[职业资格类试卷]教师公开招聘考试小学数学(数列)模拟试卷3.doc

合集下载

[职业资格类试卷]山东省教师公开招聘考试教育理论综合知识(教育目的)模拟试卷3.doc

[职业资格类试卷]山东省教师公开招聘考试教育理论综合知识(教育目的)模拟试卷3.doc
(A)德育
(B)智育
(C)体育
(D)美育
13人的素质从狭义的角度来讲,只包括( )。
(A)生理素质
(B)心理素质
(C)社会文化素质
(D)群体素质
14下列既是整个教育工作的核心也是教育活动的依据、评判标准、出发点和归宿的是( )。
(A)教育评价
(B)教育目的
(C)教学大纲
(D)教学课程
15明确规定教育“为谁(哪个社会、哪个阶层)培养人”,体现了教育目的对教育活动的( )。
(C)二者教育内容不同,素质教育立足社会需求,应试教育主要为了满足学生考试和升学需求
(D)二者评价标准不同,素质教育以多种形式全面衡量学生,应试教育以分数作为唯一判断标准
9确定教育目的的客观依据是( )。
(A)制定教育目的者的哲学理念
(B)制定教育目的者的人性假设
(C)制定教育目的者的理想人格
(D)制定的社会政治、经济、文化背景
[职业资格类试卷]山东省教师公开招聘考试教育理论综合知识(教育目的)模拟试卷3
一、单项选择题
1在教育目的价值取向问题上,主张教育是为了使人增长智慧、发展才干、生活更加充实幸福的观点属于( )。
(A)知识本位论
(B)社会本位论
(C)个人本位论
(D)能力本位论
2教育目的所要回答的问题是( )。
(A)教育服务的方向
20新形势下,合乎时代需要的一代新人应当具有( )。
(A)创造精神
(B)开放思维
(C)崇高理想
(D)高尚道德
(E)实践能力
三、判断题
21如果不考虑学生身心发展的特点。就会导致实际教育活动脱离学生的发展水平,这说明人是教育目的选择、确立的基本依据。( )

教师资格证考试《综合素质(小学)》试卷模拟试题与答案解析

教师资格证考试《综合素质(小学)》试卷模拟试题与答案解析

教师资格证考试《小学综合素质》模拟真题练习卷一、单选题1.具备高等师范专科学校或其他大专专科学历的公民不得申请的教师资格类型是()A.幼儿园B.小学C.初级中学D.高级中学答案:D解析:根据《中华人民共和国教师法》第十一条规定,取得高级中学教师资格和中等专业学校、技工学校、职业高中文化课、专业课教师资格,应当具备高等师范院校本科或者其他大学本科毕业及其以上学历。

2.童话通过丰富的想象,幻想和夸张来塑造艺术形象,反映生活,对自然物的描写常用拟人化手法。

下列选项中,作者与作品对应不正确的是()A.科洛迪——《木偶奇遇记》B.圣爱克苏佩里一《夏洛的网》C.拉格勒夫——《骆驼旅行记》D.卡罗尔——《爱丽丝漫游奇境记》答案:B解析:《夏洛的网》是爱尔温·布鲁克斯·怀特的作品。

3.夏老师和汤老师都在积极准备参加市小学教育基本技能大赛,首次参加比赛的夏老师向汤老师请教,汤老师因担心夏老师在比赛中超过自己,就说自己也不清楚,汤老师的做法表明她()A.具有帮助同事自我创新的意识B.缺乏尊重同事人格的品路C.具有促使同事自主发张的意说D.缺乏与同事自主合作的精神答案:D解析:教师在教师集体中开展着教育教学专业性活动,这种教育教学活动通常需要靠集体的力量去完成,教师在集体中共同完成教育教学工作,若想实现一定的教育目的,教师必须与同事进行协作,维护团结,相互理解,相互支持。

题干中夏老师对比赛情况没有向汤老师如实陈述,缺乏与同事互助合作的精神。

4.某学校收了1057万元钱,根据《中华人民共和国义务教育法》,该钱用于()。

A.学前教育B.高等教育C.实施基础教育D.实施义务教育答案:D解析:《义务教育法》第四十九条义务教育经费严格按照预算规定用于义务教育;任何组织和个人不得侵占、挪用义务教育经费,不得向学校非法收取或者摊派费用。

因此,该学校收到的经费,应严格用于实施义务教育。

5.素质教育的主渠道和教育改革的原点是()。

教师公开招聘考试(学前教育)模拟试卷3(题后含答案及解析)

教师公开招聘考试(学前教育)模拟试卷3(题后含答案及解析)

教师公开招聘考试(学前教育)模拟试卷3(题后含答案及解析)题型有:1. 单项选择题 4. 判断题 6. 简答题7. 案例分析题10. 活动设计题单项选择题1.幼儿园的早期阅读活动应当( )A.提供具有表意性质的材料帮助幼儿获得读写能力B.有目的、有计划地培养幼儿对书面语言的兴趣和敏感性C.创设丰富的阅读环境帮助幼儿识字和书写D.有目的、有计划地教幼儿认读一定数量的字正确答案:B解析:对于幼儿来说,早期阅读的意义不在于“书”,而在于阅读的过程。

同时,儿童的早期阅读也绝不等同于早期识字。

2.幼儿说:“乒乓球浮在水面上,因为它是圆圆的、滑滑的。

”这反映了学前儿童学科学具有( )的特点。

A.好奇B.模仿性C.拟人化D.表面性正确答案:D解析:3~4岁儿童的认识带有表面性和片面性,易受情绪的影响,其注意往往比较容易集中在具有鲜艳色彩、会发出悦耳声音、能动的、他感到喜欢的事物物上。

3.有一个儿童,他认识了猫,有一次到了动物园以后,凡是看到和猫体型类似的动物他都称为“猫”,由此可见他头脑中的“猫”的概念是( ) A.科学概念B.初级科学概念C.科学经验D.想象中的概念正确答案:B解析:概念是对事物或现象的内在、共同、本质特征的概括,是认识事物的高级形式,一般用词语来表示。

在学前科学教育中,儿童获得的概念还不是真正严格意义上的科学概念,而只能称为“初级科学概念”。

题干中的儿童对“猫”这个概念的获得是初级科学慨念。

4.在韵律教学活动中,让儿童在观察具体事物的外部形象或运动状态后,立即用自己的动作创造性地进行表现的活动的方法是( )A.回忆导入B.动作导入C.观察导入D.练习导入正确答案:C解析:观察导入主要适应于让儿童在观察具体事物的外部形象或运动状态后,立即用自己的动作创造性地进行表现的活动。

5.下列在幼儿园适宜开展的体育活动是( )A.拔河B.长跑C.走平衡木D.长时间悬吊正确答案:C解析:走平衡小可以促进幼儿身体两侧肌肉力量的协调发展、控制身体平衡能力以及促进方位知觉的发展。

教师资格《教育教学知识与能力(小学)》模拟试卷三(2)及答案

教师资格《教育教学知识与能力(小学)》模拟试卷三(2)及答案

教师资格《教育教学知识与能力(小学)》模拟试卷三(2)及答案教师资格证是教育行业从业人员教师的许可证。

在我国,师范类大学毕业生须在学期期末考试中通过学校开设的教育学和教育心理学课程考试。

下面小编给大家整理教师资格《教育教学知识与能力(小学)》模拟试卷三(2),希望大家喜欢!教师资格《教育教学知识与能力(小学)》模拟试卷三(2)一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请用2B铅笔把答题卡上对应题目的答案字母按要求涂黑。

错选、多选或未选均无分。

1.法国社会学家利托尔诺认为动物界已存在教育,也有教师与学生,并把动物对其幼子的爱护、照看当成教育,这种理论是( )。

A.教育的心理学起源论B.教育的社会学起源论C.教育的实践起源论D.教育的生物起源论2.借助于对相关社会历史过程的史料进行分析、破译和整理,以认识研究对象的过去,研究现在和冲刺未来的研究方法是( )。

A.教育观察法B.教育实验法C.历史研究法D.个案法3.把手表放在耳朵刚刚能听到的地方,集中注意认真听,你会发现,声音听起来一会儿强,一会儿弱,表现出周期性的起伏变化,这是( )。

A.注意的周期B.注意的起伏C.注意的集中D.注意的循环4.当学生的测评结果能准确地显示他们所学的知识技能,准确地冲刺他们对所学知识技能的实际作用时,我们就认为对这个测评的解释和使用具有高( )。

A.区分度B.信度C.效度D.自由度5.以学生获得积极劳动体验形成良好的技术素养为主的,以多方面发展为目标,且以操作性学习为特征的综合实践活动内容是( )。

A.社区服务B.研究性学习C.社会实践D.劳动与技术教育6.新课程改革的核心目标是( )。

A.实现课程功能的转变B.体现课程结构的均衡性、综合性和选择性C.实行三级课程管理制度D.改变课程内容“繁、难、偏、旧”和过于注重书本知识的现状7.很多学生在学习了乘法口诀后,习惯于“三七二十一”这种记忆顺序,如果问他们“几乘以三等于二十一?”很多人都反应不过来,这是一种( )现象的消极作用的表现。

教师公开招聘考试小学数学(数学思想方法)模拟试卷1(题后含答案及解析)

教师公开招聘考试小学数学(数学思想方法)模拟试卷1(题后含答案及解析)

教师公开招聘考试小学数学(数学思想方法)模拟试卷1(题后含答案及解析)题型有:1. 选择题9. 综合题选择题1.用换元法解方程=3时,下列换元方法中最适宜的是( )A.x2+1=yB.C.D.正确答案:D解析:设y=,则原方程化为:y2一3y一2=0即可求解.故选D.2.若实数x、y满足y≤x,x+2y≤4,y≥一2,则S=x2+y2+2x一2y+2的最小值为( )A.B.2C.3D.√2正确答案:B解析:S=(x+1)2+(y一1)2表示点(x,y)与(一1,1)距离的平方,故问题可化归为求以(一1,1) 为圆心,√S为半径的动圆与可行域的距离.由点(一1,1)到y=x的距离为d=√2知Smin=2.故选B.综合题3.用配方法解一元二次方程:2x2+1=3x.正确答案:移项得:2x2一3x=一1,二次项系数化为l得:x2一,配方得:x2一∴x=—,解得x1=1,x2=.4.用配方法证明:无论x为何实数,代数式一2x2+4x一5的值恒小于零.正确答案:一2x2+4x一5=一2(x2一2x)-5=一2(x2一2x+1)-5+2=-2(x -1)2一3,∵(x-1)2≥0,∴一2(x一1)2≤0,∴一2(x一1)2一3<0,∴无论x为何实数,代数式一2x2+4x-5的值恒小于零.用配方法求解下列问题:5.2x2一7x+2的最小值;正确答案:∵2x2一7x+2=2(x2一x)+2=,∴最小值为一.6.-3x2+5x+1的最大值.正确答案:-3x2+5x+1=一3,∴最大值为.把整式x2-x-2按下列要求变形:7.配方;正确答案:x2一x一2=x2一x+.8.因式分解(写出因式分解过程中所采用的方法)正确答案:由(I)知=0.,∴x1=2,x2=一1.则x2一x一2=(x+1)(x一2).9.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.正确答案:设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).10.宁海中学高一组织了围棋比赛,共有10名选手进入了决赛,决赛阶段实行单循环赛(即每两名参赛选手都要赛一局,且每局比赛都决出胜负),若一号选手胜a1局,输b1局;二号选手胜a2局,输b2局;…,十号选手胜a10局,输b10局,试比较a12+a22+…+a102与b12+b22+…+b102的大小,并叙述理由.正确答案:依题意可知,a1+b1=9,a2+b2=9,a3+b3=9,…,且a1+a2+…+a10=b1+b2+…+b10=45,∴(a12+a22+…+a102)一(b12+b22+…+b102)=(a12一b12)+(a22一b22)…+(a102一b102)=(a1+b1)(a1—b1)+(a2+b2)(a2—b2)+…+(a10+b10)(a10-b10)=9[(a1+a2+…+a10)一(b1+b2+…+b10)]=0.∴a12+a22+…+a102=b12+b22+…+b102.11.用换元法解方程(x一)2+x+=2,可设y=x+,则原方程经换元并变形后可以化为一元二次方程的一般形式_________.正确答案:y2+y一6=0.解析:∵(x一)2=(x+)2一4.∴原方程变形为(x+)2一4+x+=2.整理得(x+)2+(x+)一6=0.设y=x+.则原方程经换元并变形后可以化为一元二次方程的一般形式y2+y一6=0.12.关于x的一元二次方程x2一=0有实根,其中a是实数,求a99+x99的值.正确答案:因为方程有实根,所以△=≥0,即一a2一2a一1≥0.因为一(a+1)2≥0,所以a+1=0,a=一1.当a=一1时,原方程为x2一2x+1=0,故有x=1,所以a99+x99=(一1)99+199=0.13.若方程x2+2(1+a)x+3a2+4ab+4b2+2=0有实根,求a,b的值.正确答案:因为方程有实根,所以它的判别式△=4(1+a)2一4(3a2+4ab+4b2+2)≥0,化简后得2a2+4ab+4b2一2a+1≤0,所以(a+2b)2+(a一1)2≤0,从而解得a=1,b=一.14.△ABC的一边长为5,另两边长恰是方程2x2一12x+m=0的两个根,求m的取值范围.正确答案:设△ABC的三边分别为a,b,c,且a=5,由△=122-4·2·m=144—8m≥0,得m≤18,此时由韦达定理,b+c==6>a,bc=>0,即m>0,并且不等式25=a2>(b一c)2=(b+c)2一4bc=36—2m,即m>.综上可知,<m≤18.15.求方程5x2+5y2+8xy+2y-2x+2=0的实数解.正确答案:先把y看作是常数,把原方程看成是关于x的一元二次方程,即5x2+(8y一2)x+(5y2+2y+2)=0.因为x是实数,所以判别式△=(8y一2)2一4·5·(5y2+2y+2)≥0,化简后整理得y2+2y+1≤0,即(y+1)2≤0,从而y=一1.将y=一1代入原方程,得5x2一10x+5=0,故x=1.所以,原方程的实数解为x=1,y=一1.16.直线l经过直线3x+2y+6=0和2x+5y一7=0的交点,且在两坐标轴的截距相等,则直线l的方程是_________.正确答案:联立直线方程所以交点坐标为(一4,3).则当直线l过(一4,3)且过原点时,因为直线l在两坐标轴上的截距相等,所以设y=kx,把(一4,3) 代入求得k=一,所以直线l的方程3x+4y=0;当直线l不过原点时,因为直线l在两坐标轴上的截距相等,可设=1,把(一4,3)代入求得A=一1,所以直线l的方程为x+y+1=0.故答案为3x+4y=0或x+y+1=0.已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x—y一5=0.AC边上的高BH所在直线为x一2y一5=0.求:17.顶点C的坐标;正确答案:直线AC的方程为:y一1=一2(x一5),即2x+y一11=0,解方程组则C点坐标为(4,3).18.直线BC的方程.正确答案:设B(m,n),则M,又因为点M在CM上,点B在BH上,故有.则B点坐标为(一1,一3),直线BC的方程为:y一3=(x一4),即6x一5y一9=0.19.如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A、B为端点的曲线C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|BN|=6,试建立适当的坐标系,求曲线C的方程.正确答案:如图所示.以l1为x轴,MN的垂直平分线为y轴,建立直角坐标系.由已知,得曲线C是以点N为焦点、l2为准线的抛物线的一段,其中点A、B为曲线C的端点.设曲线C的方程为y2=2px,p>0(x1≤x≤x2,y>0).其中,x1、x2分别是A、B的横坐标,p=|MN|.从而M、N的坐标分别为.由|AM|=和|AN|=3和△AMN是锐角三角形,得解得p=4,x1=1.又由抛物线的定义,得x2=|BN|一=6—2=4.故曲线C的方程为y2=8x(1≤x≤4,y>0).20.在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,且b+c=10,b2+c2=一2a2+32a一78.求证:△ABC是等腰三角形.正确答案:由b+c=10,b2+c2=一2a2+32a一78,得bc=a2一16a+89.构造一元二次方程x2一10x+a2一16a+89=0,则可知b,c是该方程的两个实根,于是有△=(一10)2一4·(a2一16a+89)=一4(a一8)2≥0,即(a一8)2≤0.又(a一8)2≥0,所以△=0,即b=c,所以△ABC是等腰三角形.21.如图(1)所示,已知三棱锥P—ABC,PA=BC=,PB=AC=10,PC=AB=,求三棱锥P—ABC的体积.正确答案:如图(2)所示,构造一个长方体AEBG—FPDC,易知三棱锥P—ABC的各边分别是长方体的面对角线.不妨令PE=x,EB=y,EA=z,则由已知有解得x=6,y=8,z=10.从而有VP-ABC=V AEBG—FPDC一VP一AEB—VC —ABG—VB—PDC—V A—FPC=V AEBc—FPDC一4VP一AEB=6×8×10—4××6×8×10=160.故所求三棱锥P—ABC的体积为160.22.在同一平面内,a、b、c互不重合,若a∥b,b∥c,则a∥c.正确答案:假设a∥c不成立,则a、b一定相交,假设交点为P,则过点P,与已知直线b平行的直线有两条a、c;这与经过一点有且仅有一条直线与已知直线平行相矛盾,因而假设错误,故a∥c.。

教师公开招聘考试小学数学(计数原理)模拟试卷1(题后含答案及解析)

教师公开招聘考试小学数学(计数原理)模拟试卷1(题后含答案及解析)

教师公开招聘考试小学数学(计数原理)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.用数字1、2组成四位数,且数字中至少出现一次1、2,则这样的四位数有( )个.A.10B.12C.14D.16正确答案:C解析:不考虑其他条件,用数字1,2共可以组成2×2×2×2=16个四位数,只由1或2组成的四位数有两个,即1111或2222,则至少出现一次1,2的四位数共有16-2=14个.知识模块:计数原理2.一个箱子里面有12个大小相同的球,编号分别为1,2,3,4…11,12,其中1号到6号球是黄球,剩下的为白球.从箱子中一次取出两个球,求取出的两个球都为白球,且至少有1个球的号码是奇数的概率是( ).A.B.C.D.正确答案:B解析:取出两个球总的方法有C122种,其中两个球均为白球且至少有一个球号码是奇数的方法数为取出的两个球都是白球的方法数减去取出的两个白球全都是偶数的方法数,即C62-C32,故取出的两个球,都为白球,且至少有1个球的号码是奇数的概率是.知识模块:计数原理3.6个学生站成一排,甲、乙两个学生必须相邻的排法共有( )种.A.60B.120C.240D.480正确答案:C解析:将甲、乙同学捆绑看成一个整体,则可看成5个元素的排列问题,有A55种排列方法,而甲、乙两个学生又有A32种排列方法,根据分步乘法原理可得共有A55.A22=240种排列方法.知识模块:计数原理4.8名男生和4名女生站成一排,4名女生都不相邻的排法共有( )种A.A88.A94B.A88.C94C.A88.C74D.A88.A74正确答案:A解析:8名男生先排共有A88种排法,共产生9个空位,4名女生插空有A94种排法,故共有A88.A94种排法.知识模块:计数原理5.将4个大小不同的西瓜放到3个不同颜色的篮子里,每个篮子至少放一个,则不同的放置方法有( )种.A.12B.24C.36D.48正确答案:C解析:可以分两步,将四个西瓜分为三组,每组个数为2、1、1,共有C42种分法;然后,将这三组西瓜放到三个篮子里,进行全排列,共有A33种排法.根据分步乘法计数原理,共有C42.A33=36种排法.知识模块:计数原理6.外语学院安排A、B、C、D、E X名学生在奥运会期间从事翻译志愿者工作.他们需要分别进行英语、日语、法语和俄语的翻译工作,但A、B不会法语,C、D、E四种语言都会,则不同的安排方案有( ).A.36B.68C.94D.126正确答案:D解析:若有两个人翻译法语,则安排方案有C32.A33=18种;若有1人翻译法语,则安排方案有C31.C42.A33=108种.故共有18+108=126种不同的安排方案.知识模块:计数原理7.(2一)7的二项展开式中,不含χ3的项的系数的和为( ).A.-13B.-5C.0D.8正确答案:A解析:令χ-1,则可求出各系数的和为1.χ3项的系数为C7621(-1)6=14,故不合χ3的系数的和为1-14=-13.知识模块:计数原理8.某教师要为两名参加全国奥林匹克数学竞赛的学生各选择一本参考教材和一本习题集进行备考,该教师现在手上有12本备选教材和6本备选习题集,该教师打算给两名学生选择同一本参考教材,以及两人每人一本不同的习题集,则共有( )种选法.A.42B.180C.360D.432正确答案:C解析:完成此事需要两步,第一步是从12本备选教材中选1本作为两名学生的参考教材,第二步是从6本备选习题集中选择2本习题集分别给两名学生作为习题集,而此步骤又可分为两步,第一步是从6本备选习题集中选择1本给一名同学,再从剩下的5本中选择1本给另一名同学,所以根据分步乘法计数原理可知,完成该件事共有12×(6×5)=360种方法,即共有360种选法.知识模块:计数原理9.某学校派出2位教师6名学生参加市文艺汇演,演出结束后,8名师生要合影留念.考虑到拍照场地和画面协调的问题,准备排成两行,前5后3,教师要排在前排不靠边的位置,且两位教师不挨着,则共有( )种排法.A.864B.1440C.8640D.14400正确答案:B解析:首先从6名学生中选出3名排在第二排,有A63=120种排法,然后再排前排,采用插空法,先将3名学生的顺序排好,即A33=6种排法,又“教师要排在前排不靠边的位置,且两位教师不挨着”,所以将教师插在3名学生之间的两个空挡中,有A22=2种排法,所以其排法共有A63A33A22=120×6×2=1440种.知识模块:计数原理10.已知集合M={-3,-2,-1,0,1,2,3,5},直线Aχ+By+C =0中的系数A、B、C为集合M中的三个元素,则不经过原点的直线有( ).A.200B.204C.210D.294正确答案:A解析:直线不经过原点,故C≠0.当A=0时,直线为y=-,B、C均取正数时,有A42=12条;B、C均取负数时,所得直线均与B、C均取正数时的重合,故不另行计算;当B取正数、C取负数时,由,故有直线4×3-2=10条;当B取负数、C取正数时,除了C=5的3条外,其他取值所得直线均与B、C均取正数时的重合,故不另行计算;故当A=0时,直线有12+10+3=25条.同理,当B=0时,直线有25条.当A、B均不为0时,从集合M中有序取出不等于0的三个元素的方法有A73=210种,而若采用一种方法取出的有序的三个元素,与另一种方法取出的有序的三个元素,恰好均为相反数时(如1,2,3与-1,-2,-3),两者作为直线Aχ+By+C=0中的系数得到的直线重合,再计算直线数量时应去掉,又因为集合M中没有-5,且A、B、C不相等,故当A、B均不为0时,直线有A73-=210-60=150条.故共有符合条件的直线25+25+150=200条.知识模块:计数原理11.由0,1,2,3,4,5六个数字中的数字组成的,没有重复数字,且大于23000的五位数共有( )种.A.120B.360C.432D.720正确答案:C解析:组成的五位数要大于23000,则该数字万位上不能为0或1,当万位取2时,千位只能从3,4,5中取一个,其他位上则只要不与万位、千位相同,且互不相同即可,故有C31A43=72种;当万位取3,4,5中的一个时,其他位上则只要不与万位相同,且互不相同即可,故有C31A54=360种,故符合条件的五位数共有72+360=432种.知识模块:计数原理12.在的展开式中的常数项是( ).A.-448B.-1120C.448D.1120正确答案:D解析:根据通项公式可得,Tr+1=C8r(2χ)8-r.C8r28-r(-1)rχ8-2χ,因为求常数项,故令8-2r=0,即r=4,所以T5=C84.(-1)4=1120.知识模块:计数原理13.(χ2+χ+1)7的展开式的系数的和为( ).A.37B.27C.1D.0正确答案:A解析:根据二项式定理可知,当χ=1时,(χ2+χ+1)7的值即是所求的系数和,故(χ2+χ+1)7=37.知识模块:计数原理14.0.9977的计算结果精确到O.001的近似值是( ).A.0.979B.0.980C.0.983D.1.021正确答案:A解析:因为0.9977=(1-0.003)7=1+7×(-0.003)1+21×(-0.003)2+…+(-0.003)7,而T3=21×(-0.003)2=0.000189《0.001,且第三项以后的项的绝对值远小于0.001,故从第三项起,以后的项均可忽略,所以0.9977≈1+7×(-0.003)1=1-0.021=0.979.知识模块:计数原理15.有三个学生要去四个工厂实习,现有A、B、C、D四个工厂供学生自由选择,但是A工厂必须有学生去,则不同的选择方案有( )种.A.30B.37C.45D.64正确答案:B解析:三个学生去A、B、C、D四个工厂实习的分配方案共用4×4×4=64(种),A工厂没有学生去实习的分配方案共有3×3×3=27(种),则A工厂必须有学生去实习的分配方案共有64-27=37(种).知识模块:计数原理16.小明有2本相同的相册和3本相同的笔记本,从中取出4本送给4个好朋友,每个朋友一本,则不同的赠送方法有( )种.A.6B.8C.10D.20正确答案:C解析:共有两种情况:(1)送两本相册和两本笔记本,共有C42=6种方法;(2)送一本相册和三本笔记本,共有C41=4种方法.故共有6+4=10种赠送方法.知识模块:计数原理17.从1,2,3,4,5,6,7,8,9中选出三个不同的数使之成等比数列,则这样的数列共有( )个.A.3B.6C.8D.10正确答案:B解析:这9个数能构成等比数列的有1、2、4,1、3、9和2、4、8三组,但要注意4、2、1,9、3、1和8、4、2是公比与前面三组不同的等比数列,故共有6组等比数列,答案选B.知识模块:计数原理18.红星小学为了美化学校环境,欲把教学楼后的空地修建成花园,其形状如图所示,其5块地打算分别栽种树、花和草,要求每块地栽种一种,且相邻两块地栽种的不能是同一类植物(即不能都是树,或都是花,或都是草),现有4种树、6种花和2种草可供选择,则共可有( )种栽种方案.A.1104B.2208C.12240D.95040正确答案:B解析:由于A地与周围四块地均相邻,则该块地所种植物的种类不能再种在其他四块地上.如果A地种树,则有4种,然后BCDE应种草和花,再根据题意,分为两种情况:一是BD种花,CE种草,有A62A22=60种种法;二是BD种草,CE种花,也有A62A22=60种,则有4×(60+60)=480种.如果A 地种花,则有6种,然后BCDE应种树和草,再根据题意,分为两种情况:一是BD种树,CE种草,有A42A22=24种;二是BD种草,CE种树,也有A42A22=24种,则有6×(24+24)=288种.如果A地种草,则有2种,然后BCDE应种树和花,再根据题意,分为两种情况:一是BD种树,CE种花,有A42A52=360种;二是BD种花,CE种树,有A62A42=360种,则有2×(360+360)=1440种.所以学校花园的栽种方案共可有480+288+1440=2208种.知识模块:计数原理19.某班级需从班级10名中、小队干部中选派人员参加周末两天的公益活动,要求每天有2人参加,而甲同学周六要参加学校军乐团的演出,乙和丙同学周日要参加区运动会,则不同的选派方法有( )种.A.940B.1008C.3704D.4032正确答案:B解析:因为题干中没有说明周末两天不能选派相同的人,则第一天的选法有C92种,第二天的选法有C82种,故共有C92C82=1008种.此题较为容易,但有考生可能会理解成两天不能选派相同的人参加,反而将题理解复杂了.知识模块:计数原理20.在(χ2+2)5的展开式中χ4的系数是( ).A.10B.10χ4C.80D.80χ4正确答案:C解析:根据通项公式可得,Tr-1=C5r(χ2)5-r2r=C5r2rχ10-2r,当10—2r =4,即r=3时,T4=C5323χ4=80χ4.知识模块:计数原理填空题21.从3名男生和6名女生中选出4名学生参加集体活动,要求至少有1名男生和2名女生,则共有_______种选法.正确答案:105解析:共可分为两种情况:(1)1名男生和3名女生参加:C31.C63=60种;(2)2名男生和2名女生参加:C32.C62=45种.依据分类计数原理,共有60+45=105种选法.知识模块:计数原理22.某老年活动中心安排4位大爷和4位大妈排练舞蹈参加晚会.舞会中有一个亮相动作需要8人排成一排,且大妈需按从矮到高的顺序排列,则共有_______种排法.正确答案:1680解析:有8个位置,先将大爷排在其中的4个位置上,有A84种排法,剩余四个空位中,大妈的排法固定,故共有A84=1680种排法.知识模块:计数原理23.(1+2χ)6的展开式中χ4的系数是_______.正确答案:240解析:二项展开式的通项公式Tr-1=Cnran-rbr,则χ4的系数是C64.24=240.知识模块:计数原理24.三(1)班有5名同学被选中去观看市中小学文艺汇演,主办方预留一排6个座位(一排只有6个座位)给这5名同学和1位带队教师,现需要带队教师安排座位,要求教师要坐在一边,以方便进出,5名学生中甲和乙要坐在一起,丙和丁不能坐在一起,则可能的座位排法有_______种.正确答案:48解析:首先用捆绑法,将甲和乙看成一个整体,与戊进行排列,有A22种排法,其中甲和乙的排序也有A22种,故甲、乙和戊三人的排法共有A22A22种;又由于丙和丁不能坐在一起,采用插空法,将丙和丁插入甲乙整体与戊排列后的三个空中(包括左右两侧),有A32种插法;插好后再将带队教师安排在最左侧或最右侧即可.故座位的排法共有A22A22A32C21=2×2×6×2=48种.知识模块:计数原理25.已知方程χ+y+z=8,且χ,y,z∈N+,则该方程解的个数是_______.正确答案:21解析:该题目可以理解为,将8个相同的球放入3个不同的盒子中,且不能有盒子为空,于是可将8个球排成一排,将两个隔板插入8个球之间的7个空中,且每个空只插入一个隔板,则有C72==21种插法,故原题目中方程的解也是21个.知识模块:计数原理26.的展开式的中间项的系数为_______.正确答案:1120解析:因为Tr+1=C8r,故当r==4时,T5为展开式的中间项.所以T5=C84,所以第五项系数a4=1120.考生需注意,题目所求的是中间项还是中间项的系数.知识模块:计数原理27.某公司开业庆典原本有5个节目,临时又加了2个,这两个节目不能放在最前面和最后面,共有_______种安排方法.正确答案:20解析:共有两种情况:(1)新加的两个节目不相邻,则有A42=12种安排方法;(2)新加的两个节目相邻,则有C41.A22=8种安排方法.故共有12+8=20种安排方法.知识模块:计数原理28.用0,1,2,3,4这5个数字中的4个组成的4位数中,能被6整除的数有_______个.正确答案:24解析:整数能被6整除,则其个位为偶数,且每一位上的数字之和能被3整除.0,1,2,3,4中的四个数的和能被3整除,则只有两种可能:0,1,2,3和0,2,3,4;另外,还要千位不能为0,个位为偶数.当取0,1,2,3四个数字时:①2在千位,则0一定在个位,故有A22=2种排法;②2不在千位上,则要从1,3之中取一个数字放在千位,再从0,2之中取一个数字放在个位,其他任排,故有C21C21A22=2×2×2=8种排法.当取0,2,3,4四个数字时:①3在千位时,其他位可任排,故有A33=6种排法;②3不在千位时,从2,4中取一个数字放在千位,在从剩下的两个偶数中取一个放在个位,其他任排,故有C21C21A22=8种排法.所以能被6整除的数共有2+8+6+8=24(个).知识模块:计数原理29.的展开式中的常数项为_______.正确答案:解析:二项展开式的通项为Tk+1=Cnkan-kbk=C6k,题干求展开式的常数项,故令3-k=0,解得k=3,故常数项为T4=.知识模块:计数原理30.(2χ-1)6的展开式中系数最大的项为_______.正确答案:240χ4解析:本题如果按照标准解法进行过于烦琐,其实因为(2χ-1)6的次数较低,最简单的方法是将所有系数写出来进行比较,又因为要求最大值,根据Tr+1=C6r(2χ)6-r(-1)r,只要写出r为偶数的项的系数即可,即a0=C6026,a2=C6224,a4=C6422,a6=C66,故最大的系数是a2=C6224,其对应的项是T3=C6224χ4=240χ4.知识模块:计数原理解答题31.已知(3χ-1)10=a0+a1χ+a2χ2+…+a10χ10,求:(1)a1+a4+a6+a8+a10的值;(2)2a0+a1+5a2+7a3+17a4+31a5+65a6+127a7+257a8+511a9+1025a10的值.正确答案:(1)因为(3χ-1)10=a0+a1χ+a2χ2+…+a10χ10,故当χ=1时,(3×1-1)10=210=a0+a1+a2+…+a10,当χ=-1时,[3×(-1)-1]10=(-4)10=410=a0-a1+a2+…+a9+a10,两式相加得,2(a0+a2+a4+a6+a8+a10)=210+410,又当χ=0时,(3×0-1)10=1=a0,所以可得a2+a4+a6+a8+a10=-1=29+219-1.(2)原式=(1+1)a0+(2-1)a1+(22+1)a2+(23-1)a3+…+(210+1)a10 =(a0+21a1+22a2+…+210a10)+(a0-a1+a2-a3+…+a10) =(3×2-1)10+[3×(-1)-1]10 =510+410.涉及知识点:计数原理32.求证6262-1能被3整除.正确答案:6262-1=(60+2)62-1 =C620.6062+C621.6061.2+C622.6060.22+…+C6261.60.261+C6262262-1 =3×20m+262-1(m∈N+) 又262-1=(22)31-1 =(3+1)31-1 =C310.331+C311.330+C312.329+…+C3130.3+C3131-1 =3n(n∈N+) 即原式=3×20m+3n =3(20m+n),(m,n/∈N+) 故6262-1能被3整除.涉及知识点:计数原理33.某班级进行班委会选举,有7名候选人(3男4女),求在下列不同的要求下,可能的选法数.(1)选择两名同学作为班长,一男一一女;(2)选择一名班长,一名副班长;(3)选择正、副班长各一人,要一男一女;(4)选择五名同学组成班委会,男女均不少于2人.正确答案:(1)由题意可知,从3名男生中选1人,再从4名女生中选1人,故有C31C41=3×4=12种选法.(2)由题意可知,从7名候选人中选择2人担任不同的职务,故有A72=7×6=42种选法.(3)由题意可知,从3名男生中选1人,再从4名女生中选1人,2人分别担任班长或副班长之职,故有C31C41A22=3×4×2=24种选法.(4)由题意可知,从7名候选人中选择5人,但要去掉只有1名男生的情况,故有C72-C31=-3=18种选法.涉及知识点:计数原理34.设Cχm=(χ∈R,m∈N+),且Cχ0=1,求证:Cχm+Cχm-1=C χ+1m.正确答案:涉及知识点:计数原理35.某市市区绿化面积约100平方千米,规划10年后人均绿化面积至少比现在提高10%,如果人口年增长率为1.2%,则市区绿化面积每年至少应增加多少平方千米?(精确到0.1平方千米)正确答案:设市区绿化面积应每年增加χ平方千米,该市人口为m人.依题意可知,100+10χ≥(1+10%).m(1+1.2%)10 整理得,χ≥11×1.01210-10=11×(1+0.012)10-10 又(1+0.012)10=1+C1010.0.012+C102.0.0122+…+C1010.0.01210≈1+10×0.012=1.12 故χ≥2.3.答:市区绿化面积每年至少要增加2.3平方千米.涉及知识点:计数原理。

教师资格考试小学综合素质2024年下半年模拟试卷及解答

教师资格考试小学综合素质2024年下半年模拟试卷及解答

2024年下半年教师资格考试小学综合素质模拟试卷及解答一、单项选择题(本大题有29小题,每小题2分,共58分)1、孔子说:“其身正,不令而行;其身不正,虽令不从。

”这句话体现了教师的( )对学生具有潜移默化的影响。

A. 示范性B. 主体性C. 发展性D. 创造性答案:A解析:本题考查教师劳动的特点。

选项A,教师劳动的示范性是指教师的言行举止,如人品、才能、治学态度等都会成为学生学习的对象。

题干中“其身正,不令而行;其身不正,虽令不从”的意思是当管理者自身端正,作出表率时,不用下命令,被管理者也就会跟着行动起来;相反,如果管理者自身不端正,而要求被管理者端正,那么,纵然三令五申,被管理者也不会服从的。

这体现了教师的言行举止会对学生产生潜移默化的影响,体现了教师劳动的示范性。

故A项正确。

选项B,教师劳动的主体性是指教师自身可以成为活生生的教育因素和具有影响力的榜样。

与题干不符,故排除。

选项C,教师劳动的发展性是指教师劳动的对象是未成年人,他们处在迅速成长之中,是具有发展潜力的人。

与题干不符,故排除。

选项D,教师劳动的创造性是指教师劳动手段、方法、途径的创造性和教师劳动的对象的创造性。

与题干不符,故排除。

2、班主任在班级管理体制中的领导影响力主要表现在两个方面:一是职权影响力;二是( )。

A. 年龄影响力B. 性别影响力C. 个性影响力D. 学术影响力答案:C解析:本题考查班主任的领导影响力。

选项A,年龄影响力并不是班主任在班级管理体制中的领导影响力的主要表现,故排除。

选项B,性别影响力同样不是班主任在班级管理体制中的领导影响力的主要表现,故排除。

选项C,班主任在班级管理体制中的领导影响力,主要表现在职权影响力和个性影响力上。

个性影响力是指班主任的个性特征与人格魅力对班级学生所起的影响作用。

班主任的热情、诚恳、和蔼、正直、自信等个性品质,对学生有着强烈的感染力。

班主任的理想、信念、道德、情操、人格等对学生起着榜样示范的作用,是形成班集体凝聚力的重要条件。

教师公开招聘考试小学数学(数与代数)模拟试卷2(题后含答案及解析)

教师公开招聘考试小学数学(数与代数)模拟试卷2(题后含答案及解析)

教师公开招聘考试小学数学(数与代数)模拟试卷2(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题10. 判断题选择题1.我国最长的河流——长江全长约为6300000米,用科学记数法可表示为( ).A.63×105米B.6.3×106米C.630千米D.6300千米正确答案:B解析:6300000米=6.3×106米.知识模块:数与代数2.已知一个小数的小数点分别向右和向左移动一位,所得的两个数之差为10.89,则原小数为( ).A.1.01B.1.1C.10.1D.11.1正确答案:B解析:可以设原小数为χ,则由题意可知10χ-0.1χ=10.89,解方程得χ=1.1.知识模块:数与代数3.某学校为了美化环境,欲改造一块边长分别为48米、72米、84米、96米的四边形空地,其中一项是在空地四边种树,要求四个顶点上要各有一棵,并且每棵树的间距相同,请问最少要准备多少棵树苗?( )A.23B.24C.25D.26正确答案:C解析:由已知可得,要想种的树最少,则需求四个边长的最大公约数,这个最大公约数即为每棵树的间距.又因为48=3×24,72=23×32,84=22×3×7,96=25×3,故这四个数的最大公约数为12,即每棵树的间距为12米,所以需要树苗的最少量为=25(棵).知识模块:数与代数4.三(1)班共有学生52人参加期末考试,其中第一题有41人答对,第二题有36人答对,第三题有37人答对,则三(1)班里三道题均答对的人数最多和最少分别有多少?( )A.37,11B.36,10C.41,15D.42,16正确答案:B解析:三道题均答对的人数最多的可能是三道题中每题分别答对的人数中最少的一个恰好是三道题都答对的,故最多可能是36人;若想求三道题均答对的人数最少的可能,首先求每道题答错的人数分别为11、16和15,则三道题均答对的人数最少可能是52-(11+16+15)=10人,故本题选B.知识模块:数与代数5.下面每组数中是互质数的是( ).A.8和10B.12和13C.6和9D.15和57正确答案:B解析:A项8和10有公因数2,C项6和9有公因数3,D项15和57有公因数3.故选B.知识模块:数与代数6.下列运算正确的是( ).A.a2+a3=a5B.a2+b2=(a+b)2C.a2.a3=a5D.a2.b2=(ab)4正确答案:C解析:a2+a3=a2(1+a),故A项错误;a2+b2不能合并,故B项错误;a2.a3=a2+3=a5,故C项正确;a3.b2=(ab)2,故D项错误.因此本题选C.知识模块:数与代数7.下列说法正确的是( ).A.0是自然数B.1>0.9C.1是最小的质数D.小数均可以化为分数正确答案:A解析:1=0.9,B项错误;1既不是质数,也不是合数,C项错误;无限不循环小数不能化为分数,如π,D项错误.故本题选A.知识模块:数与代数8.定义a=(a+b)b,则34+5(21)=( ).A.27B.52C.58D.103正确答案:B解析:由以b=(a+b)b可得,34+5(21)=(3+4)×4+5[(2+1)×1]=28+53=28+(5+3)×3=52.知识模块:数与代数9.多多有一项暑假作业,将1到100这100个阿拉伯数字写一遍.要完成这项作业,他共需要写( )遍“1”这个数字.A.19B.20C.21D.22正确答案:C解析:首先将1到99这99个数按十位数字从0到9分成十组,其中除了十位数字是“1”的一组外,其他九组中每组只有一个数含有数字“1”,并且每个数中“1”只出现一次,故共有9个数字“1”;而十位数字是“1”的一组中的10个数均含有数字“1”,且11出现两次数字“1”,故这组数中共出现11个数字“1”,再加上100这个数中的数字“1”,所以共需要写数字“1”的次数是9+11+1=21次.知识模块:数与代数10.化简,其结果是( ).A.B.C.D.正确答案:D解析:知识模块:数与代数11.分式方程=1的解χ=( ).A.B.C.D.1或正确答案:B解析:原方程去分母得,2χ-(χ+2)(χ-1)=χ2-1,去括号、移项、合并同类项并分解因式可得,(2χ-3)(χ+1)=0,解得,χ=-1或χ=,经检验,χ=-1不是原方程的解,故原方程的解为χ=.本题干中的方程比较简单,可用代入法验证方程的解.知识模块:数与代数12.已知m、n满足,则m2-mn-2n2=( ).A.B.C.2D.正确答案:A解析:解二元一次方程组得,,所以m2-mn-2n2=(m-2n)(m+n)=知识模块:数与代数13.一元二次方程aχ2+bχ+c=0(n≠0)有两个不相等的实根,则b2-4ac 满足的条件是( ).A.b2-4ac=0B.b2-4ac>0C.b2-4ac<0D.b2-4ac≥0正确答案:B解析:由韦达定理可知,方程有两个不相等的实数根时,判别式大于零.B 项正确.知识模块:数与代数14.若n(n≠0)是关于χ的方程χ2+mχ+2n=0的根,则m+n的值为( ).A.1B.2C.-1D.-2正确答案:D解析:因为n为方程χ2+mn+2n=0的根,所以n2+mn+2n=0(n≠0),所以n(n+m+2)=0,又因为n≠0,所以n+m+2=0,所以m+n=-2,故选D.知识模块:数与代数填空题15.鸡兔同笼,从上面数,头有23个,从下面数,脚有62只,则兔的只数为_______只.(只列出算式,不算出结果)正确答案:(62-23×2)÷(4-2)解析:根据题意,可首先假设23只动物均为鸡,则脚的数目应是23×2只,但实际上脚有62只,则实际上比假设全是鸡的情况下多(62-23×2)只脚.且一只兔比一只鸡要多(4-2)只脚,即可理解为每多(4-2)只脚就有1只兔,则兔的只数为(62-23×2)÷(4-2)只.知识模块:数与代数16.20152014×20142015-20152015×20142014=_______.正确答案:10000解析:20152014×20142015-20152015×20142014 =20152014×20142015-20l 52014×20142014-20142014 =20152014×(20142015-20142014)-20142014 =20152014-20142014 =10000.知识模块:数与代数17.在一幅中国地图上,用5厘米的距离表示50千米的实际距离,这幅地图的比例尺是_______.正确答案:1:1000000解析:5厘米:50千米=1:1000000.知识模块:数与代数18.已知a、b互为相反数,并且3a-2b=5,则a2+b2=_______.正确答案:2解析:a、b互为相反数,即a=-b,则3a-2b=3(-b)-26=-56=5,b =-1,a=1,则a2+b2=(-1)2+12=2.知识模块:数与代数19.分数单位是的所有最简真分数的和的倒数是_______.正确答案:解析:=3,所以,倒数是.知识模块:数与代数20.写出一个大于1且小于4的无理数_______.正确答案:涉及知识点:数与代数21.已知|a-3.25|+=0,则a、b、c从小到大排列的顺序为_______.正确答案:c<a<b解析:由|a-3.25|+=0可得,a=3.25=,b=,c=,而,所以c<a<b.知识模块:数与代数22.已知p=,则p3+q3_______.正确答案:解析:因为p=,所以p+q=,p-q=,pq=1,故p+q=(p+q) (p2-pq+q2)=(p+q)[(p-q)2+pq]=知识模块:数与代数23.已知关于χ的一元二次方程aχ2-χ+2=0有两个实数解,则a的取值范围为_______.正确答案:a≤且a≠0解析:由已知可得,△=(-1)2-4a×2=1-8a≥0,即a≤,又原方程为一元二次方程,故a≠0,所以a的取值范围为a≤且a≠0.知识模块:数与代数解答题24.用简便算法计算下列算式.(1)108×92-42×8;(2)3.78×2.2+1.7×1.22+1.12×0.5.正确答案:(1)108×92-42×8 =(100+8)(100-8)-(50-8)×8 =1002-82-50×8+82 =10000-400 =9600 (2)3.78×2.2+1.7×1.22+1.12×0.5 =3.78×2.2+1.7×1.22+(1.22-0.1)×0.5 =3.78×2.2十(1.7+0.5)×1.22-0.1×0.5 =3.78×2.2+2.2×1.22-0.05 =(3.78+1.22)×2.2-0.05 =5×2.2—0.05 =11-0.05 =10.95 涉及知识点:数与代数25.根据已知条件,求下列代数式的值.(1)已知a=,求代数式的值;(2)已知2χ+y=0,求的值.正确答案:(1) 又因为a=,则原式=.由2χ+y=0,得y=-2χ.代入上式,得原式=.涉及知识点:数与代数26.已知m2+m=,求代数式6m4+10m3+3m2的值.正确答案:6m4+10m3+3m2 =(6m4+4m3+2m2)+(6m3+4m2+2m)-(3m2+2m+1)+1 =2m2(3m2+2m+1)+2m(3m2+2m+1)-(3m2+2m +1)+1 =(2m2+2m-1)(3m2+2m+1)+1 又因为m2+m=,则原式=(2×1-1)(3m2+2m+1)+1=0+1=1.涉及知识点:数与代数27.甲、乙两个工程队预计用20天的时间铺设一段5千米长的输油管道.当工程进行了5天后,甲工程队因有其他项目而离开,此工程由乙工程队单独完成,为了尽量追赶进度,乙工程队每天的施工速度提高了,但最终还是比预计晚了10天,则乙工程队原来每天的施工速度.正确答案:设甲工程队的施工速度是χ米/天,乙工程队原来的施工速度是y米/天.则由题意可得,解方程组得.答:乙工程队原来的施工速度是120米/天.涉及知识点:数与代数28.甲、乙两个工人加工一批零件,若甲、乙单独完成,甲比乙多用5天,若甲、乙两人合作,6天可以完成.(1)求两人单独完成加工各需多少天? (2)若两人合作6天完成后,收到加工费用5000元,求甲、乙两人分别可得多少钱?正确答案:(1)设甲单独加工完成需χ天,则乙单独加工完成需(χ-5)天,由题意可知,,化简得χ2-17χ+30=0,解得χ1=2,χ2=15,当χ=2时,χ-5=-3,不符合题意,当χ=15时,χ-5=10,符合题意,因此甲单独完成需15天,乙单独完成需10天.(2)由题可知,甲完成的工作量为总量的,乙完成的工作量为总量的,则×5000=2000,×5000=3000,所以甲得加工费用2000元,乙得3000元.答:甲单独加工完成需15天,则乙单独加工完成需10天;甲得加工费用2000元,乙得3000元.涉及知识点:数与代数判断题29.减数与差的和,等于被减数、减数与差的和的一半.( )A.正确B.错误正确答案:A解析:因为被减数=减数+差,所以被减数+减数+差=2(减数+差).知识模块:数与代数30.整数比自然数多.( )A.正确B.错误正确答案:A解析:整数包括正整数、负整数和零.自然数包括正整数和零.因此,整数比自然数多.知识模块:数与代数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[职业资格类试卷]教师公开招聘考试小学数学(数列)模拟试卷3
一、选择题
1 ,…的通项公式为
( ).
2 在数列{a n}中,a1=3,a n=一3a n—1+1,则a4=( ).
(A)一30
(B)一52
(C)一74
(D)一90
3 在数列{a n}中,a3=3,a9=27,通项公式是项数n的一次函数,则数列{a n}的通项公式为( )
(A)a n=4n一1.
(B)a n=2n+1.
(C)a n=4n一9.
(D)a n=6n一3.
4 数列{a n}、{b n}都是等差数列,若a2+b2=8,a5+b5=20,则a7+b7=( ).
(A)28
(B)30
(C)32
(D)34
5 已知一个等差数列前三项的和为15,末三项的和为33,前n项的和为160,则项数n为( ).
(A)12
(B)15
(C)18
(D)20
6 若数列{a n}、{b n}均为等差数列,前n项和分别为S n、T n,且
=( ).
(A)2
(B)3
(C)4
(D)5
7 在各项都是正数的等比数列{a n}中,公比q==( ).(A)6
(B)8
(C)10
(D)12
8 已知{a n}为递减等比数列,a3+a6=9,a4a5=8,则a2+a9=( ).
(A)4
(B)
(C)
(D)
9 设等比数列{a n}的前n项和为S n,已知4a3一a5=0,则
=( ).
10 数列{a n}为公差不为0的等差数列,其首项a1为a(a∈R),且数列是等比数列,则数列{a n}的通项公式为
( ).
11 数列一1,14,一11,24,…的一个通项公式为( ).
(A)15n一16
(B)5n一4
(C)(一1)n.5n+4
(D)(一1)n(5n一4)
12 已知31=3,32=9,33=27,…则32014的个位数字为( ).
(A)1
(B)3
(C)7
(D)9
13 △ABC的三个角A、B、C成等差数列,则△ABC( ).
(A)一定是锐角三角形
(B)可能是直角三角形
(C)一定不是钝角三角形
(D)是等边三角形
14 已知数列{a n}的通项公式为a n=kn2+n+1(n∈N+),若数列是递增数列,则k的取值范围为( ).
(A)k>一
(B)k>0
(C)k≥0
(D)k<
15 已知{a n}为等差数列,其公差d=一3,若S7=S8,则a1=( ).
(A)21
(B)24
(C)一24
(D)一21
16 已知{a n}为等比数列,a n>0,a3=4x,a4=x+4,a5=x+2,则
x=( ).
17 已知{a n}为等比数列,a n均为正数,a3=4,a5=1,则该数列各项的和为( ).(A)
(B)32
(C)63
(D)+∞
18 已知{a n}为等差数列,其中a2、a3、a6又成等比数列,则=( ).
(A)
(B)
(C)3
(D)无法求出
19 已知函数f(x)=3一|x|,数列{a n}满足a n=f(a n—1)(n>1,n∈N+),若a1>0,且数列前三项恰好成等比数列,则
a n=( ).
20 已知{a n}为等比数列,其前n项和为S n,若
=( ).
二、填空题
21 已知数列{a n},a1=3,a n+1=a n.则数列{a n}的通项公式为_________.
22 已知数列{log3(a n+1))(n∈N’)为等差数列,a2=2,a4=26,则数列{a n}的通项公式为_________.
23 已知等比数列{a n}为递减数列,且a32=6a6,2a n=7a n+1一3a n+2,则数列{a n}的通项公式为_________.
24 已知f(x)=,则f(一4)+f(一3)+…+f(0)+f(1)+…+f(4)+f(5)= _________.
25 已知数列{a n}为等比数列,其中a1=一,a4=9,则|a n|+|a2|+…+|a n|
=_________.
三、解答题
26 设数列{a n}满足a1=2,a n+1—a n=3.22n—1. (1)求数列{a n}的通项公式; (2)令
b n=na n,求数列{b n}的前n项和S n.
27 已知数列{a n}是等比数列,且其公比不为1,a7,5,a6成等差数列,其前n项和为S n. (1)求数列{a n}的公比; (2)证明:对任意m∈N*,S m+2,S m,S m+1成等差数列.
28 在等差数列{a n}中,a3+a4+a5=84,a9=73. (1)求数列{a n}的通项公式; (2)对任意m∈N*,将数列{a n}中落入区间(9m,92m)内的项的个数记为b m,求数列{b m}的前m 项和S m.
四、证明题
29 证明:(1)在数列{a n}中,若a1=2,a n—1一a n=4a n a n—1(n≥2),则数列{}为等差数列. (2)在数列{a n}中,若a1=1,a n+3a n—1+8=0(n≥2),则数列{a n+2}为等比数列.。

相关文档
最新文档