北省衡水市武邑中学高考数学四模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣2x﹣3≤0},B={x|y=ln(2﹣x)},则A∩B=()A.(1,3) B.(1,3]C.[﹣1,2)D.(﹣1,2)2.已知集合A={x|0<x<2},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(﹣1,2)C.(1,2) D.(0,1)3.若,则a=()A.﹣5﹣i B.﹣5+i C.5﹣i D.5+i4.设f(x)是定义在R上周期为2的奇函数,当0≤x≤1时,f(x)=x2﹣x,则=()A.B.C.D.5.某几何体的三视图如图所示,则该几何体的表面积为()A.36+12πB.36+16πC.40+12πD.40+16π6.下列说法正确的是()A.∀x,y∈R,若x+y≠0,则x≠1且y≠﹣1B.a∈R,“<1“是“a>1“的必要不充分条件C.命题“∃x∈R,使得x2+2x+3<0”的否定是“∀x∈R,都有x2+2x+3>0”D.“若am2<bm2,则a<b”的逆命题为真命题7.某一算法框图如图所示,则输出的S值为()A.B.C.D.08.《算数书》竹简于上世纪八十年代在湖北省张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“禾盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈L2h相当于将圆锥体积公式中的圆周率π近似取为()A.B.C.D.9.已知某椎体的正视图和侧视图如图,则该锥体的俯视图不可能是()A.B.C. D.10.已知函数的图象在区间和上均单调递增,则正数a的取值范围是()A.B.C.D.11.已知x=lnx,y=log52,z=e﹣0.5,则()A.x<y<z B.x<z<y C.z<y<x D.y<z<x12.对任意的x>0,总有f(x)=a﹣x﹣|lgx|≤0,则a的取值范围是()A.(﹣∞,lge﹣lg(lge)]B.(﹣∞,1]C.[1,lge﹣lg(lge)]D.[lge﹣lg (lge),+∞)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知m,n为正实数,向量=(m,1),=(1﹣n,1),若∥,则+的最小值为.14.已知函数f(x)=,则f(﹣2016)=.15.在平面直角坐标系xOy中,圆C的方程为x2+y2﹣4x=0.若直线y=k(x+1)上存在一点P,使过P所作的圆的两条切线相互垂直,则实数k的取值范围是.16.已知在直角梯形ABCD中,AB⊥AD,CD⊥AD,AB=2AD=2CD=2,将直角梯形ABCD沿AC折叠成三棱锥D﹣ABC,当三棱锥D﹣ABC的体积取最大值时,其外接球的体积为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{a n}的各项均是正数,其前n项和为S n,满足S n=4﹣a n(n∈N*).(1)求数列{a n}的通项公式;(2)设(n∈N*),数列{b n•b n+2}的前n项和为T n,求证:.18.某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n 小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.(1)假设n=2,求第一大块地都种植品种甲的概率;(2)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?19.如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO ⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.已知直线l:x+与椭圆C:mx2+ny2=1(n>m>0)有且只有一个公共点.(1)求椭圆C的方程;(2)设椭圆C的左、右顶点分别为A,B,O为坐标原点,动点Q满足QB⊥AB,连接AQ交椭圆于点P,求的值.21.设函数,(1)求f(x)在x=1处的切线方程;(2)证明:对任意a>0,当0<|x|<ln(1+a)时,|f(x)﹣1|<a.22.在极坐标系下,知圆O:ρ=cosθ+sinθ和直线.(1)求圆O与直线l的直角坐标方程;(2)当θ∈(0,π)时,求圆O和直线l的公共点的极坐标.2017年河北省衡水市武邑中学高考数学四模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣2x﹣3≤0},B={x|y=ln(2﹣x)},则A∩B=()A.(1,3) B.(1,3]C.[﹣1,2)D.(﹣1,2)【考点】1E:交集及其运算.【分析】化简集合A、B,求出A∩B即可.【解答】解:∵集合A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3}=[﹣1,3],B={x|y=ln(2﹣x)}={x|2﹣x>0}={x|x<2}=(﹣∞,2);∴A∩B=[﹣1,2).故选:C.2.已知集合A={x|0<x<2},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(﹣1,2)C.(1,2) D.(0,1)【考点】1D:并集及其运算.【分析】先分别求出集合A和B,由此能求出A∪B.【解答】解:集合A={x|0<x<2},B={x|x2﹣1<0}={x|﹣1<x<1},A∪B={x|﹣1<x<2}=(﹣1,2).故选:B.3.若,则a=()A.﹣5﹣i B.﹣5+i C.5﹣i D.5+i【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:∵,∴1+ai=(2+i)(1+2i)=5i,∴a===5+i.故选:D.4.设f(x)是定义在R上周期为2的奇函数,当0≤x≤1时,f(x)=x2﹣x,则=()A.B.C.D.【考点】3L:函数奇偶性的性质;31:函数的概念及其构成要素.【分析】根据题意,由函数的周期性以及奇偶性分析可得=﹣f()=﹣f(),又由函数在解析式可得f()的值,综合可得答案.【解答】解:根据题意,f(x)是定义在R上周期为2的奇函数,则=﹣f()=﹣f(),又由当0≤x≤1时,f(x)=x2﹣x,则f()=()2﹣()=﹣,则=,故选:C.5.某几何体的三视图如图所示,则该几何体的表面积为()A.36+12πB.36+16πC.40+12πD.40+16π【考点】L!:由三视图求面积、体积.【分析】几何体为棱柱与半圆柱的组合体,作出直观图,代入数据计算.【解答】解:由三视图可知几何体为长方体与半圆柱的组合体,作出几何体的直观图如图所示:其中半圆柱的底面半径为2,高为4,长方体的棱长分别为4,2,2,∴几何体的表面积S=π×22×2++2×4+2×4×2+2×4+2×2×2=12π+40.故选C.6.下列说法正确的是()A.∀x,y∈R,若x+y≠0,则x≠1且y≠﹣1B.a∈R,“<1“是“a>1“的必要不充分条件C.命题“∃x∈R,使得x2+2x+3<0”的否定是“∀x∈R,都有x2+2x+3>0”D.“若am2<bm2,则a<b”的逆命题为真命题【考点】2K:命题的真假判断与应用.【分析】判断原命题逆否命题的真假,可判断A;根据充要条件的定义,可判断B;写出原命题的否定,可判断C;写出原命题的逆命题,可判断D.【解答】解:∀x,y∈R,若x+y≠0,则x≠1且y≠﹣1的逆否命题为:∀x,y ∈R,若x=1或y=﹣1,则x+y=0,为假命题,故A错误;a∈R,“<1”⇔“a<0,或a>1”是“a>1”的必要不充分条件,故B正确;命题“∃x∈R,使得x2+2x+3<0”的否定是“∀x∈R,都有x2+2x+3≥0”,故C错误;“若am2<bm2,则a<b”的逆命题为“若a<b,则am2<bm2”为假命题,故D错误;,故选:B7.某一算法框图如图所示,则输出的S值为()A.B.C.D.0【考点】EF:程序框图.【分析】通过依次对n的值判断算法执行,可以看出在算法执行过程中S的值以6为周期周期出现,再由判断框中的条件看出执行的n的最大值是2016,由此即可得到算法输出的正确结果.【解答】解:模拟程序的运行,可得:S=0,n=2满足条件n<2017,执行循环体,S=sin,n=4,满足条件n<2017,执行循环体,S=sin+sin,n=6,…可得程序框图的功能是计算并输出S=sin+sin+…+sin的值.观察规律可得,算法在执行过程中,S的值以6为周期周期出现,所以程序共执行了336个周期,所以输出的S值应是0.故选:D.8.《算数书》竹简于上世纪八十年代在湖北省张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“禾盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈L2h相当于将圆锥体积公式中的圆周率π近似取为()A.B.C.D.【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】用L表示出圆锥的底面半径,得出圆锥的体积关于L和h的式子V=,令=L2h,解出π的近似值.【解答】解:设圆锥的底面半径为r,则圆锥的底面周长L=2πr,∴r=,∴V==.令=L2h,得π=.故选A.9.已知某椎体的正视图和侧视图如图,则该锥体的俯视图不可能是()A.B.C. D.【考点】L7:简单空间图形的三视图.【分析】依次对各选项的正视图和侧视图判断可得答案.【解答】解:对于A:边长为2的正四棱锥,可得正视图和侧视图一样,∴A正确.对于B:直径为2的圆锥,可得正视图和侧视图一样,∴B正确.对于C:底面为等腰直角三角形,边长为2的三棱锥,可得正视图和侧视图一样,∴C正确.对于D:三视图投影得到正视图,侧视图和俯视图等的三棱锥是没有的,∴D不正确.故选D10.已知函数的图象在区间和上均单调递增,则正数a的取值范围是()A.B.C.D.【考点】H5:正弦函数的单调性;GL:三角函数中的恒等变换应用.【分析】求解出函数的单调增区间,根据在区间和上均单调递增建立关系可得答案.【解答】解:由函数=2sin(2x﹣),令2x﹣得:≤x≤,k∈Z.当k=0时,可得增区间为[,],∵在区间和上均单调递增则,∴0<a≤π.当k=1时,可得增区间为[,],则2a,∴a.综上可得:π≥a.故选B11.已知x=lnx,y=log52,z=e﹣0.5,则()A.x<y<z B.x<z<y C.z<y<x D.y<z<x【考点】4M:对数值大小的比较.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵x=lnx>1,y=log52=,z=e﹣0.5=.∴x>z>y.故选:D.12.对任意的x>0,总有f(x)=a﹣x﹣|lgx|≤0,则a的取值范围是()A.(﹣∞,lge﹣lg(lge)]B.(﹣∞,1]C.[1,lge﹣lg(lge)]D.[lge﹣lg (lge),+∞)【考点】2H:全称命题.【分析】将所求变形为a﹣x≤|lgx|恒成立,结合图象得到满足条件的a.【解答】解:对任意的x>0,总有f(x)=a﹣x﹣|lgx|≤0,即a﹣x≤|lgx|恒成立,设y=﹣x+a,g(x)=|lgx|,如图当直线y=﹣x+a与g(x)相切时是a的最大值时,设切点为A(x,y),则﹣1=(﹣lgx)',得到x=lge,所以y=﹣lg(lge),所以切线方程为:y+lg(lge)=﹣(x﹣lge),令x=0得到y=lge﹣lg(lge),所以a的取值范围为:(﹣∞,lge﹣lg(lge));故选A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知m,n为正实数,向量=(m,1),=(1﹣n,1),若∥,则+的最小值为3+2.【考点】7F:基本不等式;9K:平面向量共线(平行)的坐标表示.【分析】由,可得m+n=1.又m,n为正实数,则+=(m+n),展开化简利用基本不等式的性质即可得出.【解答】解:∵,∴m=1﹣n,即m+n=1.又m,n为正实数,则+=(m+n)=3++≥3+2=3+2,当且仅当n=m=2﹣时取等号.故答案为:3+2.14.已知函数f(x)=,则f(﹣2016)=﹣2018.【考点】5B:分段函数的应用.【分析】根据函数的表达式,得到当x≤0时,函数是周期为4的周期函数,利用函数的周期性进行转化求解即可.【解答】解:当x≤0时,f(x)=﹣f(x+2),即f(x)=﹣f(x+2)=﹣[﹣f(x+4)]=f(x+4),即此时函数是周期为4的周期函数,则f(﹣2016)=f(﹣2016+4×504)=f(0)=﹣f(0+2)=﹣f(2)=﹣(log22+2017)=﹣(1+2017)=﹣2018,故答案为:﹣201815.在平面直角坐标系xOy中,圆C的方程为x2+y2﹣4x=0.若直线y=k(x+1)上存在一点P,使过P所作的圆的两条切线相互垂直,则实数k的取值范围是[﹣2,2] .【考点】J8:直线与圆相交的性质.【分析】由题意可得圆心为C(2,0),半径R=2;设两个切点分别为A、B,则由题意可得四边形PACB为正方形,圆心到直线y=k(x+1)的距离小于或等于PC=2,即≤2,由此求得k的范围.【解答】解:∵C的方程为x2+y2﹣4x=0,故圆心为C(2,0),半径R=2.设两个切点分别为A、B,则由题意可得四边形PACB为正方形,故有PC=R=2,∴圆心到直线y=k(x+1)的距离小于或等于PC=2,即≤2,解得k2≤8,可得﹣2≤k≤2,故答案为:[﹣2,2].16.已知在直角梯形ABCD中,AB⊥AD,CD⊥AD,AB=2AD=2CD=2,将直角梯形ABCD沿AC折叠成三棱锥D﹣ABC,当三棱锥D﹣ABC的体积取最大值时,其外接球的体积为.【考点】LG:球的体积和表面积.【分析】画出图形,确定三棱锥外接球的半径,然后求解外接球的体积即可.【解答】解:已知直角梯形ABCD,AB⊥AD,CD⊥AD,AB=2AD=2CD=2,沿AC 折叠成三棱锥,如图:AB=2,AD=1,CD=1,∴AC=,BC=,∴BC⊥AC,取AC的中点E,AB的中点O,连结DE,OE,∵当三棱锥体积最大时,∴平面DCA⊥平面ACB,∴OB=OA=OC=OD,∴OB=1,就是外接球的半径为1,此时三棱锥外接球的体积:=.故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{a n}的各项均是正数,其前n项和为S n,满足S n=4﹣a n(n∈N*).(1)求数列{a n}的通项公式;(2)设(n∈N*),数列{b n•b n+2}的前n项和为T n,求证:.【考点】8E:数列的求和;8H:数列递推式.【分析】(1)利用递推关系、等比数列的通项公式即可得出.(2)利用裂项求和方法、数列的单调性即可证明.【解答】解:(1)由S n=4﹣a n,得S1=4﹣a1,解得a1=2而a n+1=S n+1﹣S n=(4﹣a n+1)﹣(4﹣a n)=a n﹣a n+1,即2a n+1=a n,∴可见数列{a n}是首项为2,公比为的等比数列.∴;(2)证明:∵=,∴=故数列{b n b n+2}的前n项和===18.某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n 小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.(1)假设n=2,求第一大块地都种植品种甲的概率;(2)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?【考点】CC:列举法计算基本事件数及事件发生的概率;BC:极差、方差与标准差.【分析】(1)本题是一个古典概型,试验发生包含的事件是先从4小块地中任选2小块地种植品种甲的基本事件共6个,满足条件的事件是第一大块地都种品种甲,根据古典概型概率公式得到结果.(2)首先做出两个品种的每公顷产量的样本平均数和样本方差,把两个品种的平均数和方差进行比较,得到乙的平均数大,乙的方差比较小,得到结果.【解答】解:(1)设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,令事件A=“第一大块地都种品种甲”.从4小块地中任选2小块地种植品种甲的基本事件共6个:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).而事件A包含1个基本事件:(1,2).所以P(A)=(2)品种甲的每公顷产量的样本平均数和样本方差分别为:==400,S2甲=(32+(﹣3)2+(﹣10)2+42+(﹣12)2+02+122+62)=57.25,品种乙的每公顷产量的样本平均数和样本方差分别为:==412,S2乙=(72+(﹣9)2+(0)2+62+(﹣4)2+112+(﹣12)2+12)=56.由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.19.如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO ⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.【考点】LX:直线与平面垂直的性质;LF:棱柱、棱锥、棱台的体积.【分析】(1)连接BC1,则O为B1C与BC1的交点,证明B1C⊥平面ABO,可得B1C⊥AB;(2)作OD⊥BC,垂足为D,连接AD,作OH⊥AD,垂足为H,证明△CBB1为等边三角形,求出B1到平面ABC的距离,即可求三棱柱ABC﹣A1B1C1的高.【解答】(1)证明:连接BC1,则O为B1C与BC1的交点,∵侧面BB1C1C为菱形,∴BC1⊥B1C,∵AO⊥平面BB1C1C,∴AO⊥B1C,∵AO∩BC1=O,∴B1C⊥平面ABO,∵AB⊂平面ABO,∴B1C⊥AB;(2)解:作OD⊥BC,垂足为D,连接AD,作OH⊥AD,垂足为H,∵BC⊥AO,BC⊥OD,AO∩OD=O,∴BC⊥平面AOD,∴OH⊥BC,∵OH⊥AD,BC∩AD=D,∴OH⊥平面ABC,∵∠CBB1=60°,∴△CBB1为等边三角形,∵BC=1,∴OD=,∵AC⊥AB1,∴OA=B1C=,由OH•AD=OD•OA,可得AD==,∴OH=,∵O为B1C的中点,∴B1到平面ABC的距离为,∴三棱柱ABC﹣A1B1C1的高.20.已知直线l:x+与椭圆C:mx2+ny2=1(n>m>0)有且只有一个公共点.(1)求椭圆C的方程;(2)设椭圆C的左、右顶点分别为A,B,O为坐标原点,动点Q满足QB⊥AB,连接AQ交椭圆于点P,求的值.【考点】KU:圆锥曲线与平面向量;K3:椭圆的标准方程;KL:直线与椭圆的位置关系.【分析】(1)直线方程与椭圆方程联立,利用判别式为0,椭圆经过当点,联立求出m,n即可得到椭圆方程.(2)设Q(4,y0),P(x1,y1),又A(﹣4,0),B(4,0),求出直线AQ的方程为.联立直线与椭圆方程,利用韦达定理以及心理的数量积回家求解即可.【解答】解:(1)直线l:x+代入椭圆C:mx2+ny2=1(n>m>0)可得:(n+2m)y2﹣16my+32m﹣1=0,有且只有一个公共点.△=162m2﹣4(n+2m)(32m﹣1)=0,并且:8m+4n=1,解得m=,n=.椭圆C的方程为.(2)设Q(4,y0),P(x1,y1),又A(﹣4,0),B(4,0),∴.直线AQ的方程为.∴.∴.===.21.设函数,(1)求f(x)在x=1处的切线方程;(2)证明:对任意a>0,当0<|x|<ln(1+a)时,|f(x)﹣1|<a.【考点】6H:利用导数研究曲线上某点切线方程;6K:导数在最大值、最小值问题中的应用.【分析】(1)求导数,确定切线的斜率,切点坐标,即可求f(x)在x=1处的切线方程;(2),构造函数,确定函数的单调性,即可证明结论.【解答】解:(1),f'(1)=1,f(1)=e﹣1,∴f(x)在x=1处的切线方程为y﹣e+1=x﹣1,即x﹣y+e﹣2=0(2)证明:,设ϕ(x)=e x﹣1﹣x,ϕ'(x)=e x﹣1,ϕ'(x)>0⇔x>0,故ϕ'(x)在(﹣∞,0)内递减,在(0,+∞)内递增,∴ϕ(x)≥ϕ(0)=0即e x﹣1﹣x≥0,当0<|x|<ln(1+a)时,|f(x)﹣1|<a⇔(e x﹣1﹣x)<a|x|,即当0<x<ln(1+a)时,e x﹣1﹣(1+a)x<0,(Ⅰ)当﹣ln(1+a)<x<0时,e x﹣1﹣(1﹣a)x<0,(Ⅱ)令函数g(x)=e x﹣1﹣(1+a)x,h(x)=e x﹣1﹣(1﹣a)x注意到g(0)=h(0)=0,故要证(Ⅰ),(Ⅱ),只需要证g(x)在(0,ln(1+a))内递减,h(x)在(﹣ln(1+a),0)递增当0<x<ln(1+a)时,g'(x)=e x﹣(1+a)<e ln(1+a)﹣(1+a)=0当﹣ln(1+a)<x<0时,综上,对任意a>0,当0<|x|<ln(1+a)时,|f(x)﹣1|<a.22.在极坐标系下,知圆O:ρ=cosθ+sinθ和直线.(1)求圆O与直线l的直角坐标方程;(2)当θ∈(0,π)时,求圆O和直线l的公共点的极坐标.【考点】Q4:简单曲线的极坐标方程.【分析】(1)圆O的极坐标方程化为ρ2=ρcosθ+ρsinθ,由此能求出圆O的直角坐标方程;直线l的极坐标方程化为ρsinθ﹣ρcosθ=1,由此能求出直线l的直角坐标方程.(2)圆O与直线l的直角坐标方程联立,求出圆O与直线l的在直角坐标系下的公共点,由此能求出圆O和直线l的公共点的极坐标.【解答】解:(1)圆O:ρ=cosθ+sinθ,即ρ2=ρcosθ+ρsinθ,故圆O的直角坐标方程为:x2+y2﹣x﹣y=0,直线,即ρsinθ﹣ρcosθ=1,则直线的直角坐标方程为:x﹣y+1=0.(2)由(1)知圆O与直线l的直角坐标方程,将两方程联立得,解得.即圆O与直线l的在直角坐标系下的公共点为(0,1),转化为极坐标为.2017年6月14日。

2017年河北省衡水市武邑中学高考数学三模试卷(文科)(解析版)

2017年河北省衡水市武邑中学高考数学三模试卷(文科)(解析版)

2017年河北省衡水市武邑中学高考数学三模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z=1+i,为z的共轭复数,则z•=()A.0 B.2 C.D.2i2.已知集合A={x|0<x<2},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(﹣1,2)C.(1,2)D.(0,1)3.若,则a=()A.﹣5﹣i B.﹣5+i C.5﹣i D.5+i4.设f(x)是定义在R上周期为2的奇函数,当0≤x≤1时,f(x)=x2﹣x,则=()A.B.C.D.5.某几何体的三视图如图所示,则该几何体的表面积为()A.36+12πB.36+16πC.40+12πD.40+16π6.定义在R上的函数f(x)满足f(x)=则f(3)=()A.3 B.2 C.log29 D.log277.已知圆C:x2+y2=4,直线l:y=x,则圆C上任取一点A到直线l的距离小于1的概率为()A.B.C.D.8.已知函数f(x)=(ω>0,|φ|<,a∈R)在区间[﹣3,3]上的图象如图所示,则可取()A.4πB.2πC.πD.9.已知MOD函数是一个求余函数,记MOD(m,n)表示m除以n的余数,例如MOD(8,3)=2.如图是某个算法的程序框图,若输入m的值为48时,则输出i的值为()A.7 B.8 C.9 D.1010.若△ABC的内角A,B,C所对的边分别为a,b,c,已知2bsin2A=3asinB,且c=2b,则等于()A.B.C.D.11.对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是()A.(﹣∞,﹣2)B.[﹣2,+∞)C.[﹣2,2]D.[0,+∞)12.已知点A是抛物线x2=4y的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且当PA与抛物线相切时,点P恰好在以A、B为焦点的双曲线上,则双曲线的离心率为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.若sin(+α)=,则cos2α=.14.方程x2+x+n=0(n∈[0,1])有实根的概率为.15.已知点P(a,b)在函数y=上,且a>1,b>1,则a lnb的最大值为.16.已知双曲线C2与椭圆C1: +=1具有相同的焦点,则两条曲线相交四个交点形成四边形面积最大时双曲线C2的离心率为.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)在等差数列{a n}中,a2+a7=﹣23,a3+a8=﹣29(1)求数列{a n}的通项公式;(2)设数列{a n+b n}是首项为1,公比为2的等比数列,求{b n}的前n项和S n.18.(12分)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(Ⅰ)证明:PQ∥平面ACD;(Ⅱ)求AD与平面ABE所成角的正弦值.19.(12分)经国务院批复同意,郑州成功入围国家中心城市,某校学生团针对“郑州的发展环境”对20名学生进行问卷调查打分(满分100分),得到如图1所示茎叶图.(Ⅰ)分别计算男生女生打分的平均分,并用数学特征评价男女生打分的数据分布情况;(Ⅱ)如图2按照打分区间[0,60)、[60,70)、[70,80)、[80,90)、[90,100]绘制的直方图中,求最高矩形的高;(Ⅲ)从打分在70分以下(不含70分)的同学中抽取3人,求有女生被抽中的概率.20.(12分)已知动圆M恒过点(0,1),且与直线y=﹣1相切.(1)求圆心M的轨迹方程;(2)动直线l过点P(0,﹣2),且与点M的轨迹交于A、B两点,点C与点B关于y轴对称,求证:直线AC恒过定点.21.(12分)已知函数f(x)=lnx+a(x﹣1),其中a∈R.(Ⅰ)当a=﹣1时,求证:f(x)≤0;(Ⅱ)对任意t≥e,存在x∈(0,+∞),使tlnt+(t﹣1)[f(x)+a]>0成立,求a的取值范围.(其中e是自然对数的底数,e=2.71828…)请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.[选修4-5:不等式选讲]23.已知不等式|2x﹣3|<x与不等式x2﹣mx+n<0的解集相同.(Ⅰ)求m﹣n;(Ⅱ)若a、b、c∈(0,1),且ab+bc+ac=m﹣n,求a+b+c的最小值.2017年河北省衡水市武邑中学高考数学三模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z=1+i,为z的共轭复数,则z•=()A.0 B.2 C.D.2i【考点】A5:复数代数形式的乘除运算.【分析】复数z=1+i,=1﹣i,再利用复数的运算法则即可得出.【解答】解:复数z=1+i,=1﹣i,则z•=12+12=2.故选:B.【点评】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.2.已知集合A={x|0<x<2},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(﹣1,2)C.(1,2)D.(0,1)【考点】1D:并集及其运算.【分析】先分别求出集合A和B,由此能求出A∪B.【解答】解:集合A={x|0<x<2},B={x|x2﹣1<0}={x|﹣1<x<1},A∪B={x|﹣1<x<2}=(﹣1,2).故选:B.【点评】本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.3.若,则a=()A.﹣5﹣i B.﹣5+i C.5﹣i D.5+i【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:∵,∴1+ai=(2+i)(1+2i)=5i,∴a===5+i.故选:D.【点评】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.4.设f(x)是定义在R上周期为2的奇函数,当0≤x≤1时,f(x)=x2﹣x,则=()A.B.C.D.【考点】3L:函数奇偶性的性质;31:函数的概念及其构成要素.【分析】根据题意,由函数的周期性以及奇偶性分析可得=﹣f()=﹣f(),又由函数在解析式可得f()的值,综合可得答案.【解答】解:根据题意,f(x)是定义在R上周期为2的奇函数,则=﹣f()=﹣f(),又由当0≤x≤1时,f(x)=x2﹣x,则f()=()2﹣()=﹣,则=,故选:C.【点评】本题考查函数的值的计算,涉及函数的奇偶性与周期性的应用,属于基础题目.5.某几何体的三视图如图所示,则该几何体的表面积为()A.36+12πB.36+16πC.40+12πD.40+16π【考点】L!:由三视图求面积、体积.【分析】几何体为棱柱与半圆柱的组合体,作出直观图,代入数据计算.【解答】解:由三视图可知几何体为长方体与半圆柱的组合体,作出几何体的直观图如图所示:其中半圆柱的底面半径为2,高为4,长方体的棱长分别为4,2,2,∴几何体的表面积S=π×22×2++2×4+2×4×2+2×4+2×2×2=12π+40.故选C .【点评】本题考查了几何体的常见几何体的三视图,几何体表面积计算,属于中档题.6.定义在R 上的函数f (x )满足f (x )=则f (3)=( )A .3B .2C .log 29D .log 27【考点】5B :分段函数的应用.【分析】由已知中f (x )=,将x=3代入可得答案.【解答】解:∵f (x )=,∴f (3)=f (2)=f (1)=f (0)=log 28=3, 故选:A【点评】本题考查的知识点是函数求值,分段函数的应用,难度不大,属于基础题.7.已知圆C :x 2+y 2=4,直线l :y=x ,则圆C 上任取一点A 到直线l 的距离小于1的概率为( )A .B .C .D . 【考点】CF :几何概型.【分析】设和直线l 平行的直线的方程为x ﹣y +c=0根据点到直线的距离公式和解三角形的有关知识可得符合条件的圆心角的度数为4×30°=120°,根据概率公式计算即可【解答】解:设和直线l平行的直线的方程为x﹣y+c=0,∵圆C上任取一点A到直线l的距离小于1,∴圆心到直线x﹣y+c=0的距离小于1,∴≤1,解得|c|≤,分别做直线y=x+和y=x﹣,如图所示,∵OC=1,OB=2,∴∠CBO=30°,∴∠AOB=30°,∴符合条件的圆心角的度数为4×30°=120°,根据几何概型的概率公式得到P==,故选:D【点评】本题考查概率的求法,解题时要认真审题,注意圆的性质及点到直线的距离公式的合理运用.8.已知函数f(x)=(ω>0,|φ|<,a∈R)在区间[﹣3,3]上的图象如图所示,则可取()A.4πB.2πC.πD.【考点】3O:函数的图象.【分析】根据f(x)的奇偶性,特殊值计算a,ω,φ的值即可得出答案.【解答】解:由图象可知f(x)是偶函数,∴φ=kπ,又|φ|<,∴φ=0.令f(x)=0得cosωx=0,∴ωx=+kπ,解得x=+,k∈Z.∵ω>0,∴f(x)的最小正零点为,由图象可知f(x)的最小正零点为1,故=1,解得ω=,∴f(x)=,由图象f(0)=2,故=2,∴a=,∴=π.故选C.【点评】本题考查了三角函数的图象与性质,属于中档题.9.已知MOD函数是一个求余函数,记MOD(m,n)表示m除以n的余数,例如MOD(8,3)=2.如图是某个算法的程序框图,若输入m的值为48时,则输出i的值为()A.7 B.8 C.9 D.10【考点】EF:程序框图.【分析】模拟执行程序框图,根据题意,依次计算MOD(m,n)的值,由题意∈N*,从而得解.【解答】解:模拟执行程序框图,可得:n=2,i=0,m=48,满足条件n≤48,满足条件MOD(48,2)=0,i=1,n=3,满足条件n≤48,满足条件MOD(48,3)=0,i=2,n=4,满足条件n≤48,满足条件MOD(48,4)=0,i=3,n=5,满足条件n≤48,不满足条件MOD(48,5)=0,n=6,…∵∈N*,可得:2,3,4,6,8,12,16,24,48,∴共要循环9次,故i=9.故选:C.【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的MOD(m,n)的值是解题的关键.10.若△ABC的内角A,B,C所对的边分别为a,b,c,已知2bsin2A=3asinB,且c=2b,则等于()A.B.C.D.【考点】HT:三角形中的几何计算.【分析】利用正弦定理化简已知等式,结合sinA≠0,sinB≠0,可得cosA=,又c=2b,利用余弦定理即可计算得解的答案.【解答】解:由2bsin2A=3asinB,利用正弦定理可得:4sinBsinAcosA=3sinAsinB,由于:sinA≠0,sinB≠0,可得:cosA=,又c=2b,可得:a2=b2+c2﹣2bccosA=b2+4b2﹣2b•2b•=2b2,则=.故选:C.【点评】本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.11.对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是()A.(﹣∞,﹣2)B.[﹣2,+∞)C.[﹣2,2]D.[0,+∞)【考点】7F:基本不等式;3R:函数恒成立问题;3W:二次函数的性质.【分析】当x=0时,不等式x2+a|x|+1≥0恒成立,当x≠0时,则有a≥﹣(|x|+)恒成立,故a大于或等于﹣(|x|+)的最大值.再利用基本不等式求得(|x|+)得最大值,即可得到实数a的取值范围.【解答】解:当x=0时,不等式x2+a|x|+1≥0恒成立,当x≠0时,则有a≥=﹣(|x|+),故a大于或等于﹣(|x|+)的最大值.由基本不等式可得(|x|+)≥2,∴﹣(|x|+)≥﹣2,即﹣(|x|+)的最大值为﹣2,故实数a的取值范围是[﹣2,+∞),故选B.【点评】本题主要考查函数的恒成立问题,基本不等式的应用,求函数的最值,体现了分类讨论的数学思想,属于基础题.12.已知点A是抛物线x2=4y的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且当PA与抛物线相切时,点P恰好在以A、B为焦点的双曲线上,则双曲线的离心率为()A.B.C.D.【考点】KC:双曲线的简单性质.【分析】设直线AP的方程,代入抛物线方程,由△=0,求得切线方程,求得P点坐标,根据双曲线的定义,即可求得a的值,c=1,根据双曲线的离心率公式即可求得双曲线的离心率.【解答】解:过P作准线的垂线,垂足为N,由直线PA与抛物线相切,设直线AP的方程为y=kx﹣1,,整理得:x2﹣4kx+4=0,∴△=16k2﹣16=0,∴k=±1,∴P(2,1),∴双曲线的实轴长为丨PA丨﹣丨PB丨=2(﹣1),则a=﹣1,c=1,∴双曲线的离心率为e===+1,则双曲线的离心率+1,故选C.【点评】本题考查直线与抛物线的位置关系,考查双曲线的离心率,考查数形结合思想,属于中档题.二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.若sin(+α)=,则cos2α=﹣.【考点】GT:二倍角的余弦;GO:运用诱导公式化简求值.【分析】利用诱导公式化简求出cosα,然后利用二倍角公式求解即可.【解答】解:sin(+α)=,可得cosα=,cos2α=2cos2α﹣1=2×﹣1=﹣.故答案为:﹣.【点评】本题考查二倍角公式以及诱导公式的应用,考查计算能力.14.方程x2+x+n=0(n∈[0,1])有实根的概率为.【考点】CF:几何概型.【分析】由方程有实根得到△=1﹣4n≥0,得到n的范围,在n∈[0,1])的前提下的区间长度为,由几何概型公式可得.【解答】解:方程有实根时,满足△=1﹣4n≥0,得,由几何概型知,得.故答案为:.【点评】本题考查了几何概型概率求法;关键是求出方程有实根的n的范围,利用几何概型公式解答.15.已知点P(a,b)在函数y=上,且a>1,b>1,则a lnb的最大值为e.【考点】4H:对数的运算性质;7F:基本不等式.【分析】点P(a,b)在函数y=上,且a>1,b>1,可得,两边取对数可得lna+lnb=2.(lna >0,lnb>0).令t=a lnb,可得lnt=lna•lnb,利用基本不等式的性质即可得出.【解答】解:点P(a,b)在函数y=上,且a>1,b>1,∴,可得lnb=2﹣lna,即lna+lnb=2.(lna>0,lnb>0).令t=a lnb,∴lnt=lna•lnb≤=1,当且仅当lna=lnb=1,即a=b=e时取等号.∴t≤e.故答案为:e.【点评】本题考查了对数函数的性质、基本不等式的性质,考查了推理能力与计算能力,属于中档题.16.已知双曲线C2与椭圆C1: +=1具有相同的焦点,则两条曲线相交四个交点形成四边形面积最大时双曲线C2的离心率为.【考点】KC:双曲线的简单性质.【分析】求解面积最大值时的点的坐标,利用焦点坐标,转化求解双曲线的离心率即可.【解答】解:双曲线C2与椭圆C1: +=1具有相同的焦点,可得c=1,两条曲线相交四个交点形成四边形面积最大,设在第一象限的交点为:(m,n),可得S=4mn,≥2=,当且仅当时,mn≤,此时四边形的面积取得最大值,解得m=,n=,可得双曲线的实轴长2a=﹣===,双曲线的离心率为:=.故答案为:.【点评】本题考查椭圆以及双曲线的简单性质的应用,考查转化思想以及计算能力.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)(2017•雅安模拟)在等差数列{a n}中,a2+a7=﹣23,a3+a8=﹣29(1)求数列{a n}的通项公式;(2)设数列{a n+b n}是首项为1,公比为2的等比数列,求{b n}的前n项和S n.【考点】8E:数列的求和;84:等差数列的通项公式.【分析】(1)依题意a3+a8﹣(a2+a7)=2d=﹣6,从而d=﹣3.由此能求出数列{a n}的通项公式.(2)由数列{a n+b n}是首项为1,公比为2的等比数列,求出=3n﹣2+2n﹣1,再分组求和即可【解答】解:(1)设等差数列{a n}的公差是d.由已知(a3+a8)﹣(a2+a7)=2d=﹣6,∴d=﹣3,∴a2+a7=2a1+7d=﹣23m,得a1=﹣1,∴数列{a n}的通项公式为a n=﹣3n+2(2)由数列{a n+b n}是首项为1,公比为2的等比数列,∴,∴=3n﹣2+2n﹣1,∴S n=[1+4+7+…+(3n﹣2)]+(1+2+22+…+2n﹣1)=,=【点评】本题考查数列的通项公式和前n项和公式的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.18.(12分)(2017•花都区二模)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(Ⅰ)证明:PQ∥平面ACD;(Ⅱ)求AD与平面ABE所成角的正弦值.【考点】MQ:用空间向量求直线与平面的夹角;LS:直线与平面平行的判定.【分析】(Ⅰ)利用三角形的中位线定理,又已知,可得,再利用线面平行的判定定理即可证明;(Ⅱ)利用线面、面面垂直的判定和性质定理得到CQ⊥平面ABE,再利用(Ⅰ)的结论可证明DP⊥平面ABE,从而得到∠DAP是所求的线面角.【解答】(Ⅰ)证明:连接DP,CQ,在△ABE中,P、Q分别是AE,AB的中点,∴,又,∴,又PQ⊄平面ACD,DC⊂平面ACD,∴PQ∥平面ACD.(Ⅱ)解:在△ABC中,AC=BC=2,AQ=BQ,∴CQ⊥AB.而DC⊥平面ABC,EB∥DC,∴EB⊥平面ABC.而EB⊂平面ABE,∴平面ABE⊥平面ABC,∴CQ⊥平面ABE由(Ⅰ)知四边形DCQP是平行四边形,∴DP∥CQ.∴DP⊥平面ABE,∴直线AD在平面ABE内的射影是AP,∴直线AD与平面ABE所成角是∠DAP.在Rt△APD中,==,DP=CQ=2sin∠CAQ=2sin30°=1.∴=.【点评】熟练掌握三角形的中位线定理、线面平行的判定定理、线面与面面垂直的判定和性质定理、线面角的定义是解题的关键.19.(12分)(2017•郑州二模)经国务院批复同意,郑州成功入围国家中心城市,某校学生团针对“郑州的发展环境”对20名学生进行问卷调查打分(满分100分),得到如图1所示茎叶图.(Ⅰ)分别计算男生女生打分的平均分,并用数学特征评价男女生打分的数据分布情况;(Ⅱ)如图2按照打分区间[0,60)、[60,70)、[70,80)、[80,90)、[90,100]绘制的直方图中,求最高矩形的高;(Ⅲ)从打分在70分以下(不含70分)的同学中抽取3人,求有女生被抽中的概率.【考点】CC:列举法计算基本事件数及事件发生的概率;B8:频率分布直方图;BA:茎叶图.【分析】(Ⅰ)利用茎叶图能求出女生打分的平均分和男生打分的平均分,从茎叶图来看,女生打分相对集中,男生打分相对分散.(Ⅱ)20名学生中,打分区间[0,60)、[60,70)、[70,80)、[80,90)、[90,100]中的学生数分别为:2人,4人,9人,4人,1人,打分区间[70,80)的人数最多,有9人,所点频率为0.45,由此能求出最高矩形的高.(Ⅲ)打分在70分以下(不含70分)的同学有6人,其中男生4人,女生2人,有女生被抽中的对立事件是抽中的3名同学都是男生,由此利用对立事件概率计算公式能求出有女生被抽中的概率.【解答】解:(Ⅰ)女生打分的平均分为:=(68+69+75+76+70+79+78+82+87+96)=78,男生打分的平均分为:=(55+53+62+65+71+70+73+74+86+81)=69.从茎叶图来看,女生打分相对集中,男生打分相对分散.(Ⅱ)20名学生中,打分区间[0,60)、[60,70)、[70,80)、[80,90)、[90,100]中的学生数分别为:2人,4人,9人,4人,1人,打分区间[70,80)的人数最多,有9人,所点频率为:=0.45,∴最高矩形的高h==0.045.(Ⅲ)打分在70分以下(不含70分)的同学有6人,其中男生4人,女生2人,从中抽取3人,基本事件总数n==20,有女生被抽中的对立事件是抽中的3名同学都是男生,∴有女生被抽中的概率p=1﹣=1﹣=.【点评】本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.20.(12分)(2017•郑州二模)已知动圆M恒过点(0,1),且与直线y=﹣1相切.(1)求圆心M的轨迹方程;(2)动直线l过点P(0,﹣2),且与点M的轨迹交于A、B两点,点C与点B关于y轴对称,求证:直线AC恒过定点.【考点】K8:抛物线的简单性质;J3:轨迹方程.【分析】(1)由题意可知圆心M的轨迹为以(0,1)为焦点,直线y=﹣1为准线的抛物线,根据抛物线的方程即可求得圆心M的轨迹方程;(2)由题意可知直线l的斜率存在,设直线l的方程为:y=kx﹣2,A(x1,y1),B(x2,y2),则C(﹣x2,y2).代入抛物线方,由韦达定理及直线直线AC的方程为:y﹣y2=﹣(x+x2),把根与系数的关系代入可得4y=(x2﹣x1)x+8,令x=0,即可得出直线恒过定点.【解答】解:(1)∵动点M到直线y=﹣1的距离等于到定点C(0,1)的距离,∴动点M的轨迹为抛物线,且=1,解得:p=2,∴动点M的轨迹方程为x2=4y;(2)证明:由题意可知直线l的斜率存在,设直线l的方程为:y=kx﹣2,A(x1,y1),B(x2,y2),则C(﹣x2,y2).联立,化为x2﹣4kx+8=0,△=16k2﹣32>0,解得k>或k<﹣.∴x1+x2=4k,x1x2=8.直线直线AC的方程为:y﹣y2=﹣(x+x2),又∵y1=kx1﹣2,y2=kx2﹣2,∴4ky﹣4k(kx2﹣2)=(kx2﹣kx1)x+kx1x2﹣kx22,化为4y=(x2﹣x1)x+x2(4k﹣x2),∵x1=4k﹣x2,∴4y=(x2﹣x1)x+8,令x=0,则y=2,∴直线AC恒过一定点(0,2).【点评】本题考查点的轨迹方程的求法,考查直线的方程求法,解题时要认真审题,注意根的判别式、韦达定理、抛物线定义的合理运用,属于中档题.21.(12分)(2017•资阳模拟)已知函数f(x)=lnx+a(x﹣1),其中a∈R.(Ⅰ)当a=﹣1时,求证:f(x)≤0;(Ⅱ)对任意t≥e,存在x∈(0,+∞),使tlnt+(t﹣1)[f(x)+a]>0成立,求a的取值范围.(其中e是自然对数的底数,e=2.71828…)【考点】6E:利用导数求闭区间上函数的最值;6B:利用导数研究函数的单调性.【分析】(Ⅰ)求出函数f(x)的导数,解关于导函数的不等式,求出函数f(x)的最大值,证明结论即可;(Ⅱ)问题转化为证明,设,根据函数的单调性求出a 的范围即可.【解答】解:(Ⅰ)当a=﹣1时,f(x)=lnx﹣x+1(x>0),则,令f'(x)=0,得x=1.当0<x<1时,f'(x)>0,f(x)单调递增;当x>1时,f'(x)<0,f(x)单调递减.故当x=1时,函数f(x)取得极大值,也为最大值,所以f(x)max=f(1)=0,所以,f(x)≤0,得证.(4分)(II)原题即对任意t≥e,存在x∈(0,+∞),使成立,只需.设,则,令u(t)=t﹣1﹣lnt,则对于t≥e恒成立,所以u(t)=t﹣1﹣lnt为[e,+∞)上的增函数,于是u(t)=t﹣1﹣lnt≥u(e)=e﹣2>0,即对于t≥e恒成立,所以为[e,+∞)上的增函数,则.(8分)令p(x)=﹣f(x)﹣a,则p(x)=﹣lnx﹣a(x﹣1)﹣a=﹣lnx﹣ax,当a≥0时,p(x)=﹣lnx﹣ax为(0,+∞)的减函数,且其值域为R,符合题意.当a<0时,,由p'(x)=0得,由p'(x)>0得,则p(x)在上为增函数;由p'(x)<0得,则p(x)在上为减函数,所以,从而由,解得.综上所述,a的取值范围是.(12分)【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明,考查分类讨论思想,转化思想,是一道综合题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)(2017•花都区二模)已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.【考点】QK:圆的参数方程;35:函数的图象与图象变化;J8:直线与圆相交的性质;QJ:直线的参数方程.【分析】(I)将直线l中的x与y代入到直线C1中,即可得到交点坐标,然后利用两点间的距离公式即可求出|AB|.(II)将直线的参数方程化为普通方程,曲线C2任意点P的坐标,利用点到直线的距离公式P 到直线的距离d,分子合并后利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,与分母约分化简后,根据正弦函数的值域可得正弦函数的最小值,进而得到距离d的最小值即可.【解答】解:(I)l的普通方程为y=(x﹣1),C1的普通方程为x2+y2=1,联立方程组,解得交点坐标为A(1,0),B(,﹣)所以|AB|==1;(II)曲线C2:(θ为参数).设所求的点为P(cosθ,sinθ),则P到直线l的距离d== [sin()+2]当sin()=﹣1时,d取得最小值.【点评】此题考查了直线与圆的位置关系,涉及的知识有直线与圆的参数方程与普通方程的互化,点到直线的距离公式,两角和与差的正弦函数公式,正弦函数的定义域与值域,以及特殊角的三角函数值,根据曲线C2的参数方程设出所求P的坐标,根据点到直线的距离公式表示出d,进而利用三角函数来解决问题是解本题的思路.[选修4-5:不等式选讲]23.(2017•郑州二模)已知不等式|2x﹣3|<x与不等式x2﹣mx+n<0的解集相同.(Ⅰ)求m﹣n;(Ⅱ)若a、b、c∈(0,1),且ab+bc+ac=m﹣n,求a+b+c的最小值.【考点】74:一元二次不等式的解法.【分析】(Ⅰ)讨论2x﹣3≥0或2x﹣3<0,求出不等式|2x﹣3|<x的解集,得出不等式x2﹣mx+n<0的解集,利用根与系数的关系求出m、n的值;(Ⅱ)根据a、b、c∈(0,1),且ab+bc+ac=1,求出(a+b+c)2的最小值,即可得出a+b+c 的最小值.【解答】解:(Ⅰ)当2x﹣3≥0,即x≥时,不等式|2x﹣3|<x可化为2x﹣3<x,解得x<3,∴≤x<3;当2x﹣3<0,即x<时,不等式|2x﹣3|<x可化为3﹣2x<x,解得x>1,∴1<x<;综上,不等式的解集为{x|1<x<3};∴不等式x2﹣mx+n<0的解集为{x|1<x<3},∴方程x2﹣mx+n=0的两实数根为1和3,∴,∴m﹣n=4﹣3=1;(Ⅱ)a、b、c∈(0,1),且ab+bc+ac=m﹣n=1,∴(a+b+c)2=a2+b2+c2+2(ab+bc+ca)≥(2ab+2bc+2ac)+2(ab+bc+ac)=3(ab+bc+ca)=3;∴a+b+c的最小值是.【点评】本题考查了解不等式以及根与系数的关系应用问题,也考查了基本不等式的应用问题,是综合题.。

河北省武邑中学2017届高三上学期第四次调研数学(文)试题 Word版含答案

河北省武邑中学2017届高三上学期第四次调研数学(文)试题 Word版含答案

数学试题(文科)第Ⅰ卷 选择题(共60分)一、选择题:本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求,将正确答案填涂在答题卡上. 1. 已知集合{}2A=4120x x x +-<,{}22x B x =>,则A B ( ) A .{}6x x < B .{}2x x <C .{}62x x -<<D .{}12x x <<2.双曲线2228x y -=的实轴长是( )A .2B .C .4D .3.下列命题的说法错误的是( ) A .若p q ∧为假命题,则,p q 均为假命题. B .“1x =”是“2320x x -+=”的充分不必要条件.C .对于命题:p x R ∀∈,210x x ++>,则2:,10p x R x x -∃∈++≤.D .命题“若2320x x -+=,则1x =”的逆否命题为:“若1x ≠,则2320x x -+≠” 4. 函数23y x =的图象大致形状是( )A B C D .5.已知两个不同的平面a ,β和两条不重合的直线m ,n ,则下列四个命题中不正确的是( )A .若//m n ,m a ⊥,则n a ⊥B .若m a ⊥,m β⊥,则//a βC .若m a ⊥,//m n ,n β⊂,则a β⊥D .若//m a ,a n β= ,则//m n6. 已知公差不为0的等差数列{}n a 满足1a ,3a ,4a 成等比数列,n S 为数列{}n a 的前n 和,则3253S S S S --的值为( ) A .2B .3C .2-D .3-7. 若抛物线22y x =上一点M 到它的焦点F 的距离为32,O 为坐标原点,则MFO ∆的面积为( ) ABC .12D .148. 以(),1a 为圆心,且与两条直线240x y -+=及260x y --=同时相切的圆的标准方程为( ) A .()2215x y +-= B .()()22115x y +++= C .()2215x y -+=D .()()22115x y -+-=9. 向量()cos25,sin25a =︒︒,()sin20,cos20b =︒︒,若t 是实数,且u a tb =+,则u的最小值为( ) AB .1CD .1210. 将函数()2cos2f x x =的图象向右平移6π个单位后得到函数()g x 的图象,若函数()g x 在区间0,3a ⎡⎤⎢⎥⎣⎦和72,6a π⎡⎤⎢⎥⎣⎦上均单调递增,则实数a 的取值范围是( )A .,32ππ⎡⎤⎢⎥⎣⎦B .,62ππ⎡⎤⎢⎥⎣⎦C .,63ππ⎡⎤⎢⎥⎣⎦D .3,48ππ⎡⎤⎢⎥⎣⎦11.已知函数()f x 是定义在R 上的增函数,函数()1y f x =-的图像关于()1,0对称,若对任意x ,y R ∈,不等式()()2262180f x x f y y -++-<恒成立,则当3x >时,22x y +的取值范围是( )A .()3,7B.)C .()9,49D .()13,4912.已知函数()sin 1xf x x x π=+-在()0,1上的最大值为m ,在(]1,2上的最小值为n ,则m n +=( ) A .2-B .1-C .1D .2第Ⅱ卷 非选择题(共90分)二、填空题:本大题共4小题,每小题5分,共20分,将答案填在答题卡上相应位置.13.已知函数ln xy x =在点()(),m f m 处的切线平行于x 轴,则实数m =______. 14.已知51sin 24a π⎛⎫+= ⎪⎝⎭,那么cos 2a =______. 15. .已知某棱锥的三视图如图(最左侧是正视图)所示,俯视图为正方形及一条对角线,根据图中所给的数据,该棱锥外接球的体积是_____.16.设()()2,01,0x a x f x x a x x ⎧-≤⎪=⎨++>⎪⎩,若()0f 是()f x 的最小值,则实数a 的取值范围为_____.三、解答题:大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. (本小题满分10分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2a B c b =-. (1)求A 的大小;(2)若2a =,4b c +=,求ABC ∆的面积. 18. (本小题满分12分)已知数列{}n a 的前n 项和为n S ,且()12n n S n λ=+-⋅,又数列{}n b 满足:n n a b n ⋅=. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)当λ为何值时,数列{}n b 是等比数列?并求此时数列{}n b 的前n 项和n T 的取值范围.19. (本小题满分12分)如图,在三棱柱111ABC A B C —中,1A A -⊥平面ABC ,90BAC ∠=︒,2AB AC ==,1A 3A =.(Ⅰ)过BC 的截面交1A A 于P 点,若PBC ∆为等边三角形,求出点P 的位置; (Ⅱ)在(Ⅰ)条件下,求四棱锥11P BCC B -与三棱柱111ABC B C —A 的体积比.20.(本小题满分12分)如图,已知ABC ∆的边AB 所在直线的方程为360x y --=,()2,0M 满足BM MC =,点()1,1T -在AC 边所在直线上且满足0AT AB ⋅=.(1)求AC 边所在直线的方程; (2)求ABC ∆外接圆的方程;(3)若动圆P 过点()2,0N -,且与ABC ∆的外接圆外切,求动圆P 的圆心的轨迹方程.21.(本小题满分12分)已知椭圆2222:1x y C a b +=,()0a b >>且过点⎛ ⎝⎭. (Ⅰ)求椭圆C 的方程;(Ⅱ)设与圆223:4O x y +=相切的直线l 交椭圆C 与A ,B 两点,求OAB ∆面积的最大值及取得最大值时直线l 的方程. 22.(本小题满分12分)已知函数()()ln 1f x x ax ax =-+,其中0a ≥.(1)讨论函数()f x 的单调性;(2) 若函数()f x 在(]0,1内至少有1个零点,求实数a 的取值范围;数学试题(文科)答案一、选择题:DCABD ABACA DD二、填空题:13. e 14.78- 16.02a ≤≤ 三、17.解法一:2cos 2a B c b =- ,由余弦定理得222222a c b a c b ac+-⋅=-即222b c a bc +-=根据余弦定理,有2221cos 222b c a bc A bc bc +-===又O A π<<,故3A π=()234b c bc ∴+-=,又4b c +=,4bc ∴=1sin 2ABC S bc A ∆∴=18.解:解:(Ⅰ)由()12n n S n λ=+-⋅,当1n =时,11a S λ==;当2n ≥时,()()11112222n n n n n n a S S n n n ---=-=-⋅--⋅=⋅,故数列{}n a 的通项公式为()()11,22n n n a n n λ-=⎧⎪=⎨⋅≥⎪⎩(Ⅱ)由n n a b n ⋅=有()()111,122n n n b n λ-⎧=⎪⎪=⎨⎛⎫⎪≥ ⎪⎪⎝⎭⎩则数列{}n b 为等比数列, 则首项为11b λ=满足2n ≥的情况,故1λ=,则()112111122111212n n n n b q b b q--⎛⎫++===- ⎪-⎝⎭-…+b 而1212n⎛⎫-⎪⎝⎭是单调递增的,故[)121211,22n n b b ⎛⎫++=-∈ ⎪⎝⎭…+b 19.(1)由题意PC PB == 2分在三棱柱中,由1ABC AA ⊥平面且2AB AC ==可得,2PA =, 4分 故点P 的位置为1AA 的三等分点,且靠近1A 处 6分(2)由(1)可知,111122362ABC A B C V -=⨯⨯⨯=,7分 111112221323p A B C V -=⨯⨯⨯⨯=8分 114222323p ABC V -=⨯⨯⨯⨯=,9分所以11*436432p BCC V -=--=,所以所求两个几何体的体20.试题解析:(1)0,AT AB AT AB ⋅=∴⊥,又T 在AC 上,AT AB ∴⊥,ABC ∴∆为Rt ABC ∆,又AB 边所在直线的方程为360x y --=,所以直线AC 的斜率为3-,又因为点()1,1T -在直线AC 上,所以AC 边所在直线的方程为:()131y x -=-+,即320x y ++=. (2)AC 与AB 的交点为A ,所以由360,320,x y x y --=⎧⎨++=⎩解得点A 的坐标为()0,2-,BM MC =,()2,0M ∴为Rt ABC ∆斜边上的中点,即为Rt ABC ∆外接圆的圆心,又r AM ==从而ABC ∆外接圆的方程为:()2228x y -+=.(3)因为动圆P 过点N ,所以PN 是该圆的半径,又因为动圆P 与圆M 外切,所以PM PN =+,即PM PN -=故点P的轨迹是以M ,N 为焦点,实轴长为. 因为实半轴长a =2c =.所以虚半轴长b =从而动圆P 的圆心的轨迹方程为(22122x y x -=≤.解(1)由题意可得:221213ab c a⎧+=⎪⎪⎨⎪=⎪⎩2分22223,1,13x a b y ==∴+=4分(2)①当k不存在时,x y =∴=1324OAB S ∆∴== 5分②当k 不存在时,设直线为y kx m =+,()11,A x y ,()22,B x y ,2213x y y kx m ⎧+=⎪⎨⎪=+⎩,()222136330k x km m +++-= 6分2121222633,1313km m x x x x k k --+==++ 7分 ()22431d r m k =⇒=+8分AB =10分2=当且仅当2219kk =,即k = 11分11222OABS AB r ∆∴=⨯≤⨯=, OAB ∴∆,此时直线方程1y =±. 12分21.(1)依题意知函数()f x 的定义域为()0,+∞,且()()()2'22111212ax ax a x ax f x a x a x x x-++-=--==--,………………2分当0a =时,()ln f x x =,函数()f x 在()0,+∞上单调递增;………………3分 当0a >时,由()'0f x >得102x a <<,由()'0f x <得12x a >,函数()f x 在10,2a ⎛⎫⎪⎝⎭上单调递增,在1,2a ⎛⎫+∞⎪⎝⎭上单调递减:………………4分 当0a <时由()'0f x >得10x a <<-,由()'0f x <得1x a >-,函数()f x 在10,a⎛⎫- ⎪⎝⎭上单调递增,在1,a⎛⎫-+∞ ⎪⎝⎭上单调递减:………………5分(2)当0a =时,函数()f x 在10,2a ⎛⎤⎥⎝⎦内有1个零点01x =;………………6分 当0a >时,由(1)知函数()f x 在10,2a ⎛⎫ ⎪⎝⎭上单调递增,在1,2a ⎛⎫+∞ ⎪⎝⎭上单调递减:①若112a ≥,即102a <≤时,()f x 在(]0,1上单调递增,由于当0x →时,()f x →-∞且()210f a a =--<,知函数()f x 在(]0,1内无零点;………………7分②若1012a <<,即12a >时,()f x 在10,2a ⎛⎫ ⎪⎝⎭上单调递增,在1,12a ⎛⎤⎥⎝⎦上单调递减,要使函数()f x 在(]0,1内至少有1个零点,只需满足102f a ⎛⎫≥ ⎪⎝⎭,即431122a e <≤;………………9分 当0a <时,由(1)知函数()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递减; ③若11a-≥,即10a -≤<时,()f x 在(]0,1上单调递增,由于当0x →时,()f x →-∞,且()210f a a =-->,知函数()f x 在(]0,1内有1个零点;………………10分 ④若101a <-<,即1a <-时,函数()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,在1,1a⎛⎤- ⎥⎝⎦上单调递减:由于当0x →时,()f x →-∞,且当1a <-时,11ln 0f a a ⎛⎫⎛⎫-=-< ⎪ ⎪⎝⎭⎝⎭,知函数()f x 在(]0,1内无零点:………………11分综上可得:a 的取值范围是[]43111,0,22e ⎛⎤- ⎥⎝⎦.………………12分。

【河北省衡水中学】2017届高三上学期四调数学(文科)试卷(附答案与解析)

【河北省衡水中学】2017届高三上学期四调数学(文科)试卷(附答案与解析)

.设向量()1,2a =-,(),1b m =,若向量2a b +与2a b -平行,则 B .12-C .2D}n n b 的前n 4sin 2x ⎛=)112n -()1412n n -++- ()452n n ++-)()21234222n n -⎡⎤-++++⎣⎦)()1212123412n n-⎡⎤-⎢⎥-+-⎢⎥⎣ )()()1234224525n nn n ⎡⎤-+-=-+⎣⎦PA QD ,∴⊂平面PAB PA AB A =,PA AB A =,60,∴ABC 是等边三角形,∴3=. ()1112232PADQ BO =⨯+⨯⨯90 ∴CBD ∠BCDS=QD ⊥平面13BCDSQD =⨯∴该组合体的体积Q BCD V V -=时,OAB 面积取得最大值为22x a x -=[)1,⎤+∞⎥⎦.河北省衡水中学2017届高三上学期四调数学(文科)试卷解析一、选择题:本大题共12个小题,每小题5分,共60分.1.【考点】复数的代数表示法及其几何意义.【分析】利用复数的运算法则、共轭复数的定义、几何意义即可得出.【解答】解:复数z=﹣2i+=﹣2i+=﹣2i﹣3i﹣1=﹣1﹣5i,则复数z的共轭复数=﹣1+5i在复平面内对应的点(﹣1,5)在第二象限.故选:B.2.【考点】集合的包含关系判断及应用.【分析】由题意可知:集合B中至少含有元素1,2,即可得出.【解答】解:A,B是全集I={1,2,3,4}的子集,A={l,2},则满足A⊆B的B为:{1,2},{1,2,3},{1,2,4},{1,2,3,4}.故选:B.3.【考点】抛物线的简单性质.【分析】先把方程化为标准方程,可知焦点在y轴上,进一步可以确定焦点坐标.【解答】解:化为标准方程为x,∴2p=,∴=,∴焦点坐标是(0,).故选D4.【考点】平面向量共线(平行)的坐标表示.【分析】根据题意,由向量、的坐标计算可得与2的坐标,进而由向量平行的坐标计算公式可得(﹣2﹣m)×4=3×(﹣1+2m),解可得m的值,即可得答案.【解答】解:根据题意,向量=(﹣1,2),=(m,1),则=(﹣1+2m,4),2=(﹣2﹣m,3),若向量与2平行,则有(﹣2﹣m)×4=3×(﹣1+2m),解可得m=﹣;故选:B.5.【考点】必要条件、充分条件与充要条件的判断.【分析】先求出圆x2+y2=1与直线y=kx﹣3有公共点的等价条件,然后根据充分不必要条件的定义进行判断.【解答】解:若直线与圆有公共点,则圆心到直线kx﹣y﹣3=0的距离d=,即,∴k2+1≥9,即k2≥8,∴k或k,∴圆x2+y2=1与直线y=kx﹣3有公共点的充分不必要条件是k,故选:B.6.【考点】等比数列的前n项和;等比数列的通项公式.【分析】由等比数列的通项公式列出方程组,求出首项和公比,由此能求出S101.【解答】解:∵等比数列{a n}的前n项和为S n,a3=3,且a2016+a2017=0,∴,解得a1=3,q=﹣1,∴a101==3×(﹣1)100=3.故选:A.7.【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次进行循环体后,S=cos,n=1不满足输出的条件,则n=2,S=cos•cos;当n=2,S=cos•cos时,不满足输出的条件,则n=3,S=cos•cos•cos;当n=3,S=cos•cos•cos时,满足输出的条件,故S=cos•cos•cos=sin•cos•cos•cos÷sin=sin•cos•cos÷sin=sin•cos÷sin=sin÷sin=故选:B8.【考点】函数的图象.【分析】分别令a=0,a>0,a<0,根据导数和函数的单调性即可判断.【解答】解:f(x)=,可取a=0,f(x)==,故(4)正确;∴f′(x)=,当a<0时,函数f′(x)<0恒成立,x2+a=0,解得x=±故函数f(x)在(﹣∞,﹣),(﹣,),(,+∞)上单调递减,故(3)正确;取a>0,f′(x)=0,解得x=±,当f′(x)>0,即x∈(﹣,)时,函数单调递增,当f′(x)<0,即x∈(﹣∞,﹣),(,+∞)时,函数单调递减,故(2)正确函数f(x)=的图象可能是(2),(3),(4),故选:C9.【考点】棱柱、棱锥、棱台的体积;平面的基本性质及推论.【分析】取CD的中点G,PA的四等分点I,顺次连接E,F,G,H,I,则平面EFGHI即为过E,F,H 的平面截四棱锥P﹣ABCD所得截面,求其面积,可得答案.【解答】解:取CD的中点G,PA的四等分点I,顺次连接E,F,G,H,I,则平面EFGHI即为过E,F,H的平面截四棱锥P﹣ABCD所得截面,如图所示:∵四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB=4,∴EF=HG=PC=2且EF∥HG∥PC,EH=FG=BD=2且EH∥FG∥BD,故四边形EFGH为矩形,面积是4,△EIH中,EI=HI=,故EH上的高IJ=,故△EIH的面积为,即平面EFGHI的面积为5,故选:C.10.【考点】椭圆的简单性质.【分析】由题意画出图形,结合已知及椭圆定义把|PF1|、|PF2|用a,c表示,再由勾股定理求得答案.【解答】解:如图,∵以PF1为直径的圆经过F2,∴PF2⊥F1F2,又tan∠PF1F2=,∴,则,由|PF1|+|PF2|=2a,得|PF1|=,在Rt△PF2F1中,得,即,解得:或(舍).∴椭圆E的离心率为.故选:D.11.【考点】球内接多面体;由三视图还原实物图.【分析】将三视图还原为直观图,得四棱锥P﹣ABCD的五个顶点位于同一个正方体的顶点处,且与该正方体内接于同一个球.由此结合题意,可得正文体的棱长为2,算出外接球半径R,再结合球的表面积公式,即可得到该球表面积.【解答】解:将三视图还原为直观图如右图,可得四棱锥P﹣ABCD的五个顶点位于同一个正方体的顶点处,且与该正方体内接于同一个球.且该正方体的棱长为a设外接球的球心为O,则O也是正方体的中心,设EF中点为G,连接OG,OA,AG根据题意,直线EF被球面所截得的线段长为2,即正方体面对角线长也是2,∴得AG==a,所以正方体棱长a=2∴Rt△OGA中,OG=a=1,AO=,即外接球半径R=,得外接球表面积为4πR2=12π.故选A.12.【考点】抛物线的简单性质.【分析】求出抛物线C的焦点F的坐标,从而得到AF的斜率k=2.过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|.Rt△MPN中,根据tan∠NMP=k=2,从而得到|PN|=2|PM|,进而算出|MN|=|PM|,再求得|FN|=|MN|+|MF|=|MN|+|PM|=()|PM|,则答案可求.【解答】解:∵抛物线C:y2=4x的焦点为F(1,0),点A坐标为(0,﹣2),∴抛物线的准线方程为l:x=1,直线AF的斜率为k=2,过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|,∵Rt△MPN中,tan∠NMP=k=2,∴,可得|PN|=2|PM|,得|MN|=|PM|,而|FN|=|MN|+|MF|=|MN|+|PM|=()|PM|,∴|MN|:|FN|=:(1+),故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【考点】直线的一般式方程与直线的平行关系.【分析】根据直线的平行关系得到关于m的方程,解出即可.【解答】解:直线l1:(m+1)x+2y+2m﹣2=0,l2:2x+(m﹣2)y+2=0,m=2时,l1:3x+2y+2=0,l2:x+1=0,不合题意,m≠2时,若直线l1∥l2,则=≠,即(m+1)(m﹣2)=4,解得:m=3(舍)或m=﹣2,故答案为:﹣2.14.【考点】余弦定理;正弦定理.【分析】已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式变形,根据sinA 不为0求出cosB的值,即可确定出B的度数,利用三角形内角和定理可求A,C,进而利用正弦定理可求a,利用三角形面积公式即可计算得解.【解答】解:已知等式(2a﹣c)cosB﹣bcosC=0,利用正弦定理化简得:(2sinA﹣sinC)cosB=sinBcosC,整理得:2sinAcosB=sinBcosC+cosBsinC=sin(B+C)=sinA,∵sinA≠0,∴cosB=,则B=60°.∵A=3C,c=6,可得:C=30°,A=90°,∴a===12,∴S△ABC=acsinB==.故答案为:.15.【考点】简单线性规划.【分析】作出不等式组对应的平面区域,根据平面区域是四边形,即可确定a的取值范围.【解答】解:作出不等式组对应的平面区域,当直线x+y=a经过点A(3,0)时,对应的平面区域是三角形,此时a=3,当经过点B时,对应的平面区域是三角形,由,解得,即B(1,4),此时a=1+4=5,∴要使对应的平面区域是平行四边形,则3<a<5,故答案为:(3,5)16.【考点】利用导数研究函数的单调性.【分析】求函数的导数,利用函数的单调性和导数之间的关系进行求解,注意要对a进行讨论.【解答】当a>0时,f(x)=|e x+|=e x+,则函数的导数f′(x)=e x﹣=,且f(x)>0恒成立,由f′(x)>0解得e2x>a,即x>lna,此时函数单调递增,由f′(x)<0解得e2x<a,即x<lna,此时函数单调递减,若f(x)在区间[0,1]上单调递增,则lna≤0,解得0<a≤1,即a∈(0,1]当a=0时,f(x)=|e x+|=e x在区间[0,1]上单调递增,满足条件.当a<0时,y=e x+在R单调递增,令y=e x+=0,则x=ln,则f(x)=|e x+|在(0,ln]为减函数,在[ln,+∞)上为增函数则ln≤0,解得a≥﹣1综上,实数a的取值范围是[﹣1,1]故答案为:a∈[﹣1,1]三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【考点】数列的求和;等差关系的确定;等比关系的确定.【分析】(Ⅰ)由S n=2n2+n可得,当n=1时,可求a1=3,当n≥2时,由a n=s n﹣s n﹣1可求通项,进而可求b n(Ⅱ)由(Ⅰ)知,,利用错位相减可求数列的和【解答】解:(Ⅰ)由S n=2n2+n可得,当n=1时,a1=s1=3当n≥2时,a n=s n﹣s n﹣1=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1而n=1,a1=4﹣1=3适合上式,故a n=4n﹣1,又∵a n=4log2b n+3=4n﹣1∴(Ⅱ)由(Ⅰ)知,2T n=3×2+7×22+…+(4n﹣5)•2n﹣1+(4n﹣1)•2n∴=(4n﹣1)•2n=(4n﹣1)•2n﹣[3+4(2n﹣2)]=(4n﹣5)•2n+518.【考点】函数y=Asin(ωx+φ)的图象变换;正弦函数的图象.【分析】(1)利用三角函数的单调性与值域即可得出.(2)利用坐标变换得到的图象.可得.再利用三角函数的单调性即可得出.【解答】解:(1)f(x)=4sin(2x﹣)+.sin(2x﹣)=1时,f(x)取得最大值4+;sin(2x﹣)=﹣1时,函数f(x)取得最小值4﹣.(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象.再把得到的图象向左平移个单位,得到的图象.∴.由.∴g(x)的单调减区间是.19.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(1)推导出PA⊥BC,BC⊥AB,从而BC⊥平面PAB,由此能证明平面PAB⊥平面QBC.(2)连接BD,过B作BO⊥AD于O,该组合体的体积V=V B﹣PADQ+V Q﹣BCD.由此能求出结果.【解答】证明:(1)∵OD⊥平面ABCD,PA∥QD,∴PA⊥平面ABCD,又∵BC⊂平面ABCD,∴PA⊥BC,又BC⊥AB,PA⊂平面PAB,AB⊂平面PAB,PA∩AB=A,∴BC⊥平面PAB,又∵BC⊂平面QBC,∴平面PAB⊥平面QBC.解:(2)连接BD,过B作BO⊥AD于O,∵PA⊥平面ABCD,BO⊂平面ABCD,∴PA⊥BO,又BO⊥AD,AD⊂平面PADQ,PA⊂平面PADQ,PA∩AD=A,∴BO⊥平面PADQ,∵AD=AB=2,∠DAB=60°,∴△ABD是等邊三角形,∴.∴.∵∠ADC=∠ABC=90°,∴∠CBD=∠CDB=30°,又BD=AB=2,∴,∴.∵QD⊥平面ABCD,∴.∴该组合体的体积.20.【考点】直线与圆锥曲线的关系;椭圆的标准方程.【分析】(1)由题意得b=1,由得a=,c=,b=1求得椭圆方程;(2)设直线l的方程为x=my﹣1,将直线方程代入椭圆方程,消去x,根据韦达定理代入三角形面积公式即可求得△AOB的面积,再换元配方即可得出结论.【解答】解:(1)由题意得b=1,由得a=,c=,b=1,∴椭圆E的方程为+y2=1;(2)依题意设直线l的方程为x=my﹣1,联立椭圆方程,得(m2+3)y2﹣2my﹣2=0,设A(x1,y1),B(x2,y2),则y1+y2=,y1y2=﹣,S△AOB=|y1﹣y2|=,设m2+3=t(t≥3),则S△AOB=,∵t≥3,∴0<≤,∴当=,即t=3时,△OAB面积取得最大值为,此时m=0.21.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)先求导,再分类讨论,根据导数和函数的单调性的关系即可求出a的取值范围,(2)当x>1时,f(x)<g(x)恒成立,转化为lnx﹣x<2ax﹣ax2,在(1,+∞)恒成立,构造函数h(x)=lnx﹣x,利用导数求出函数最值,得到ax2﹣2ax﹣1<0,在(1,+∞)上恒成立,再分类讨论,根据二次函数的性质即可求出a的取值范围.【解答】解:(1)∵f(x)=lnx﹣a2x2+ax,其定义域为(0,+∞),∴f′(x)=﹣2a2x+a==.①当a=0时,f′(x)=>0,∴f(x)在区间(0,+∞)上为增函数,不合题意.②当a>0时,f′(x)<0(x>0)等价于(2ax+1)(ax﹣1)>0(x>0),即x>.此时f(x)的单调递减区间为(,+∞).依题意,得解之,得a≥1.③当a<0时,f′(x)<0(x>0)等价于(2ax+1)(ax﹣1)>0(x>0),即x>﹣.此时f(x)的单调递减区间为(,+∞).依题意,得解之,得a≤﹣.综上所述,实数a的取值范围是(﹣∞,﹣]∪[1,+∞).(2)∵g(x)=(3a+1)x﹣(a2+a)x2,∴f(x)﹣g(x)=lnx﹣(2a+1)x+ax2<0,即lnx﹣x<2ax﹣ax2,在(1,+∞)恒成立,设h(x)=lnx﹣x,则h′(x)=﹣1<0恒成立,∴h(x)在(1,+∞)为减函数,∴h(x)<h(1)=﹣1,∴ax2﹣2ax﹣1<0,在(1,+∞)上恒成立,设φ(x)=ax2﹣2ax﹣1当a=0时,﹣1<0,符合题意,当a>0时,显然不满足题意,当a<0,由于对称轴x=1,则φ(1)<0,即a﹣2a﹣1<0,解得﹣1<a<0,综上所述,a的取值范围为(﹣1,0].[选修4-4:坐标系与参数方程]22.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)直线l的参数方程为(t为参数),消去参数t化为普通方程可得,进而得到倾斜角.由曲线C的极坐标方程得到:ρ2=2ρcos(θ﹣),利用ρ2=x2+y2,即可化为直角坐标方程.(2)将|PA|+|PB|转化为求|AB|来解答.【解答】解(1)直线的斜率为,直线l倾斜角为…由曲线C的极坐标方程得到:ρ2=2ρcos(θ﹣),利用ρ2=x2+y2,得到曲线C的直角坐标方程为(x﹣)2+(y﹣)2=1…(2)点P(0,)在直线l上且在圆C内部,所以|PA|+|PB|=|AB|…直线l的直角坐标方程为y=x+…所以圆心(,)到直线l的距离d=.所以|AB|=,即|PA|+|PB|=…[选修4-5:不等式选讲]23.【考点】一元二次不等式的应用;分段函数的解析式求法及其图象的作法;函数的最值及其几何意义.【分析】(1)根据绝对值的代数意义,去掉函数f(x)=|2x+1|﹣|x﹣2|中的绝对值符号,求解不等式f(x)>2,(2)由(1)得出函数f(x)的最小值,若∀x∈R,恒成立,只须即可,求出实数t的取值范围.【解答】解:(1)当,∴x<﹣5当,∴1<x<2当x≥2,x+3>2,x>﹣1,∴x≥2综上所述{x|x>1或x<﹣5}.(2)由(1)得,若∀x∈R,恒成立,则只需,综上所述.。

2018届河北省武邑中学高三上学期第四次调研考试数学(文)试题 word版(含答案)

2018届河北省武邑中学高三上学期第四次调研考试数学(文)试题 word版(含答案)

2018届河北省武邑中学高三上学期第四次调研考试数学(文)试题一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一 项是符合题目要求的。

1.已知R 是实数集,集合{3|1,|M x N y y x x ⎧⎫=<==+⎨⎬⎩⎭,则()R N C M = ( ) A .[]0,2 B .[)2,+∞ C .(],2-∞ D .[]2,32.为了有效管理学生迟到问题,某校专对各班迟到现象制定了相应的等级标准,其中D 级标准为“连续10天,每天迟到不超过7人”,根据过去10天1、2、3、4班的迟到数据,一定符合D 级标准的是( ) A .1班:总体平均值为3,中位数为4 B .2班:总体平均值为1,总体方差大于0 C . 3班:中位数为2,众数为3D . 4班:总体平均值为2,总体方差为33.已知函数f (x )=是定义域上的递减函数,则实数a 的取值范围是( )A . (,)B . (,]C . [,)D . (,]4.集合{x |x 2-ax -2=0,a ∈R }的真子集个数是( )A . 4B . 3C . 1D . 与a 的取值有关5.针对柱、锥、台、球,给出下列命题①如果一个几何体的三视图是完全相同的,则这个几何体是正方体; ②如果一个几何体的正视图和俯视图都是矩形,则这个几何体是长方体; ③如果一个几何体的三视图都是矩形,则这个几何体是长方体;④如果一个几何体的正视图和侧视图都是等腰梯形,则这个几何体是圆台. 其中正确的是( ) A . ①②B . ③C . ③④D . ①③6.已知,m n 为两条不同的直线,,αβ为两个不同的平面,给出下列4个命题: ①若,//,//m n m n αα⊂则 ②若,//,m n m n αα⊥⊥则 ③若,,//m m αβαβ⊥⊥则 ④若//,//,//m n m n αα则 其中真命题的序号为( )A .①②B .①④C .③④D .②③7.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≥≤--≥-0033023y y x y x , 表示的平面区域的面积是( ) A.32 B. 3 C. 2 D. 238.运行右边的程序框图,如果输入的[1,3]t ∈-,则输出s 属于( )A .[2,5]-B .[5,2]-C .[4,3]-D .[3,4]-9.已知,31:-<>x x p 或 a x q >:,若q 是p 的充分不必要条件,则a 的取值范围是( ) A .[1,+∞) B .(-∞,1] C .[-3,+∞) D .(-∞,-3] 10、已知各项均为正的等比数列{}n a ,公比为q ,前n 项和为n S ,则“1q >”是“26423S S S +>”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要条件11、已知函数()()32,f x ax ax x b a b R =+++∈,则下列图象一定不能表示()f x 的图象的是( )12已知定义在R 的函数()f x 是偶函数,且满足()()[]2202f x f x +=-,在,上的解析式为()21,011,12x x f x x x ⎧-≤<=⎨-≤≤⎩,过点()3,0-作斜率为k 的直线l ,若直线l 与函数()f x 的图象至少有4个公共点,则实数k 的取值范围是 A .11,33⎛⎫- ⎪⎝⎭B.1,63⎛-+ ⎝C.1,63⎛-- ⎝D.163⎛⎫- ⎪⎝⎭二、填空题(共4小题,每小题5.0分,共20分)13. 求函数y =sin 的单调区间为________.14. 曲线x y ln =在点(,1)M e 处的切线方程为______________.15.当0>x 时,不等式032>+-mx x 恒成立,则实数m 的取值范围是__________.16.若函数()2xf x e x a =--在R 上有两个零点,则实数a 的取值范围是__________.三、解答题(本题共6小题,共70分)17、(10分)已知函数()()2sin cos cos 20f x x x x ωωωω=⋅+>的最小正周期为π. (1)求ω的值; (2)求()f x 的单调递增区间.18.(本小题满分12分)已知数列{}n a 的前n 项和为()211,5,1n n n S a nS n S n n +=-+=+.(I)求证:数列n S n ⎧⎫⎨⎬⎩⎭为等差数列; (II)令2nn n b a =,求数列{}n b 的前n 项和n T . 19.(本小题满分12分)某省电视台为了解该省卫视一档成语类节目的收视情况,抽查东西两部各5个城市,得到观看该节目的人数(单位:千人)如下茎叶图所示,其中一个数字被污损. (I)求东部观众平均人数超过西部观众平均人数的概率.(II)节目的播出极大激发了观众随机统计了4位观众的周均学习成语知识的的时间y (单位:小时)与年龄x (单位:岁),并制作了对照表(如下表所示):由表中数据分析,x ,y 呈线性相关关系,试求线性回归方程 y bxa =+ ,并预测年龄为60岁观众周均学习成语知识的时间.参考数据:线性回归方程中 ,ba 的最小二乘估计分别是()1221,ni ii ni i x y nxyb ay bx x n x==-==--∑∑ . 20.(本小题满分12分)在ABC ∆中,内角A B C ,,的对边分别为a b c ,,,已知cos 2cos 2cos A C c aB b--=. (I )求sin sin C A 的值; (II )若1cos 24B b ==,,求ABC ∆的面积S . 21.(本小题满分12分)已知函数ln ()()x kf x k R x x=-∈的最大值为()h k . (I )若1k ≠,试比较()h k 与21k e的大小;(II )是否存在非零实数a ,使得()kh k ae>对k R ∈恒成立,若存在,求a 的取值范围;若不存在,说明理由.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程(本小题满分10分) 在直角坐标系xOy 中,圆1C 和2C 的参数方程分别是22cos 2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数)和cos 1sin x y ββ=⎧⎨=+⎩(β为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求圆1C 和2C 的极坐标方程;(Ⅱ)射线OM :θα=与圆1C 交于点O 、P ,与圆2C 交于点O 、Q ,求||||OP OQ ⋅ 的最大值. 23.[选修4—5:不等式选讲](10分)已知函数(),f x x a a R =-∈(I)当1a =时,求()11f x x ≥++的解集;(II)若不等式()30f x x +≤的解集包含{}1x x ≤-,求a 的取值范围.四调数学(文)试题答案1. D2. D3. B4. B5. B6. D7. A8. D9. A 10. A 11. D 12. C13.(k ∈Z).14.0=-ey x 15.)32,(-∞ 16.),2ln 22(+∞-17、解:(1)由()2sin cos cos 2f x x x x ωωω=⋅+ =sin 2cos 2x x ωω+24x πω⎛⎫+ ⎪⎝⎭22T ππω∴==得1ω=(2)由(1)的()24f x x π⎛⎫=+ ⎪⎝⎭依题可得()222242k x k k Z πππππ-+≤+≤+∈得()388k x k k Z ππππ-+≤≤+∈ ()f x ∴的单调递增区间为()3,88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦18. 解:⑴由()n n S n nS n n +=+-+211得111=-++nS n S nn ……………………………………3分 又511=S ,所以数列⎭⎬⎫⎩⎨⎧n S n 是首项为5,公差为1的等差数列…………………………4分 ⑵由⑴可知()415+=-+=n n nS n所以n n S n 42+=…………………………………5分 当2≥n 时,()()321414221+=----+=-=-n n n n n S S a n n n又1a 也符合上式,所以()*32N n n a n ∈+=……………………………………………6分所以()nn n b 232+= ……………………………………………………7分所以()nn n T 23229272532++⋯⋯+⋅+⋅+⋅=()()13322322122927252+++++⋯⋯+⋅+⋅+⋅=n n n n n T所以()()()22122221023211431-+=+⋯⋯++--+=+++n n n n n n T…………………………12分。

河北省高三上学期第四次调研理数试题 Word版含解析

河北省高三上学期第四次调研理数试题 Word版含解析

河北省武邑中学2017届高三上学期第四次调研理数试题一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合{}M=1x x <,{}2,x N y y x M ==∈,则集合()R C M N 等于( )A .1,2⎛⎤-∞ ⎥⎝⎦B .1,12⎛⎫⎪⎝⎭C .[)1,1,2⎛⎤-∞+∞ ⎥⎝⎦D .[)1,+∞【答案】C考点:集合的运算.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.解指数或对数不等式要注意底数对单调性的影响.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目. 2.已知复数()41biz b R i+=∈-的实部为1-,则复数z b -在复平面上对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】B 【解析】 试题分析:由()()()()(4144411)12bi i b b ibi z i i i ++-+++--+===的实部为1-,得412b -=-,得6b =.∴15z i =-+,则75z b i -=-+,在复平面上对应的点的坐标为75-(,),在第二象限.故选:B .考点:复数代数形式的乘除运算.3.已知公差不为0的等差数列{}n a 满足1a ,3a ,4a 成等比数列,n S 为数列{}n a 的前n 和,则3253S S S S --的值为( )A .2B .3C .2-D .3-【答案】A 【解析】试题分析:设等差数列的公差为d ,首项为1a ,所以312a a d =+,413a a d =+.因为134a a a 、、 成等比数列,所以211123a d a a d +=+()(),解得:14a d =-.所以3215312 227S S a d S S a d-+==-+,故选A. 考点:等差数列的性质;等比数列的性质. 4.函数23y x =的图象大致形状是( )A B C D . 【答案】B考点:函数的图象.5.若抛物线22y x =上一点M 到它的焦点F 的距离为32,O 为坐标原点,则MFO ∆的面积为( ) ABC .12D .14【答案】B试题分析:∵抛物线22y x =上一点M 到它的焦点F 的距离为32,∴1322x +=,∴1x =,∴1x =时,y =MFO ∆的面积为1122⨯= B. 考点:抛物线的简单性质. 6.已知命题:p x R ∃∈,31cos 210x -⎛⎫≤ ⎪⎝⎭,若()p q ⌝∧是假命题,则命题q 可以是( )A .若20m -≤<,则函数()2f x x mx =-+区间()4,1--上单调递增B .“14x ≤≤”是“5log 1x ≤”的充分不必要条件C .3x π=是函数()cos 2f x x x =-图象的一条对称轴D .若1,62a ⎡⎫∈⎪⎢⎣⎭,则函数()21ln 2f x x a x =-在区间()1,3上有极值【答案】D考点:命题的真假判断与应用.7.以(),1a 为圆心,且与两条直线240x y -+=及260x y --=同时相切的圆的标准方程为( )A .()2215x y +-= B .()()22115x y +++= C .()2215x y -+=D .()()22115x y -+-=【答案】D试题分析:由题意,圆心在直线210x y --=上,1a (,)代入可得1a =,即圆心为11(,),半径为r ==22115x y -+-=()(),故选:D. 考点:圆的标准方程.8.向量()cos 25,sin 25a =︒︒,()sin 20,cos 20b =︒︒,若t 是实数,且u a tb =+,则u 的最小值为( ) AB .1CD .12【答案】C 【解析】试题分析:由题设 25202520u a tb cos tsin sin tcos +=︒+︒︒+︒=(,),∴(25||cos u ===t是实数,由二次函数的性质知当t =时,u取到最小值,最小值为;故选C. 考点:平面向量的坐标表示、模、夹角;三角函数的最值.9.设1m >,在约束条件1y xy mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( ) A .(1,1+ B .()1++∞C .()1,3D .()3,+∞【答案】A考点:简单线性规划的应用.10.将函数()2cos 2f x x =的图象向右平移6π个单位后得到函数()g x 的图象,若函数()g x 在区间0,3a ⎡⎤⎢⎥⎣⎦和72,6a π⎡⎤⎢⎥⎣⎦上均单调递增,则实数a 的取值范围是( )A .,32ππ⎡⎤⎢⎥⎣⎦B .,62ππ⎡⎤⎢⎥⎣⎦C .,63ππ⎡⎤⎢⎥⎣⎦D .3,48ππ⎡⎤⎢⎥⎣⎦【答案】A 【解析】试题分析:将函数()2cos 2f x x =的图象向右平移6π个单位后得到函数()g x 的图象,得 222263g x cos x cos x ππ=-=-()()(),由2223k x k ππππ-+≤-≤,得 36k x k k Z ππππ-+≤≤+∈,.当0k =时,函数的增区间为[6]3ππ-,,当1k =时,函数的增区间为]26[37ππ,.要使函数()g x 在区间[0]3a ,和72,6a π⎡⎤⎢⎥⎣⎦上均单调递增,则03627326a a πππ⎧⎪≤⎪≤⎪⎨⎪⎩<<,解得[]32a ππ∈,.故选:A.考点:函数()sin y A x ωϕ=+的图象变换.【方法点睛】本题考查三角函数的图象变换,考查了()sin y A x ωϕ=+型函数的性质,是中档题;三点提醒:(1)要弄清楚是平移哪个函数的图象,得到哪个函数的图象;(2)要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数;(3)由y Asin x ω=的图象得到y Asin x ωϕ=+()的图象时,需平移的单位数应为ϕω,而不是||ϕ.11.设正实数x ,y ,z 满足22340x xy y z -+-=,则当xyz取得最大值时,212x y z +-的最大值为( ) A .0 B .1C .94D .3【答案】B考点:基本不等式.【易错点睛】本题主要考查了基本不等式.基本不等式求最值应注意的问题:(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. 12.已知定义在R 上的奇函数()y f x =满足()'2f x <,则不等式()()11ln 223x f x x e x ++-+->+的解集为( )A .()2,1--B .()1,-+∞C .()1,2-D .()2,+∞【答案】A考点:函数单调性与导数的关系.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分.)13.已知()1201x m dx +=⎰,则函数()()2log 2m f x x x =-的单调递减区间是______.【答案】(]0,1 【解析】 试题分析:∵()1201x m dx +=⎰,∴310113x mx +=(),解得:23m =,故()()()2223log 2log 2m f x x x x x =-=-,令()()222g x x x x x =-=-,令0g x ()>,解得:x 0<<2,而()g x 在对称轴1x =,故()g x 在(]0,1递增,故()g x 在()1,2递减,故答案为:(]0,1.考点:函数的单调性及单调区间. 14.已知()2cos2sin 2sin 15a a a +-=,,2a ππ⎛⎫∈ ⎪⎝⎭,则tan 4a π⎛⎫+ ⎪⎝⎭的值为______.【答案】17【解析】试题分析:由()2c o s 2s i n 2s i n 15a a a +-=即22212sin 2sin sin 5ααα-+-=,得3s i n 5α=; 且,2a ππ⎛⎫∈ ⎪⎝⎭,4cos 5α=,则3tan 4α=,故tan 11tan 41tan 7a παα+⎛⎫+== ⎪-⎝⎭,故答案为17.考点:二倍角的余弦;两角和的正切.15.已知某棱锥的三视图如图所示,俯视图为正方形及一条对角线,根据图中所给的数据,该棱锥外接球的体积是_____.考点:由三视图求面积、体积.【方法点晴】本题考查了由三视图求几何体的外接球的体积,解题的关键是根据三视图判断几何体的结构特征及相关几何量的数据;三视图是新课标新增内容之一,是新课程高考重点考查的内容.解答此类问题,必须熟练掌握三视图的概念,弄清视图之间的数量关系:正视图、俯视图之间长相等,左视图、俯视图之间宽相等,正视图、左视图之间高相等(正俯长对正,正左高平齐,左俯宽相等),要善于将三视图还原成空间几何体,熟记各类几何体的表面积和体积公式,正确选用,准确计算.16.已知双曲线()2222:10,0x y C a b a b==>>的右顶点为A ,O 为坐标原点,以A 为圆心的圆与双曲线C 的某渐近线交于两点P ,Q .若60PAQ ∠=︒,且3OQ OP =,则双曲线C 的离心率为____.考点:双曲线的简单性质.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)已知数列{}n a 的前n 项和为n S ,且()12n n S n λ=+-⋅,又数列{}n b 满足n n a b n ⋅=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)当λ为何值时,数列{}n b 是等比数列?并求此时数列{}n b 的前n 项和n T 的取值范围. 【答案】(Ⅰ)()()11,22n n n a n n λ-=⎧⎪=⎨⋅≥⎪⎩;(Ⅱ)[)1,2. 【解析】试题分析:(Ⅰ)由()12n n S n λ=+-⋅,当1n =时,11a S λ==;当2n ≥时,1n n n a S S -=-,即可得出;(Ⅱ)由•n n a b n =.可得11121()2n n n b n λ-=≥⎧⎪⎪⎨⎪⎪⎩,=,,利用等比数列的定义及其求和公式即可得.试题解析:(Ⅰ)由()12n n S n λ=+-⋅,当1n =时,11a S λ==;当2n ≥时,()()11112222n n n n n n a S S n n n ---=-=-⋅--⋅=⋅, 故数列{}n a 的通项公式为()()11,22n n n a n n λ-=⎧⎪=⎨⋅≥⎪⎩考点:数列的通项公式;数列求和.【思路点晴】本题主要考查的是等比数列的定义和等比数列的通项公式以及等比数列的前n 项和公式,注重对基础的考查,属于容易题;解题中,在利用1--=n n n S S a 的同时一定要注意1=n 和2≥n 两种情况,否则容易出错;求等比数列的前n 项和,先求出其首项1b 和公比q ,在利用等比数列的前n 项和公式求解,利用公式的同时应考虑到1=q 的情形是否会出现.18.(本小题满分12分在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且()()cos sin sin cos 0A B c A A C +-+=,b = (Ⅰ)求角B 的大小;(Ⅱ)若ABC ∆,求sin sin A C +的值. 【答案】(Ⅰ) 3B π=;(Ⅱ)32. 【解析】试题分析:(Ⅰ)利用两角和与差的三角函数以及三角形的内角和,转化求解B 的正切函数值,即可得到结果;(Ⅱ)利用三角形的面积求出ac ,利用余弦定理求出a c +,利用正弦定理求解即可.试题解析:(Ⅰ)由()()cos sin sin cos 0A B c A A C +-+=,得()cos sin sin cos 0A B c A B --=,………………1分 即()sin cos A B c B +=,sin cos C c B =,sin cos CB c=,………………3分因为sin sin C Bc b =cos B =,即tan B =,3B π=.………………6分(Ⅱ)由1sin 2S ac B ==,得2ac =,………………8分由b =()2222222cos 3a c ac B a c ac a c ac =+-=+-=+-,所以3a c +=………………10分 所以()sin 3sin sin 2B AC a c b +=+=………………12分 考点:正弦定理;余弦定理的应用;两角和与差的正弦函数.19.(本小题满分12分)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆'O 的直径,FB 是圆台的一条母线.(Ⅰ)已知G ,H 分别为EC ,FB 的中点,求证://GH 平面ABC ;(Ⅱ)已知12EF FB AC ===AB BC =,求二面角F BC A --的余弦值【答案】(Ⅰ)证明见解析;(Ⅱ.试题解析:(Ⅰ)连结FC ,取FC 的中点M ,连结GM ,HM ,//GM EF 、EF 在上底面内,GM 不在上底面内,//GM ∴上底面,………………2分//GM ∴平面ABC ,又MH//BC ,BC ⊂平面ABC ,MH ⊄平面ABC , H //M ∴平面ABC ,………………4分所以平面GHM//平面ABC ,由CH ⊂平面GHM ,GH//∴平面ABC .………………5分考点:直线与平面平行的判定;二面角的平面及求法.【方法点晴】本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用;直线与平面平行的判定定理的实质是:对于平面外的一条直线,只需在平面内找到一条直线和这条直线平行,就可判定这条直线必和这个平面平行.即由线线平行得到线面平行,向量法:两平面所成的角的大小与分别垂直于这平面的两向量所成的角(或补角)相等.20.(本小题满分12分)已知函数()21ln 2f x x a x =-. (Ⅰ)若函数()f x 的图像在()()1,1f 处的切线不过第四象限且不过原点,求a 的取值范围; (Ⅱ)设()()2g x f x x =+,若()g x 在[]1,e 上不单调且仅在x e =处取得最大值,求a 的取值范围.【答案】(Ⅰ) 1,12⎛⎤⎥⎝⎦;(Ⅱ) 253,222e e ⎛⎫+- ⎪⎝⎭.【解析】试题分析:(Ⅰ)求出切线方程为()112y a x a =-+-,由切线不过第四象限且不过原点即斜率大于0,在y 轴上的截距大于0得解;(Ⅱ)可求得220x x a g x x x+-'=()(>),设22h x x x a =+-()(0x >),利用g x ()在[1]e ,上不单调,可得10h h e ()()<,从而可求得232a e e +<<,再利用条件g x ()仅在x e =处取得最大值,可求得1g e g ()>(),两者联立即可求得a 的范围. 试题解析:(Ⅰ)()'a f x x x =-,()'11f a =-,()112f =………………2分 所以函数()f x 图像在()()1,1f 的切线方程为()()1112y a x -=--,即()112y a x a =-+-,……………3分 由题意知10a -≥,102a ->,a 的取值范围为1,12⎛⎤⎥⎝⎦,………………5分考点:利用导数研究函数在某点处的切线方程;利用导数求函数闭区间上的最值. 【思路点晴】本题考查利用导数研究函数在某点处的切线方程,考查利用导数求闭区间上函数的最值,考查构造函数与转化思想的综合运用,属于难题;利用导数来求曲线某点的切线方程是高考中的一个常考点,它既可以考查学生求导能力,也考察了学生对导数意义的理解,还考察直线方程的求法,因为包含了几个比较重要的基本点,所以在高考出题时备受青睐.我们在解答这类题的时候关键找好两点,第一找到切线的斜率;第二告诉的这点其实也就是直线上的一个点,在知道斜率的情况下可以用点斜式把直线方程求出来.21.(本小题满分12分)已知椭圆()222210x y a b a b+=>>的离心率2e =,以上顶点和右焦点为直径端点的圆与直线20x y +-=相切. (Ⅰ)求椭圆的标准方程;(Ⅱ)对于直线:l y x m =+和点()0,3Q ,是否椭圆C 上存在不同的两点A 与B 关于直线l 对称,且332QA QB ⋅=,若存在实数m 的值,若不存在,说明理由.【答案】(Ⅰ) 2212x y +=;(Ⅱ)存在,13.试题解析:(Ⅰ)由椭圆的离心率e =得2222212c c a b c ==+,得b c =………………1分 上顶点为()0,b ,右焦点为(),0b ,以上顶点和右焦点为直径端点的圆的方程为22222222b b a b x y ⎛⎫⎛⎫⎛⎫-+-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以=,2b b -=,1b c ==,a 3分 椭圆的标准方程为2212x y +=………………4分(Ⅱ)由题意设()11,A x y ,()22,B x y ,直线AB 方程为:y x n =-+.联立2212y x n x y =-+⎧⎪⎨+=⎪⎩消y 整理可得:2234220x nx n -+-=,………………5分 由()()222412222480n n n ∆=---=->,解得n <<6分1243nx x +=,212223n x x -=, 设直线AB 之中点为()00,P x y ,则120223x x nx +==,………………7分 由点P 在直线AB 上得:0233n n y n =-+=, 又点P 在直线l 上,233n nm =+,所以3n m ⎛=-∈ ⎝⎭……①………………9分 又()11,3QA x y =-,()22,3QB x y =-,()()11223232,3,333QA QB x y x y ∴⋅-=-⋅--()()()()221212323323963331102x x y y n n m m m m =+---=--=+-=-+= 解得:13m =或1m =-……②………………11分综合①②,m 的值为13.………………12分考点:椭圆的标准方程;直线与圆锥曲线的综合. 22.(本小题满分12分)()()21ln 2af x x a x x =-+-+.(Ⅰ)若12a =-,求函数()f x 的单调区间;(Ⅱ)若1a >,求证:()()3213a a f x e --<【答案】(Ⅰ) 单调递增区间为:()0,1,()2,+∞,单调递减区间为:()1,2;(Ⅱ)证明见解析.试题解析:(Ⅰ)()213ln 42f x x x x =-+,0x >, 则()()()2'211313222x x x x f x x x x x---+=-+==,………………1分 ()'0f x >的解集为()0,1,()2,+∞:()'0f x <的解集为()1,2,………………2分∴函数()f x 的单调递增区间为:()0,1,()2,+∞,函数()f x 的单调递减区间为:()1,2:………………4分 (Ⅱ)证明:1a >,故由()()()'11ax x f x x-+-=可知,在()0,1上()'0f x >,函数()f x 单调递增,在()()'1,0f x +∞<,()f x 单调递减,()f x ∴在1x =时取极大值,并且也是最大值,即()max 112f x a =-………………7分又210a ->,()()()1212112a f x a a ⎛⎫∴-≤-- ⎪⎝⎭,………………8分设()()312112a a a g a e -⎛⎫--⎪⎝⎭=,()()()()2'3329712722e a a a a a g a e e ---+--=-=-,………………9分()g a ∴的单调增区间为72,2⎛⎫ ⎪⎝⎭,单调减区间为7,2⎛⎫+∞ ⎪⎝⎭,∴()1236742g a g e ⨯⎛⎫≤== ⎪⎝⎭,………………10分 23e >,933<=,()3g a ∴<,30a e ->, ()()3213a a f x e -∴-<………………12分考点:利用导数研究函数的单调性;利用导数研究函数在闭区间上的最值.。

河北省武邑中学2018届高三下学期第四次模拟考试文数试题(含答案)

河北省武邑中学2018届高三下学期第四次模拟考试文数试题(含答案)

河北省武邑中学2018届高三下学期第四次模拟考试数学(文)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}12,A x x x Z =+≤∈,{}2,11B y y x x ==-≤≤,则A B ⋂=( ) A .(],1-∞ B .[]1,1- C.{}0,1 D .{}1,0,1- 2.已知数列{}n a 为等差数列,且17132a a a π++=,则7tan a =( ) A .3- B .3 C.3± D .33-3.圆心在y 轴上,半径为1,且过点()1,3的圆的方程是( )A .()2221x y +-= B .()2221x y ++= C. ()2231x y +-= D .()2231x y ++= 4.已知命题:p “a b >”是“22a b >”的充要条件;:,ln x q x R e x ∃∈<,则( ) A.p q ⌝∨为真命题B.p q ∧⌝为假命题C.p q ∧为真命题D.p q ∨为真命题5.若命题:0,,sin 2p x x x π⎛⎫∀∈< ⎪⎝⎭,则p ⌝为( )A .0,,sin 2x x x π⎛⎫∀∈≥ ⎪⎝⎭B .0,,sin 2x x x π⎛⎫∀∉≥ ⎪⎝⎭C. 0000,,sin 2x x x π⎛⎫∃∈≥ ⎪⎝⎭ D .0000,,sin 2x x x π⎛⎫∃∈≤ ⎪⎝⎭6.ABC ∆外接圆的半径等于1,其圆心O 满足()1,2AO AB AC AB AC =+=,则向量BA 在BC 方向上的投影等于( ) A .32-B .32 C.32D .37.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的外接球体积为( )A .4πB .43π C.43π D .83π8.为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校400名授课教师中抽取20名,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如图.据此可估计该校上学期400名教师中,使用多媒体进行教学次数在[)16,30内的人数为( )A .100B .160 C.200 D .2809.设12,F F 是双曲线()22220,01x y a b a b -=>>的两个焦点,点P 在双曲线上,若120PF PF ⋅=且()22122PF PF ac c a b ⋅==+,则双曲线的离心率为( )A .2B .132+ C. 152+ D .122+ 10.某几何体的三视图如图所示,其正视图中的曲线部分为半圆,则该几何体的表面积为( )A .()210624cm π++ B .()216624cm π++ C. ()2124cm π+ D .()2224cm π+11.有人发现,多看手机容易使人变冷漠,下表是一个调査机构对此现象的调查结果: 附:()()()()()22n ad bc K a b c d a c b d -=++++附表:则认为多看手机与人冷漠有关系的把握大约为( )A .99%B .97.5% C. 95% D .90%12.已知函数()()23,33,3x x f x x x ⎧-≤⎪=⎨-->⎪⎩,函数()()3g x b f x =--,其中b R ∈,若函数()()y f x g x =-恰有4个零点,则实数b 的取值范围是( )A .11,4⎛⎫-+∞ ⎪⎝⎭B .113,4⎛⎫-- ⎪⎝⎭ C. 11,4⎛⎫-∞ ⎪⎝⎭ D .()3,0-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设正项等差数列{}n a 的前n 项和为n S ,若20176051S =,则4201414a a +的最小值为 . 14.ABC ∆的两边长为2,3,其夹角的余弦为13,则其外接圆半径为 .15.已知双曲线()22220,01x y a b a b -=>>的右焦点为F ,焦距为8,左顶点为A ,在y 轴上有一点()0,B b ,满足2BA BF a ⋅=,则该双曲线的离心率的值为 .16.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知中锐角ABC ∆中内角,,A B C 所对边的边长分别为,,a b c ,满足226cos a b ab C +=,且2sin 23sin sin C A B =.(1)求角C 的值;(2)设函数()()sin cos 06f x x x πωωω⎛⎫=++> ⎪⎝⎭,且()f x 图象上相邻两最高点间的距离为π,求()f A 的取值范围.18.如图,在多面体ABCDEF 中,ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF DE =,点M 为棱AE 的中点.(1)求证:平面//BMD 平面EFC ;(2)若1,2AB BF ==,求三棱锥A CEF -的体积.19. 某机构为了解某地区中学生在校月消费情况,随机抽取了 100名中学生进行调查.如图是根据调査的结果绘制的学生在校月消费金额的频率分布直方图.已知[)[)[)350,450,450,550,550,650三个金额段的学生人数成等差数列,将月消费金额不低于550元的学生称为“高消费群”.(1)求,m n 的值,并求这100名学生月消费金额的样本平均数x (同一组中的数据用该组区间的中点值作代表);(2)根据已知条件完成下面22⨯列联表,并判断能否有90%的把握认为“高消费群”与性别有关?(参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)20.已知A 是抛物线24y x =上的一点,以点A 和点()2,0B 为直径两端点的圆C 交直线1x =于,M N 两点,直线l 与AB 平行,且直线l 交抛物线于,P Q 两点.(1)求线段MN 的长;(2) 若3OP OQ ⋅=-,且直线PQ 与圆C 相交所得弦长与MN 相等,求直线l 的方程. 21.已知函数()()ln ,f x x x g x x a ==+.(1)设()()()h x f x g x =-,求函数()y h x =的单调区间; (2)若10a -<<,函数()()()x g x M x f x ⋅=,试判断是否存在()01,x ∈+∞,使得0x 为函数()M x 的极小值点.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为4cos 24sin x y αα=+⎧⎨=⎩(α为参数),以O 为极点,x 轴的非负半轴为极轴的极坐标系中,直线l 的极坐标方程为()6R πθρ=∈.(1)求曲线C 的极坐标方程;(2)设直线l 与曲线C 相交于,A B 两点,求AB 的值. 23.选修4-5:不等式选讲设函数()()2210f x x a x a =-++>,()2g x x =+. (1)当1a =时,求不等式()()f x g x ≤的解集; (2)若()()f x g x ≥恒成立,求实数a 的取值范围.试卷答案一、选择题1-5: CACDC 6-10: CBBCA 11、12:AB二、填空题13.()()420144201442014141141354662a a a a a a ⎛⎫+=++=+= ⎪⎝⎭14.928 15. 216.2425三、解答题17.解:(1)因为226cos a b ab C +=,由余弦定理知2222cos a b c ab C +=+,所以2cos 4c C ab=又因为2sin 23sin sin C A B =,则由正弦定理得:223c ab =, 所以2233cos 442c ab C ab ab ===,所以6C π=. (2)()sin cos 3sin 63f x x x x ππωωω⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭由已知2,2ππωω==,则()3sin 23f x x π⎛⎫=+ ⎪⎝⎭因为6C π=,56B A π=-,由于0,022A B ππ<<<<,所以32A ππ<<, 所以4032A ππ<2+<,所以()302f A -<<. 18. 解:(1)证明:设AC 与BD 交于点N ,则N 为AC 的中点, ∴//MN EC .∵MN ⊄平面EFC ,EC ⊂平面EFC , ∴//MN 平面EFC .∵BF ⊥平面ABCD ,DE ⊥平面ABCD ,且BF DE =, ∴//BF DE ,∴BDEF 为平行四边形,∴//BD EF . ∵BD ⊄平面EFC , EF ⊂平面EFC , ∴//BD 平面EFC . 又∵MN BD N ⋂=, ∴平面//BDM 平面EFC .(2)连接,EN FN .在正方形ABCD 中,AC BD ⊥, 又∵BF ⊥平面ABCD ,∴BF AC ⊥. ∵BF BD B ⋂=,∴平面BDEF ,且垂足为N ,∴11122223323A CEF NEF V AC S -∆=⋅⋅=⨯⨯⨯⨯=,∴三棱锥A CEF -的体积为23.19.解:(1)由题意知()1000.6m n +=且20.0015m n =+ 解得0.0025,0.0035m n ==所求平均数为3000.154000.355000.256000.157000.1470x =⨯+⨯+⨯+⨯+⨯=(元)(2)根据频率分布直方图得到如下22⨯列联表根据上表数据代入公式可得()22100154035101001.332.7062575505075K ⨯⨯-⨯==≈<⨯⨯⨯ 所以没有90%的把握认为“高消费群”与性别有关.20.解:(1)设200,4y A y ⎛⎫ ⎪⎝⎭,圆C 的方程()()200204y x x y y y ⎛⎫--+-= ⎪⎝⎭, 令1x =,得2200104y y y y -+-=,所以200,14M N M N y y y y y y +==-,()24M N M N M NMN y y y y y y =-=+-22004124y y ⎛⎫=--= ⎪⎝⎭.(2)设直线l 的方程为x my n =+,()()1122,,,P x y Q x y ,则 由24x my ny x=+⎧⎨=⎩消去x ,得2440y my n --=, 12124,4y y m y y n +==-,因为3OP OQ ⋅=-,所以12123x x y y +=-,则()21212316y y y y +=-,所以2430n n -+=,解得1n =或3n =, 当1n =或3n =时,点()2,0B 到直线l 的距离为211d m=+,因为圆心C 到直线l 的距离等于到直线1x =的距离,所以202181y m=+,又20024y m y -=,消去m 得4200646416y y +⋅=,求得208y =,此时20024y m y -=,直线l 的方程为3x =, 综上,直线l 的方程为1x =或3x =.21.解:(1)由题意可知:()ln h x x x x a =--,其定义域为()0,+∞,则()ln 11ln h x x x '=+-=.令()0h x '>,得1x >,令()0h x '<,得01x <<.故函数()y h x =的单调递增区间为()1,+∞,单调递减区间为()0,1.(2)由已知有()ln x aM x x+=,对于()1,x ∈+∞,有()()2ln 1ln a x x M x x --'=. 令()()()ln 11,a q x x x x =--∈+∞,则()221a x a q x x x x+'=+=. 令()0q x '>,有x a >-.而10a -<<,所以 01a <-<,故当 1x >时,()0q x '>.∴函数()q x 在区间()1,+∞上单调递增.注意到()110q a =--<,()0aq e e=->.故存在;《:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北武邑中学2017-2018学年上学期四调考试数学(文)试题一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一 项是符合题目要求的。

1.已知R 是实数集,集合{3|1,|M x N y y x x ⎧⎫=<==+⎨⎬⎩⎭,则()R N C M = ( )A .[]0,2B .[)2,+∞C .(],2-∞D .[]2,32.为了有效管理学生迟到问题,某校专对各班迟到现象制定了相应的等级标准,其中D 级标准为“连续10天,每天迟到不超过7人”,根据过去10天1、2、3、4班的迟到数据,一定符合D 级标准的是( )A .1班:总体平均值为3,中位数为4B .2班:总体平均值为1,总体方差大于0C . 3班:中位数为2,众数为3D . 4班:总体平均值为2,总体方差为33.已知函数f (x )=是定义域上的递减函数,则实数a 的取值范围是( )A . (,)B . (,]C . [,)D . (,]4.集合{x |x 2-ax -2=0,a ∈R }的真子集个数是( )A . 4B . 3C . 1D . 与a的取值有关5.针对柱、锥、台、球,给出下列命题①如果一个几何体的三视图是完全相同的,则这个几何体是正方体; ②如果一个几何体的正视图和俯视图都是矩形,则这个几何体是长方体; ③如果一个几何体的三视图都是矩形,则这个几何体是长方体;④如果一个几何体的正视图和侧视图都是等腰梯形,则这个几何体是圆台.其中正确的是( ) A . ①②B . ③C . ③④D . ①③6.已知,m n 为两条不同的直线,,αβ为两个不同的平面,给出下列4个命题: ①若,//,//m n m n αα⊂则 ②若,//,m n m n αα⊥⊥则③若,,//m m αβαβ⊥⊥则 ④若//,//,//m n m n αα则 其中真命题的序号为( )A .①②B .①④C .③④D .②③7.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≥≤--≥-0033023y y x y x , 表示的平面区域的面积是( ) A.32 B. 3 C. 2 D. 238.运行右边的程序框图,如果输入的[1,3]t ∈-,则输出s 属于( )A .[2,5]-B .[5,2]-C .[4,3]-D .[3,4]-9.已知,31:-<>x x p 或 a x q >:,若q 是p 的充分不必要条件,则a 的取值范围是( ) A .[1,+∞) B .(-∞,1] C .[-3,+∞) D .(-∞,-3] 10、已知各项均为正的等比数列{}n a ,公比为q ,前n 项和为n S ,则“1q >”是“26423S S S +>”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要条件11、已知函数()()32,f x ax ax x b a b R =+++∈,则下列图象一定不能表示()f x 的图象的是( )12已知定义在R 的函数()f x 是偶函数,且满足()()[]2202f x f x +=-,在,上的解析式为()21,011,12x x f x x x ⎧-≤<=⎨-≤≤⎩,过点()3,0-作斜率为k 的直线l ,若直线l 与函数()f x 的图象至少有4个公共点,则实数k 的取值范围是 A .11,33⎛⎫- ⎪⎝⎭B.1,63⎛-+ ⎝ C.1,63⎛-- ⎝D.163⎛⎫- ⎪⎝⎭二、填空题(共4小题,每小题5.0分,共20分)13. 求函数y =sin 的单调区间为________.14. 曲线x y ln =在点(,1)M e 处的切线方程为______________.15.当0>x 时,不等式032>+-mx x 恒成立,则实数m 的取值范围是__________.16.若函数()2xf x e x a =--在R 上有两个零点,则实数a 的取值范围是__________.三、解答题(本题共6小题,共70分)17、(10分)已知函数()()2sin cos cos20f x x x x ωωωω=⋅+>的最小正周期为π. (1)求ω的值; (2)求()f x 的单调递增区间.18.(本小题满分12分)已知数列{}n a 的前n 项和为()211,5,1n n n S a nS n S n n +=-+=+.(I)求证:数列n S n ⎧⎫⎨⎬⎩⎭为等差数列; (II)令2nn n b a =,求数列{}n b 的前n 项和n T . 19.(本小题满分12分)某省电视台为了解该省卫视一档成语类节目的收视情况,抽查东西两部各5个城市,得到观看该节目的人数(单位:千人)如下茎叶图所示,其中一个数字被污损.(I)求东部观众平均人数超过西部观众平均人数的概率.(II)节目的播出极大激发了观众随机统计了4位观众的周均学习成语知识的的时间y (单位:小时)与年龄x (单位:岁),并制作了对照表(如下表所示):由表中数据分析,x ,y 呈线性相关关系,试求线性回归方程 y bxa =+ ,并预测年龄为60岁观众周均学习成语知识的时间.参考数据:线性回归方程中 ,ba 的最小二乘估计分别是()1221,ni ii nii x y nxyb ay bx xn x==-==--∑∑ .20.(本小题满分12分)在ABC ∆中,内角A B C ,,的对边分别为a b c ,,,已知cos 2cos 2cos A C c aB b--=.(I )求sin sin C A 的值; (II )若1cos 24B b ==,,求ABC ∆的面积S . 21.(本小题满分12分)已知函数ln ()()x kf x k R x x=-∈的最大值为()h k . (I )若1k ≠,试比较()h k 与21k e的大小;(II )是否存在非零实数a ,使得()kh k ae>对k R ∈恒成立,若存在,求a 的取值范围;若不存在,说明理由.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22. 选修4-4:坐标系与参数方程(本小题满分10分) 在直角坐标系xOy 中,圆1C 和2C 的参数方程分别是22cos 2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数)和cos 1sin x y ββ=⎧⎨=+⎩(β为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求圆1C 和2C 的极坐标方程;(Ⅱ)射线OM :θα=与圆1C 交于点O 、P ,与圆2C 交于点O 、Q ,求||||O P O Q ⋅ 的最大值.23.[选修4—5:不等式选讲](10分)已知函数(),f x x a a R =-∈(I)当1a =时,求()11f x x ≥++的解集;(II)若不等式()30f x x +≤的解集包含{}1x x ≤-,求a 的取值范围.四调数学(文)试题答案1. D2. D3. B4. B5. B6. D7. A8. D9. A 10. A 11. D 12. C13.(k ∈Z).14.0=-ey x 15.)32,(-∞16.),2ln 22(+∞-17、解:(1)由()2sin cos cos2f x x x x ωωω=⋅+ =sin 2cos 2x x ωω+24x πω⎛⎫+ ⎪⎝⎭22T ππω∴==得1ω=(2)由(1)的()24f x x π⎛⎫=+ ⎪⎝⎭依题可得()222242k x k k Z πππππ-+≤+≤+∈得()388k x k k Z ππππ-+≤≤+∈ ()f x ∴的单调递增区间为()3,88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦18. 解:⑴由()n n S n nS n n +=+-+211得111=-++nS n S nn ……………………………………3分 又511=S ,所以数列⎭⎬⎫⎩⎨⎧n S n 是首项为5,公差为1的等差数列…………………………4分 ⑵由⑴可知()415+=-+=n n nS n所以n n S n 42+=…………………………………5分 当2≥n 时,()()321414221+=----+=-=-n n n n n S S a n n n又1a 也符合上式,所以()*32N n n a n ∈+=……………………………………………6分 所以()n n n b 232+= ……………………………………………………7分 所以()nn n T 23229272532++⋯⋯+⋅+⋅+⋅=()()13322322122927252+++++⋯⋯+⋅+⋅+⋅=n n n n n T所以()()()22122221023211431-+=+⋯⋯++--+=+++n n n n n n T…………………………12分19. 解:(1)设被污损的数字为a ,则a 有10种情况.令88+89+90+91+92>83+83+97+90+a+99,则a <8, ……………………2分 东部各城市观看该节目观众平均人数超过西部各城市观看该节目观众平均人数,有8种情况,其概率为54108=; ……………………4分(2)由题意可知=35, =3.5,52541=∑=ii i yx 5400412=∑=i i x ……………6分所以2021,1007==∧∧a b ……………8分 所以20211007+=∧x y . ……………10分 当60=x 时, 201032021601007=+⋅=∧y =5.25小时. 预测60岁观众的学习成语的时间为5.25小时。

……………12分 20.20解析:由正弦定理得22sin sin sin c a C Ab B--=,…………2分 所以2sin sin cos 2cos sin cos C A A CB B--=,即()()cos 2cos sin 2sin sin cos A C B C A B -=-, 化简得()()sin 2sin A B B C +=+,…………4分 ∴sin 2sin C A =即sin 2sin CA=.………………6分 (II )由s i n 2s i n C A =得2c a =,由余弦定理得2222cos b a c ac B =++及1cos 4B =, 2b =得1a =,从而2c =.………………8分又1cos 4B =, 0B π<<得sin B =,所以1sin 2ABC S ac B == .…………12分21解:(1)2221ln 1ln '()x k x kf x x x x --+=+=.............1分 令'()0f x >,得10k x e +<<,令'()0f x <,得1k x e+>,故函数()f x 在1(0,)k e+上单调递增,在1(,)k e++∞上单调递减,故111()()k k h k f e e ++==...........3分当1k >时,21k k >+,∴2111k k e e +<,∴21()k h k e > 当1k <时,21k k <+,∴2111k k e e +<,∴21()k h k e<.................6分(2)由(1)知11()k k h k e ae +=>,∴1k ke a<..............6 设()k ke g k a=,∴(1)'()kk e g k a +=,令'()0g k =,解得1k =-..........8分当0a >时,令'()0g k >,得1k >-;令'()0g x <,得1k <-, ∴min 1()(1)g k g ea=-=-, ∴1()(,)g k ea∈-+∞................................10分 故当0a >时,不满足()kh k ae>对k R ∈恒成立;当0a <时,同理可得max 1()(1)1g k g ea =-=-<,解得1a e <-. 故存在非零实数a ,且a 的取值范围为1(,)e-∞-.............................12分22解:(Ⅰ)圆1C 和2C 的普通方程分别是22(2)4x y -+=和22(1)1x y +-=........3分∴圆1C 和2C 的极坐标方程分别为4cos ρθ=,2sin ρθ=..................5分 (Ⅱ)依题意得点P 、Q 的极坐标分别为(4cos ,)P αα,(2sin ,)Q αα.............6分 ∴|||4cos |OP α=,|||2sin |OQ α=,从而|||||4sin 2|4OP OQ α⋅=≤.............8分 当且仅当sin 21α=±,即4πα=时,上式取“=”,||||OP O Q ⋅取最大值4........10分23.【解答】解:(Ⅰ)当a=1时,不等式即f (x )=|x ﹣1|≥|x+1|+1, 即|x ﹣1|﹣|x+1|≥1.由于|x ﹣1|﹣|x+1|表示数轴上的x 对应点到1对应点的距离减去它到﹣1对应点的距离, 由﹣0.5到1对应点的距离减去它到﹣1对应点的距离正好等于1, 故不等式的解集为}21|{≤x x …………5分(Ⅱ)不等式f (x )+3x ≤0,即|x ﹣a|+3x ≤0,即|x ﹣a|≤﹣3x (x ≤0), 即 3x ≤x ﹣a ≤﹣3x ,求得 x≤﹣,且x≤.当a ≥0时,可得它的解集为{x|x≤﹣};再根据它的解集包含{x|x ≤﹣1},可得﹣≥﹣1,求得a ≤2,故有0≤a ≤2.当a <0时,可得它的解集为{x|x≤};再根据它的解集包含{x|x ≤﹣1},可得≥﹣1,求得a ≥﹣4,故有﹣4≤a <0.综上可得,要求的a 的取值范围为[0,2]∪[﹣4,0)= [﹣4,2].…………10分 法二:不等式f (x )+3x ≤0,即|x ﹣a|+3x ≤0,即|x ﹣a|≤﹣3x (x ≤0),即 3x ≤x ﹣a ≤﹣3x 即⎪⎪⎩⎪⎪⎨⎧≤-≤42a x a x 在{}1-≤x x 上恒成立所以有⎪⎪⎩⎪⎪⎨⎧≤--≤-4121a a 即[]2,4-∈a。

相关文档
最新文档