2019年度初中数学中考模拟试卷06834

合集下载

2019中考数学模拟试题含答案(精选5套)

2019中考数学模拟试题含答案(精选5套)

2019年中考数学模拟试卷(一)姓名--------座号--------成绩-------一、选择题(本大题满分36分,每小题3分. )1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( )A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A. 3B. 23C.23D. 1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)12. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC中,AB = AC,∠ABC = 72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°. 小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF = 1米,从E 处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)(第21题图)(第23题图)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(第24题图)(第26题图)2017年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2017年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、选择题1、数2-中最大的数是( ) A 、1- BC 、0D 、2 2、9的立方根是( )A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=(A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是( ) A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( )A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( ) A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2019年中考模拟试卷 数学参考答案及评分标准

2019年中考模拟试卷   数学参考答案及评分标准

2019年中考模拟试卷 数学参考答案及评分标准二、填空题(每小题4分,共24分)11 11≠-≥x x 或 12. 82 x x 或- 13. .5215.(x y +≥2()4x y xy +≥,或222x y xy +≥2x y+等)16.π-4 ,=2S 22π- , =n S 13221---n n π(1分、1分、2分)三、解答题(共66分)17、(本小题6分)(b+c)-ad= 18. (本小题6分) 19.(本题6分)解:(1) 函数解析式为12000y x=.……1分填表如下:第1天 第2天第3天 第4天 第5天 第6天 第7天 第8天 售价x (元/千克) 400 300250 240200 150 125 120 销售量y (千克)30404850608096100……2分(2) 2 104-(30+40+48+50+60+80+96+100)=1 600, 即8天试销后,余下的海产品还有1 600千克. (1)分当x =150时,12000150y ==80. ……1分 1 600÷80=20,所以余下的这些海产品预计再用20天可以全部售出. (1)20.本题满分 8 分.解:(1)30;20. ·········································································································· 2 分 (2)12. ····················································································································· 2 分 (3)可能出现的所有结果列表如下:或画树状图如下:共有 16 种可能的结果,且每种的可能性相同,其中小张获得车票的结果有6种: (2,1),(3,1),(3,2),(4,1),(4,2),(4,3), ∴小张获得车票的概率为63168P==;则小李获得车票的概率为35188-=. ∴这个规则对小张、小李双方不公平.21. (1)解:CD 与AC 互相垂直。

2019年中考第一次模拟考试数学试卷(附参考答案)

2019年中考第一次模拟考试数学试卷(附参考答案)

2019年中考第一次模拟考试数学试卷注意事项:1. 本试卷分试题卷和答题卡两部分。

试题卷共4页,三个大题,满分120分,考试时间100分钟.2. 试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效.3. 答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.一、选择题 (每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。

)1、21-的相反数是……………………( )(A ) 21+ (A ))12(+- (C )12- (D )211-2、有一种病毒粒子的直径为0.000 000 018米,用科学记数法表示,0.000 000 018等于……………………………………………………( )(A )91018-⨯ (B )71018.0-⨯ (C )8108.1-⨯ (D )7108.1-⨯3、已知关于x 的一元二次方程0142=+-x ax 有两个不相等的实数根,则a 的取值范围是……………………………………( )(A )a >4 (B )a <4 (C )4≤a (D) a <4,且0≠a4、如图,已知直线m //n ,AD 平分CAB ∠,044=∠ACD ,则CAD ∠等于…………( )(A )068 (B )0136 (C )092 (D )0225众数为800元;③该公司月工资的平均数是1240元;④用众数、中位数、平均数这三个统计量中的任意一个反映该公司工作人员的工资水平都比较合适。

其中正确的个数是…………………………( )(A )4个 (B )3个 (C )2个 (D )1个)则组成这个几何体的小正方体共有 ( ) (A )5个(B )6个 (C )7个 (D )8个8、如图,AB 是⊙O 的直径,点P 是直径AB 延长线上的一点,过点P 作射线交⊙O 于点C 、D ,若OD//BC ,)(A )∠PBC=∠PDA ;(B )PBC ∆∽POD ∆(C )AD=DC ; (D )OAD ∆是等边三角形.二、填空题(每小题3分,共21分)9、计算:=-+-20)41(2015=________10、当x >0时,反比例函数xmy -=1随着x 的增大而增大,则m 的取值范围是_________.11、正三角形的边心距与边长之比等于________.12、在一个不透明的袋子中有2个黑球、3个白球,它们除颜色外其他均相同,充分搅匀后,先摸出1个球,放回并充分搅匀后,再摸出1个球,那么2个球都是黑球的概率是_______.13、如图,AB 是DAC ∠的平分线,090=∠D ,5=AB ,4=AD .按下列步骤操作:(1)以点B 为圆心,以适当的长为半径作圆弧与直线AC 相交于点E 、F ;(2)分别以E 、F 为圆心,以大于EF 21的长为半径作圆弧相交于点G ;(3)作直线BG 交AC 于点P .则PB=________.14、如图,在Rt △ABC 中,∠B=900,AC=BC=1.将Rt △ABC 绕顶点A 顺时针旋转060,点B 、C 分别落到B '、C '的位置,则图中阴影部分的面积为_____.15、如图,OABC 是矩形,点B 坐标是(3,3),点D 坐标是(0,1),点P 是矩形对角线OB PD PA +的最小值等于____________.三、解答题(8个题,共计75分)16、(8分)先化简,再求值:23)12(x xx x x x -÷--,其中x =12-. 17、(9分)如图,AD 、CB 分别是⊙O 的直径,点E 在AB 的延长线上,DE AD =。

2019年中考模拟测试卷数学试题卷及答案

2019年中考模拟测试卷数学试题卷及答案

2019年初中学业考试模拟测试卷数学试题卷一.选择题:(本题有10小题,每小题3分,共30分) 1.16的算术平方根是(▲). A . 4B .4± C .2D .2±2.下列计算正确的是(▲).A .1243a a a =∙ B .a a a =-34C .()1243a a = D .428a a a =÷3.如图,直线a//b ,直线c 与直线a ,b 分别交于A,B 两点,射线AC ⊥直线c ,则图中与∠1互余的角有(▲). A .4个B . 3个C . 2个D .1个4.使代数式42-+x x 有意义的x 的取值范围是(▲).A .x >-2B .x ≥-2C .x ≥4D .x ≥-2且x ≠45.下列图形中,既是轴对称图形又是中心对称图形的是(▲).6.从-2、-1、0、1、2这5个数中任取一个数,作为关于x 的一元二次方程kx 2-x +1=0 的k 值,则所得的方程中有两个不相等的实数根的概率是(▲). A .51 B .52 C . 53 D . 547.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为(4,0),∠AOC =60°,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度向右平移,设直线l 与菱形OABC 的两边分别交于点M ,N (点M 在点N 的上方),若△OMN 的面积为S ,直线l 的运动时间为t 秒(0≤t ≤4),则能大致反映S 与t 的函数关系的图象是(▲).8.请运用所学知识判断sin 44.9°与cos 44.9°的大小(▲).A . sin 44.9°> cos 44.9°B .sin 44.9°< cos 44.9°C .sin 44.9°= cos 44.9°D .无法判断 9.如图,△ABC 和△CDE 均为等腰直角三角形,点B 、C 、D 在一条直线上,点M是AE 的中点,下列结论:①tan ∠AEC =BCCD;②S △ABC +S △CDE ≥S △ACE ;③BM ⊥DM ;④BM =DM .正确结论的个(▲).A . 1个B . 2个C . 3个D . 4个10.如图,P 为正方形ABCD 对角线BD 上一动点,若AB=2,则AP+BP+CP 的最小值为(▲).A .26+B . 23C . 2210+D .无法确定二、填空题:(本题有6小题,每小题4分,共24分)11.分解因式:2am 2﹣8a = ▲ .12.如图,在△ABC 中,∠CAB =65°.在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′= ▲ .13.若一组数据 2、2、3、3、4、4、x 的平均数是3,则这组数据的众数是 ▲ . 14.对于实数a ,b 定义一种新运算“@”为a @b=ba -21,这里等式右边是实数运算。

(完整版)2019年数学中考模拟试卷

(完整版)2019年数学中考模拟试卷

2019年数学中考模拟试卷一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项符合题目要求。

1、下列二次根式中,是最简二次根式的是( )A 、a 16B 、b 3C 、abD 、45 2. 若x=﹣2,则代数式x 2﹣2x ﹣1的值是( ) A .9 B .7 C .﹣1 D .﹣93.某村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离为………………………………………………………… ( ) (A )αcos 5 (B )αcos 5 (C) αsin 5 (D) αsin 54. 已知⊙O 是以坐标原点O 为圆心,5为半径的圆,点M 的坐标为(3,4)-,则点M 与⊙O 的位置关系为( )A. M 在⊙O 上;B. M 在⊙O 内; C 。

M 在⊙O 外; D 。

M 在⊙O 右上方;5。

关于x 的一元二次方程x 2+(m —2)x+m+1=0有两个相等的实数根,则m 的值是( ) A 。

0 B 。

8 C 。

4±2D 。

0或86.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( )A . 0或2B . 0C . 2D .无法确定7。

已知M=a—1,N=a2—a(a为任意实数),则M,N的大小关系为()A。

M<N B.M=N C。

M>N D.不能确定8.如图,∠1=∠2,AE⊥OB于E,BD⊥OA于D,AE与BD的交点为C,则图中全等三角形共有( )A.2对B.3对C.4对D.5对9.(3分)不等式组的解集为x<2,则k的取值范围为( )A.k>1 B.k<1 C.k≥1 D.k≤1.10、如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( )A. B. C.D.第8题图第10题图二、填空题(每小题5分,共20分)11、如图,菱形ABCD的边长为2cm,∠A=60°,弧BD是以点A为圆心、AB长为半径的弧,弧DC 是以点B为圆心、BC长为半径的弧,则阴影部分的面积为__________cm2。

河南省2019年中考数学模拟试题(含解析)

河南省2019年中考数学模拟试题(含解析)

2019年河南省中考数学模试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1. - 3的绝对值是()A.— 3B. 3C. . —D.—3 32. 中国的陆地面积和领水面积共约9970000km2, 9970000这个数用科学记数法可表示为()A. 9.97 X 105B. 99.7 X 105C. 9.97 X 106D. 0.997 X 1074. 一次函数y= - 3x+b和y=kx+1的图象如图所示,其交点为P (3, 4),则不等式kx+1 >-3x+b的解集在数轴上表示正确的是()A. *B. * C ' D5. 某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.甲乙丙平均数7.97.98.03. 如图是由棱长为1的正方体搭成的某几何体三视图,则图中棱长为1的正方体的个数是A. 9B.左视图C. 7D. 6主视图根据以上图表信息,参赛选手应选()血成绩环* X10 ---------9 —…“…”8 ”4“ ■-7 --------A.甲B.乙C.丙D. 丁A. 1 : 3B. 1: 5C. 1: 6D. 1: 119.如图,在平面直角坐标系中,抛物线y=. x2经过平移得到抛物线y=ax2+bx,其对称轴与6.如图,四边形ABCD内接于O 0,F是二上一点,且~7=-,连接CF并延长交AD的延长线于点E,连接AC,若/ ABC=105 ,/ BAC=25,则/ E的度数为(7.如图,菱形0ABC的一边0A在x轴上,将菱形0ABC绕原点0顺时针旋转75°至0A B'DC于点F,60°连接AE并延长交C'的位置,若0B=「,/ C=120°,则点B'的坐标为(则S A DEF:S A AOB的值为(两段抛物线所围成的阴影部分的面积为;,则a 、b 的值分别为(C 2、巳、E 4、G 3…在x轴上,已知正方形 A i B i C i D二、填空题(本小题共 5小题,每小题3分,共15分)11. ________________________________________ 计算:一二 + ( n - 2) 0+ (- 1) 2017= . 12.已知关于x 的一元二次方程 ax 2-( a+2) x+2=0有两个不相等的正整数根时,整数 a 的值是 _______ .10.在平面直角坐标系中,正方形A BCD 、 Di E 1E 2B 2、AB 2C 2D 、DBE4B …按如图所示的方式放置,其中点 B 在y 轴上,点G 、E 、E 、的边长是(13. 如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=14. ____________________________________________ 如图,扇形OAB中,/ AOB=60,扇形半径为4,点C在-爲上,CD! OA垂足为点D, 当厶OCD的面积最大时,图中阴影部分的面积为 .O D .415. 如图,在矩形ABCD中, AB=5 BC=3点E为射线BC上一动点,将△ ABE沿AE折叠,得到△ AB' E.若B'恰好落在射线CD上,贝U BE的长为__________ .三、解答题(本题共8小题,共75分.)::一1 r, 216. 先化简,再求值:十一=,其中m是方程x+2x- 3=0的根.3 ID1 2 3-6m rn-2 717. 在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分.某高校组织课外小组在郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如图所示的不完整统计表和统计图.已知A, B两组户数频数直方图的高度比为 1 : 5.月信息消费额分组统计表1这次接受调查的有 _________ 户;2在扇形统计图中,“ E”所对应的圆心角的度数是 ________(3 )请你补全频数直方图;(4)若该社区有2000户住户,请估计月信息消费额不少于 200元的户数是多少?(户数)18. 如图,AB 是半圆O 的直径,点P 是半圆上不与点 A B 重合的一个动点,延长BP 到点C, 使PC=PB D 是AC 的中点,连接 PD PO (1) 求证:△ CDP^A POB (2) 填空:① 若AB=4,则四边形AOPD 勺最大面积为 _________ ;② 连接OD 当/ PBA 的度数为 ______ 时,四边形BPDC 是菱形.C19. 如图,在大楼 AB 的正前方有一斜坡 CD CD=4米,坡角/ DCE=30,小红在斜坡下的点 C 处测得楼顶B 的仰角为60°,在斜坡上的点D 处测得楼顶B 的仰角为45°,其中点A C E 在同一直线上.(1) 求斜坡CD 的高度DE(2) 求大楼AB 的高度(结果保留根号)20.同庆中学为丰富学生的校园生活, 准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同, 每个篮球的价格相同),若购买3个足球和2个篮球共需310元, 购买2个月信JS 湾奏颤分组頻数直方图各粗户数扇球统计圈2015 105・・・10足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?21. 根据下列要求,解答相关问题:(1 )请补全以下求不等式- 2x2- 4x > 0的解集的过程①构造函数,画出图象:根据不等式特征构造二次函数y=-2x2- 4x;抛物线的对称轴x=- 1 ,开口向下,顶点(-1, 2)与x轴的交点是(0, 0), (- 2, 0),用三点法画出二次函数y= - 2x2- 4x的图象如图1 所示;②数形结合,求得界点:当y=0时,求得方程-2x2- 4x=0的解为___________ ;③借助图象,写出解集:由图象可得不等式-2x2- 4x > 0的解集为_________ .(2)利用(1)中求不等式解集的方法步骤,求不等式x2- 2x+1v 4的解集.①构造函数,画出图象;②数形结合,求得界点;③借助图象,写出解集.(3)参照以上两个求不等式解集的过程,借助一元二次方程的求根公式,直接写出关于x 的不等式ax2+bx+c > 0 (a > 0)的解集.22. (1)问题发现:(1)如图1,在正方形ABCD中,点E、F分别是边BG AB上的点,且CE=BF连接DE过点E 作EG! DE 使EG=DE 连接FG FC,请判断:FG 与CE 的数量关系是 ,位置关玄阜 系是 (2)拓展探究:请出判断判断予以证明; (3) 类比延伸:如图3,若点E 、F 分别是BC AB 延长线上的点,23. 如图,二次函数 y=ax 2+bx+c 的图象与x 轴的交点为 A D (A 在D 的右侧),与y 轴的交 点为C,且A (4, 0), C ( 0,- 3),对称轴是直线x=1 . (1 )求二次函数的解析式;(2)若M 是第四象限抛物线上一动点,且横坐标为 m 设四边形 OCMA 勺面积为s .请写出 s 与m 之间的函数关系式,并求出当 m 为何值时,四边形 OCMA 勺面积最大;(3) 设点B 是x 轴上的点,P 是抛物线上的点,是否存在点 P,使得以A , B 、C, P 四点为如图2,若点E 、F 分别是CB BA 延长线上的点,其它条件不变, (1)中结论是否仍然成立?GBB(1)中结论是否仍然成立?其它条件不变, 请直接写出你的判断.顶点的四边形为平行四边形?若存在,直接写出点 P 的坐标;若不存在,请说明理由.参考答案与试题解析 一、选择题(本大题共 13的绝对值是( )A.— 3B. 3C. . —D.—3 3【考点】15:绝对值.【分析】计算绝对值要根据绝对值的定义求解. 第一步列出绝对值的表达式; 第二步根据绝对值定义去掉这个绝对值的符号. 【解答】解:| - 3|=3 . 故-3的绝对值是3. 故选:B. 2.中国的陆地面积和领水面积共约 9970000km 2, 9970000这个数用科学记数法可表示为 ( )55 —67A. 9.97 X 10 B . 99.7 X 10 C. 9.97 X 10 D. 0.997 X 10 【考点】科学计数法.【分析】 科学记数法的表示形式为 a x 10n 的形式,其中1W |a| v 10, n 为整数.确定 n 的 值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 当 原数绝对值〉1时,n 是正数;当原数的绝对值v 1时,n 是负数. 【解答】 解:9970000=9.97 X 106, 故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a X 10n 的形式,其中1w |a| v 10, n 为整数,表示时关键要正确确定a 的值以及n 的值.3. 如图是由棱长为1的正方体搭成的某几何体三视图,则图中棱长为10小题,每小题3分,共30 分) 主视图A. 9B. 8*左视图C. 7D. 61的正方体的个数是【考点】U3:由三视图判断几何体.【分析】易得这个几何体共有 2层,由俯视图可得第一层正方体的个数, 由主视图和左视图可得第二层正方体的个数,相加即可.【解答】解:由俯视图易得最底层有 6个正方体,第二层有 2个正方体,那么共有 6+2=8 个正方体组成, 故选B.4. 一次函数y= — 3x+b 和y=kx+1的图象如图所示,其交点为 P (3, 4),则不等式kx+1 > —• ••当 x 》3 时,kx+1》—3x+b , •不等式kx+1 >— 3x+b 的解集为x > 3,在数轴上表示为: *故选B.5.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示, 丁的成绩如图所示.甲乙 丙 平均数 7.9 7.9 8.0 方差3.290.491.8元一次不等式;C4:在数轴上表示不等式的解集.【分析】 观察图象,直线 y=kx+1落在直线 y= - 3x+b 上方的部分对应的 x 的取值范围即为所 求.【解答】 解:•一次函数 y= - 3x+b 和y=kx+1的图象交点为 P (3, 4),3x+b 的解集在数轴上表示正确的是(FD 一次函数与 【考C .根据以上图表信息,参赛选手应选( )【考点】W7方差;W1:算术平均数.【分析】根据方差的计算公式求出丁的成绩的方差,根据方差的性质解答即可. 【解答】解:由图可知丁射击 10次的成绩为:8、8、9、7、8、8、9、7、8、8,则丁的成绩的平均数为: —X( 8+8+9+7+8+8+9+7+8+8) =8, 丁的成绩的方差为: 了一X [ (8 - 8)+ ( 8 - 8)2+ (8 - 9) 2+ ( 8 - 7) 2+ (8 -8)+ (8 - 8)2 2 2 2 2+ (8 - 9) + (8 - 7) + (8 - 8) + (8 - 8) ]=0.4 , •••丁的成绩的方差最小, •••丁的成绩最稳定, •••参赛选手应选丁, 故选:D.F 是•上一点,且| ; =「,连接CF 并延长交AD 的延长根据三角形外角的性质即可得出结论.【解答】 解:••四边形 ABCD 内接于O 0,Z ABC=105,6.如图,四边形 ABCD 内接于O 0,线于点E ,连接AC,若/ ABC=105,/ BAC=25,则/ E 的度数为(M6圆内接四边形的性质;M4: 圆心角、弧、弦的关系.【分析】 先根据圆内接四边形的性质求出/ ADC 的度数,再由圆周角定理得出/ DCE 的度数,【考60°•••/ ADC=180 -Z ABC=180 - 105 ° =75 °.•••衣=| ,/ BAC=25 , • Z DCEZ BAC=25 ,• Z E=Z ADC-Z DCE=75 - 25° =50 °. 故选B.7.如图,菱形OABC 的一边OA 在 x 轴上,将菱形OABC 绕原点0顺时针旋转75°至OA B ' C'的位置,若 OB= _,Z C=120°,则点B'的坐标为( )/A ”oX1%帕\L J A r7 R fA.( 3,二)B .( 3,一) C.(「,「)D.(「,7)【考点】R7:坐标与图形变化-旋转; L8:菱形的性质.【分析】 首先根据菱形的性质,即可求得Z AOB 的度数,又由将菱形 OABC 绕原点O 顺时针 旋转75°至OA B ' C'的位置,可求得Z B' OA 的度数,然后在 Rt △ B' OF 中,利用三角 函数即可求得 OF 与B ' F 的长,则可得点 B '的坐标.【解答】 解:过点B 作BE X OA 于E ,过点B'作B' F 丄OA 于 F , • Z BE0=Z B ' FO=9C ° , •••四边形OABC 是菱形, • OA// BC, Z AOB= Z AOC • Z AOC-Z C=180°,•••Z C=120° ,• Z AOC=60 , • Z AOB=30 ,• •菱形OABC 绕原点O 顺时针旋转75°至OA B' C'的位置, • Z BOB =75°, OB =OB=2 :, • Z B' OF=45 ,在Rt△ B' OF中,•••点B'的坐标为:(唧匚,-i :).&如图,在?ABCD 中, AC 与BD 相交于点 O, E 为OD 的中点,连接 AE 并延长交 DC 于点F , 则 S A DEF : S A AOB 的值为()A. 1 : 3 B . 1: 5 C . 1: 6 D . 1: 11 【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】根据平行四边形的性质可知 BO=DO 又因为E 为OD 的中点,所以DE BE=1: 3,根S A iQR 9 据相似三角形的性质可求出 S A DE :S A BAE .然后根据=p ,即可得到结论.仏 ABE 3【解答】解:I O 为平行四边形ABCD 对角线的交点, • DO=BO又••• E 为OD 的中点, • DE= DB4• DE: EB=1: 3, 又••• AB// DC• △ DFE^A BAEOF=OB? cos45 •-B ' F= 7,=2 r =",故选D.・'二=(1)2=1'△BAE 39• I S A DE = S A BAE ,■..S AADB = 2 S A ABE 3,确定出抛物线y=ax 2+bx 的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点可得解.• °. S A AO =S :△ BAE,V S ^EAE…S A DEF : S A AO ==1 : 6,y S ABAE9.如图,在平面直角坐标系中,抛物线 两段抛物线所围成的阴影部分的面积为y= . x 2经过平移得到抛物线 y=ax 2+bx ,其对称轴与 [,则a 、b 的值分别为(H6:二次函数图象与几何变换.【分析】 坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即故选C.【考c •一,3 3 2 4•••平移后抛物线的顶点坐标为(- 爭,-电右),对称轴为直线x=-爭, 当x=-丄一时,y=2 4•平移后阴影部分的面积等于如图三角形的面积,'x( ■)X(-)=2 4 4234解得b= - -y故选:C.ABCD、D1E1E2B、A2B2 C2D、D>E3E4B B…按如图所示的方的边长为I,/ B i C i O=60°, BQ// B2C2// B3C3…,则正方形A2017R0仃C2o仃D2o仃的边长是()【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长, 可得出答案.【解答】解:•••正方形A i B i CD的边长为1,/ B i CO=60°, BC // B2C2 / RC3,• D E1=B2E2, D>E3=B S E4, / DCE1=/ GB2E2=/仑£3巳=30°,式放置,其中点B在y轴上,点C、E、E>、C2、巳、巳、C3…在x轴上,已知正方形A i B i G D 10.在平面直角坐标系中,正方形El E: Q Ej E4 G x进而得出变化规律即31【考点】D2:规律型:点的坐标.则 B 2C>== = () 1cos30fl 33 同理可得:RG==(—二)2,33故正方形 ABGD 的边长是:()「13则正方形A 2017B 2017C 2017 D 2017的边长为: 故选:C.二、填空题(本小题共 5小题,每小题3分,共15分) 11. 计算:-二 +( n - 2) 0+ (- 1) 2017= - 2 . 【考点】2C:实数的运算;6E :零指数幕.【分析】直接利用零指数幕的性质以及立方根的定义分别化简进而求出答案. 【解答】 原式=-2+1 - 1 =-2. 故答案为:-2.12.已知关于x 的一元二次方程 ax 2-( a+2) x+2=0有两个不相等的正整数根时,整数 a 的值是 a=1.【考点】AA 根的判别式.【分析】由一元二次方程的定义可得出 a z 0,再利用根的判别式△ =b 2- 4ac ,套入数据即可 得出△ = (a - 2) 2> 0,可得出a z 2且a z 0,设方程的两个根分别为刘、X 2,利用根与系数9的关系可得出X 1?X 2=,再根据X 1、X 2均为正整数,a 为整数,即可得出结论.a【解答】 解:•••方程ax 2-( a+2) X +2=0是关于X 的一元二次方程, a z 0.•/△ = (a+2) 2- 4a X 2= (a - 2) 2> 0,•••当a=2时,方程有两个相等的实数根, 当a z 2且a z 0时,方程有两个不相等的实数根. •• •方程有两个不相等的正整数根, 设方程的两个根分别为 X I 、X 2,--DE i =CDsin30一, 20169/. X1?X2=,a•/X I、X2均为正整数,•••「为正整数,a■/ a为整数,a^ 2且a^ 0,a=1,故答案为:a=1.13. 如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=【考点】G6:反比例函数图象上点的坐标特征.【分析】作AC± X轴于点C,作BD丄X轴于点D,易证△ OB/A AOC则面积的比等于相似比的平方,即tanA的平方,然后根据反比例函数中比例系数k的几何意义即可求解.【解答】解:作ACLX轴于点C,作BD丄X轴于点D.则/ BD02 ACO=90 ,则/ BOD丄OBD=90 ,•/ OA! OB•••/ BOD丄AOC=90 ,•••/ B0D2 AOC•••△ OBD^A AOC二口工 2 /»八2一•••..,.= —) =( tanA )=,又••• S A AO(=_77 X 2=1 ,• S _1・・S A OB=,■-9故答案为:-•・k=-二14. 如图,扇形OAB中,/ AOB=60,扇形半径为4,点C在富上,CtU OA垂足为点D, 当厶OCD勺面积最大时,图中阴影部分的面积为2 n —4 .BO D A【考点】MO扇形面积的计算;H7:二次函数的最值;KQ勾股定理.【分析】由OC=4点C在亦上,CDL OA求得DC彳0严4)!)鼻&&~0卫,运用& OC誌OD ? !..厂,求得OD=2 —时厶OCD的面积最大,运用阴影部分的面积=扇形AOC的面积-△ OCD的面积求解.【解答】解:••• OC=4点C在「上,CDL OA•DC“「」「=厂厂•S A OC=;O D? i / .■ pr'Q 1 1 1•••,「= ’O D?( 16—O D)=——O D+4OD=—’(O D- 8) 2+16•••当O D=8,艮卩OD=2】时厶OCD的面积最大,•- DC=foF_)2= =2 _,•••/ COA=45 ,2•••阴影部分的面积 = 扇形AOC 勺面积-△ OCD 的面积=!打八"- X 2 7X 2 7=2 n - 4, 360 2 % % 故答案为:2 n - 4.【分析】如图1,根据折叠的性质得到 AB' =AB=5, B' E=BE 根据勾股定理得到 B E= ( 3 -BE 2+12,于是得到吨,如图2,根据折叠的性质得到AB =沖求得AB =BF =5根据勾股定理得 到CF=4根据相似三角形的性质列方程得到CE=12即可得到结论.【解答】 解:如图1,v 将厶ABE 沿 AE 折叠,得到△ AB' E ,• AB' =AB=5 B' E=BE •- CE=3- BE,: AD=3 •- DB' =4,二 B ' C=1,v B ' h=cE+B' C 2,• BE "= ( 3 - BE 2+12, • BE =,如图2,:将厶ABE 沿 AE 折叠,得到△ AB' E , • AB' =AB=5 :CD// AB,:丄仁/ 3,:/ 仁/2,• / 2=7 3,:AE 垂直平分 BB', • AB=BF=5 • CF=4, :CF // AB,• △ CEF^A ABE15.如图,在矩形 ABCD 中, AB=5 BC=3 点E 为射线BC 上一动点,将△ ABE 沿AE 折叠, 得到△ AB' E .若B'恰好落在射线CD 上,则BE 的长为—或15 .【考点】PB:翻折变换(折叠问题) ;LB: 矩形的性质.即 d =:,5 CE+3.CE=12,. BE=15,综上所述:BE 的长为:一或15, 故答案为:一或15 .38小题,共75分.)* J .I . 一 ,其中m 是方程X 2+2X -3=0的根. 3 m -6m叶<【考点】6D:分式的化简求值;A8:解一元二次方程-因式分解法.m —35【分析】首先根据运算顺序和分式的化简方法, 化简十-,然后应用因3 in" -6n前一2数分解法解一元二次方程, 求出m 的值是多少;最后把求出的m 的值代入化简后的算式,求叶3/5、出算式 -* :,的值是多少即可.3 m -6m叶2m-3E【解答】解: _* ■ I :.-3 m -on.(TD +3) (E -3)(X +3) (X - 1) =0, 解得 X i =- 3, X 2=1,■/m 是方程X 2+2X - 3=0的根,••• m= - 3, m=l ,三、解答题(本题共 16•先化简,再求值:=IP -3________________ 3m(n5—2) m -2= 12•/x +2x - 3=0,•/ m+趺0,•• m^- 3,• m=1,所以原式=「一厂=3X1 X (1+3)=11217•在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分•某高校组织课外小组在郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如图所示的不完整统计表和统计图•已知A, B两组户数频数直方图的高度比为 1 : 5. 月信息消费额分组统计表请结合图表中相关数据解答下列问题:(1) 这次接受调查的有50户;(2) 在扇形统计图中,“E”所对应的圆心角的度数是28.8 °;(3 )请你补全频数直方图;(4)若该社区有2000户住户,请估计月信息消费额不少于200元的户数是多少?【考点】VB 扇形统计图;V5:用样本估计总体; V7:频数(率)分布表;V8:频数(率)分布直方图.【分析】(1)根据A B 两组户数直方图的高度比为 1 : 5,即两组的频数的比是 1 : 5,据此 即可求得A 组的频数;利用 A 和B 两组的频数的和除以两组所占的百分比即可求得总数; (2)用“ E ”组百分比乘以360°可得;(3 )禾9用总数乘以百分比即可求得 C 组的频数,从而补全统计图; (4) 利用总数2000乘以C 、D E 的百分比即可. 【解答】 解:(1) A 组的频数是:10=2;5•••这次接受调查的有(2+10)十(1 - 8%- 28%- 40%) =50 (户), 故答案为:50 ;故答案为:28.8(3) C 组的频数是:50X 40%=2Q 如图,(4) 2000X( 28%+8%+40%=1520 (户),月信星涔妻頼分组頻數曹左圉各組户数屈形统计图201010 --■ ■ ■ ■■ ■广 ■ ■ ■ ■ ■ ■ ■ ■¥ >9 ■ ■(2) “E ”所对应的圆心角的度数是360°X 8%=28.8°,月信星涔妻頼分组頻數曹左圉各組户数福形统计图5E18. 如图,AB是半圆O的直径,点P是半圆上不与点A B重合的一个动点,延长BP到点C, 使PC=PB D是AC的中点,连接PD PO(1)求证:△ CDP^A POB(2)填空:①若AB=4,则四边形AOPD勺最大面积为 4;②连接OD当/ PBA的度数为60°时,四边形BPDC是菱形.C【考点】L9:菱形的判定;KD全等三角形的判定与性质.【分析】(1)根据中位线的性质得到DP// AB, DP=AB由SAS可证厶CDP^A POB(2)①当四边形AOPD勺A0边上的高等于半径时有最大面积,依此即可求解;②根据有一组对应边平行且相等的四边形是平行四边形,可得四边形BPDO是平行四边形, 再根据邻边相等的平行四边形是菱形,以及等边三角形的判定和性质即可求解.【解答】(1)证明:T PC=PB D是AC的中点,••• DP/ AB,••• DP=.AB,Z CPD2 PBOLa•/ BO=_AB,• DP=BO在厶CDP-与^ POB中,r DP=B0ZCPD^ZPBOPC=PB•••△CDP^A POB( SAS ;(2)解:①当四边形AOPD的AO边上的高等于半径时有最大面积,=2X 2 =4;②如图:•••DP// AB, DP=BO•••四边形BPDO是平行四边形,••四边形BPDO是菱形,•PB=BQ•/ PQ=BQ•PB=BQ=PQ•△ PBQ是等边三角形,•/ PBA的度数为60°.故答案为:4; 60°.C19. 如图,在大楼AB的正前方有一斜坡CD CD=4米,坡角/ DCE=30,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A C E在同一直线上.(1)求斜坡CD的高度DE(2)求大楼AB的高度(结果保留根号)【考点】TA:解直角三角形的应用-仰角俯角问题;T9:解直角三角形的应用-坡度坡角问题.【分析】(1)在直角三角形 DCE 中,禾U 用锐角三角函数定义求出 DE 的长即可;(2)过D 作DF 垂直于AB,交AB 于点F,可得出三角形 BDF 为等腰直角三角形, 设BF=DF=x 表示出BC, BD, DC 由题意得到三角形 BCD 为直角三角形,禾U 用勾股定理列出关于 x 的方 程,求出方程的解得到 x 的值,即可确定出 AB 的长.【解答】 解:(1)在 Rt △ DCE 中, DC=4米,/ DCE=30,/ DEC=90 , ••• DE= DC=2 米;2(2)过D 作DF 丄AB 交AB 于点F , •••/ BFD=90,/ BDF=45 ,•••/ BFD=45,即△ BFD 为等腰直角三角形, 设 BF=DF=x 米,•••四边形DEAF 为矩形, • AF=DE=2米,即卩 AB=(x+2)米, 在 Rt △ ABC 中,/ ABC=30 ,BD= =BF=「X 米, DC=4米, •••/ DCE=30,/ ACB=60 , •••/ DCB=90 ,在Rt △ BCD 中,根据勾股定理得: 2x 2=」T +16, 解得:x=4+4 .:, 则 AB= ( 6+4 .=)米.球(每个足球的价格相同, 每个篮球的价格相同),若购买3个足球和2个篮球共需310元,…B C =;os30' =詈=二=「;「、米,20.同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮购买2个足球和5个篮球共需500元. (1) 购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共 96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?【考点】C9: 一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)根据费用可得等量关系为: 购买3个足球和2个篮球共需310元;购买2个足 球和5个篮球共需500元,把相关数值代入可得一个足球、一个篮球的单价; (2)不等关系为:购买足球和篮球的总费用不超过 5720元,列式求得解集后得到相应整数解,从而求解.•••购买一个足球需要 50元,购买一个篮球需要80元.(2 )方法一:解:设购买a 个篮球,则购买(96 - a )个足球. 80a+50 (96- a )< 5720, 亦30.•/ a 为正整数,• a 最多可以购买30个篮球.•••这所学校最多可以购买 30个篮球. 方法二:解:设购买n 个足球,则购买(96 - n )个篮球. 50n+80 (96- n )< 5720, n 》65厶 •/ n 为整数,•- n 最少是66 96 - 66=30 个.【解答】(1)解:设购买一个足球需要 ■・」根据题意得- 解得沪50y=80,x 元,购买一个篮球需要y 元,•••这所学校最多可以购买30个篮球.21 •根据下列要求,解答相关问题:(1 )请补全以下求不等式- 2x2- 4x > 0的解集的过程①构造函数,画出图象:根据不等式特征构造二次函数y=-2x2- 4x;抛物线的对称轴x=- 1,开口向下,顶点(-1, 2)与x轴的交点是(0, 0), (- 2, 0),用三点法画出二次函数y= - 2x2- 4x的图象如图1所示;②数形结合,求得界点:当y=0时,求得方程-2x2- 4x=0的解为 _ 1=0, x2=- 2③借助图象,写出解集:由图象可得不等式-2x2- 4x > 0的解集为 -2 < x w 0 .(2)利用(1)中求不等式解集的方法步骤,求不等式x2- 2x+1v 4的解集①构造函数,画出图象;②数形结合,求得界点;③借助图象,写出解集.(3) 参照以上两个求不等式解集的过程,借助一元二次方程的求根公式,直接写出关于的不等式ax2+bx+c > 0 (a > 0)的解集寸■・■ ■皆■ ■管5 ■■ 込一卜冷f I 4 ■§V 1 li 1:厶二為…;・・;L h I I II【分析】(1)直接解方程进而利用函数图象得出不等式- 2x2-4x>0的解集;(2)首先画出y=x2-2x+1的函数图象,再利用当y=4时,方程x2- 2x+仁4的解,得出不等式x2- 2x+1 V 4的解集;(3)利用ax +bx+c=0的解集,利用函数图象分析得出答案.【解答】解:(1)②方程-2x2- 4x=0的解为:x i=0, X2=- 2; ③不等式-2x2- 4x > 0的解集为:-2<§■耳■4)«h tl fl丿* • J te- n J ■ w "¥f【考点】HC二次函数与不等式(组) ;H2:二次函数的图象;H3:二次函数的性质.x w 0;(2)①构造函数,画出图象,如图2,:构造函数y=x2- 2x+1,抛物线的对称轴x=1, 且开口向上,顶点坐标(1, 0),关于对称轴x=1对称的一对点(0, 1), (2, 1), 用三点法画出图象如图2所示:②数形结合,求得界点:2当y=4 时,方程x - 2x+1=4 的解为:x i=- 1, X2=3;③借助图象,写出解集:由图2知,不等式x2- 2x+1 V 4的解集是:-1 v x v 3;(3)解:①当b2- 4ac> 0时,关于x的不等式ax2+bx+c > 0 (a> 0)的解集是x> 或x V =22a 2a当b2- 4ac=0时,关于x的不等式ax2+bx+c> 0 (a> 0)的解集是:X M-当b2- 4ac v 0时,关于x的不等式ax2+bx+c> 0 (a> 0)的解集是全体实数.22. (1)问题发现:(1)如图1,在正方形ABCD中,点E、F分别是边BG AB上的点,且CE=BF连接DE过点E 作EG! DE 使EG=DE 连接FG FC,请判断:FG 与CE 的数量关系是 FG=CE,位置关系是 FG// CE . (2) 拓展探究:如图2,若点E 、F 分别是CB BA 延长线上的点,其它条件不变, 请出判断判断予以证明; (3)类比延伸:如图3,若点E 、F 分别是BC AB 延长线上的点,其它条件不变,【考点】LO 四边形综合题.利用等量代换即可求出 FG=CE FG// CE(2) 构造辅助线后证明△ HGE^A CED 利用对应边相等求证四边形 GHBF 是矩形后,利用等 量代换即可求出 FG=CE FG// CE(3) 证明△ CBF ^A DCE 即可证明四边形 CEGF 是平行四边形,即可得出结论. 【解答】 解:(1) FG=CE FG// CE;理由如下: 过点G 作GHLCB 的延长线于点 H,如图1所示: 则 GH// BF,Z GHE=90 , •/ EG 丄 DE•••/ GEH 丄 DEC=90 , •••/ GEH 丄 HGE=90 , •••/ DEC=z HGE^ZGHE=ZDCE在^ HGE" CED 中, ZHGE^ZDEC EG 二 DE :• △ HGE^A CED( AAS ,••• GH=CE HE=CD(1)中结论是否仍然成立?(1)中结论是否仍然成立?【分析】(1)构造辅助线后证明△ HGE^A CED 利用对应边相等求证四边形GHBF 是矩形后,请直接写出你的判断.医1•/ CE=BF•GH=BF•/ GH// BF,•四边形GHBF是矩形,•GF=BH FG// CH•FG// CE•••四边形ABCD是正方形,•CD=BC•HE=BC•HE+EB=BC+EB•BH=EC•FG=EC故答案为:FG=CE FG// CE;(2) FG=CE FG// CE仍然成立;理由如下:过点G作GHLCB的延长线于点H ,如图2所示:•/ EG丄DE•/ GEH丄DEC=90 ,•••/ GEH丄HGE=90 ,•/ DEC=z HGE'ZGHE=ZDCE 在厶日6£与4 CED中,ZHGE=ZDEC ,EG-DE•△HGE^A CED( AAS ,•GH=CE HE=CD•/ CE=BF • GH=BF•/ GH// BF,•四边形GHBF是矩形,•GF=BH FG// CH• FG// CE•••四边形ABCD是正方形,••• CD=BC••• HE=BC•HE+EB=BC+EB•BH=EC•FG=EC(3) FG=CE FG// CE仍然成立.理由如下: •••四边形ABCD是正方形,•BC=CD / FBC=/ ECD=90 ,在厶CBF与厶DCE中,1 ZFBC-ZECDBC=DC•△CBF^A DCE( SAS ,•/ BCF=/ CDE CF=DE•/ EG=DE • CF=EG•••DE 丄EG•/ DEC/ CEG=90•/ CDE/ DEC=90•/ CDE/ CEG•/ BCF=/ CEG•CF/ EQ•四边形CEGF平行四边形,_ 223. 如图,二次函数y=ax+bx+c的图象与x轴的交点为A D (A在D的右侧),与y轴的交点为C,且A (4, 0), C ( 0,- 3),对称轴是直线x=1 .(1 )求二次函数的解析式;(2)若M是第四象限抛物线上一动点,且横坐标为m设四边形OCMA勺面积为s.请写出s与m之间的函数关系式,并求出当m为何值时,四边形OCMA勺面积最大;(3)设点B是x轴上的点,P是抛物线上的点,是否存在点P,使得以A, B、C, P四点为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.【分析】(1 )利用抛物线的对称性可得到点D的总表,然后将A、C D的坐标代入抛物线的解析式可求得a、b、c的值,从而可得到二次函数的解析式;(2 )设M( m, —x 2 x —3), |y M= 卅+― m+3 由S=S^ACM+S A OA M可得到S 与m 的函数关8 4 8 4系式,然后利用配方法可求得S的最大值;(3)当AB为平行四边形的边时,则AB// PC则点P的纵坐标为-3,将y=—3代入抛物线的解析式可求得点P的横坐标;当AB为对角线时,AB与CP互相平分,则点P的纵坐标为3, 把y=3代入抛物线的解析式可求得点P的横坐标.【解答】解:(1)v A (4, 0),对称轴是直线x=l ,二 D (—2, 0).又••• C (0,—3)1二-3 二“ 16a+4b+c-04a-2b+c~0解得., b=——,c= - 3,8 4•••二次函数解析式为:丫= X- — x - 3.8 4••• s 冷 x OC X 吨 X OA X |yM =* X 3 x 吨 x 4X (-討计+3 =-討伽+6=一 弓2+9,当m=2时,s 最大是9.(3)当AB 为平行四边形的边时,则 AB// PC,• PC// x 轴.•••点P 的纵坐标为-3.3 2 3将y= - 3代入得:-匚x - ,x - 3= - 3,解得:x=0或x=2 . ••点 P 的坐标为(2,- 3). 当AB 为对角线时. ••• ABCP 为平行四边形, • AB 与CP 互相平分, •••点P 的纵坐标为3.把 y=3 代入得:一 x 2-—x - 3=3,整理得:x 2- 2x - 16=0,解得:x=1+屯厂.j 或 x=1 o 4综上所述,存在点 P (2,- 3)或P (1+ —, 3)或P (1 - —3)使得以A , B C, P四点为顶点|y M=-易 m 4m+3(m — 2)-S=S\ ACI\+S\的四边形为平行四边形.。

2019年度初中数学中考模拟试卷06143

2019年度初中数学中考模拟试卷06143

2019年度初中数学中考模拟试卷
数学科目模拟测试
学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
一、选择题
1.根据下列条件能唯一画出△ABC 的是 ( )
A .A
B =3,B
C =4,AC =8
B .AB =4,B
C =3,∠A =30° C .∠A =60°,∠B =45°,AB =4
D .∠C =90°,AB =6
2.等腰三角形一个外角是80°,其底角是( )
A .40°
B .100°或40°
C .100°
D .80° 3.2
1-的绝对值等于( ) A . 2 B .-2 C .22 D .-2
2 4.在平面直角坐标系中,下列各结论不成立的是( )
A .平面内一点与两坐标轴的距离相等,则这点一定在某象限的角平分线上
B .若点P (x ,y )坐标满足0x y
=,则点P 一定不是原点 C 点P (a ,b )到x 轴的距离为b ,到y 轴的距离为a
D .坐标(-3,4)的点和坐标(-3,-4)的点关于x 轴对称
5.在下图中,与图形
变换相同的是( )
6.连一连:( )
2(49)(7)a a -÷- 7a -
2(1449)(7)a a a -+÷- 7a --
2(49)(7)a b b a -÷- 7a +
2(49)(7)a a -÷- 7ab b + 7.在实数范围内,下列说法中正确的是( )。

2019年九年级数学中考模拟试卷(K12教育文档)

2019年九年级数学中考模拟试卷(K12教育文档)

2019年九年级数学中考模拟试卷(word版可编辑修改) 2019年九年级数学中考模拟试卷(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年九年级数学中考模拟试卷(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年九年级数学中考模拟试卷(word版可编辑修改)的全部内容。

122019年九年级数学模拟试卷一、选择题(本大题10个小题,每小题3分,共30分) 1.与21互为倒数的是( )A.-2 B .-21 C .21D .22.下列各式中,计算错误的是( )A .235a a a += B.231x x -=- C 。

2(2)2x x x x --=-D .326()x x -=3。

为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是( )A.企业男员工B 。

企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工 4. 如图,立体图形的左视图是( )DCBA正面5。

计算+++++……+的值为( )A .B .C .D .6.用科学记数法表示数5。

8×10-5,它应该等于 ( ) A 。

0.005 8 B .0。

000 58 C 。

0.000 058D .0。

O00 005 87.A 车站到B 车站之间还有3个车站,那么从A 车站到B 车站方向发出的车辆,一共有多少种不同的车票( )A .8B .9C .10D .11 8.某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年度初中数学中考模拟试卷
数学科目模拟测试
学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
一、选择题
1.已知OA 垂直于直线l 于点A ,OA =3,⊙O 的半径为2,若将直线l 沿AO 方向平移,使直线l 与⊙O 相切,则平移距离可以是( )
A .1
B .5
C .2
D .1或5 2.反比例函数k y x
=的自变量x 的取值从1增加到3时,函数值减少 4,则k 为 ( ) A .6 B .16
C .-6
D . 16- 3.下列说法错误的是( )
A .一条线段的中点是它的对称中心
B .关于轴对称的两个图形中,对应线段平行且相等
C .轴对称图形的对称轴是对称点连线的垂直平分线
D .关于中心对称的两个三角形全等
4.如图,△DAC 和△EBC 均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:
① △ACE ≌△DCB ; ② CM =CN ;③ AC =DN .其中正确结论的个数是( )
A . 3个
B .2个
C . 1个
D .0个
5.如果α∠和β∠互补,且αβ∠>∠,则下列表示β∠的余角的式子中:
①90β-∠;②90α∠-;③
1()2αβ∠+∠;④1()2αβ∠-∠.正确的有( ) A .4个 B .3个 C .2个 D .1个。

相关文档
最新文档