1.4传输线的传输功率、效率与损耗

合集下载

微波天线与技术课程报告汇总

微波天线与技术课程报告汇总

微波天线与技术课程报告汇总《微波技术与天线》课程考察报告姓名:专业班级:学号:指导老师:许焱平绪论1.微波技术是研究微波信号的产生、传输、变换、发射、接收和测量的一门学科,它的基本理论是经典的电磁场理论,研究电磁波沿传输线的传播特性有两种分析方法。

一种是“场”的分析方法,即从麦克斯韦方程出发,在特定边界条件下解电磁波动方程,求得场量的时空变化规律,分析电磁波沿线的各种传输特性;另一种是“路”的分析方法,即将传输线作为分布参数电路处理,用克希霍夫定律建立传输线方程,求得线上电压和电流的时空变化规律,分析电压和电流的各种传输特性。

2.微波的定义:把波长从1m 到0.1mm 范围内的电磁波称为微波。

微波波段对应的频率范围为: 300MHz ~3000GHz 。

在整个电磁波谱中,微波介于超短波与红外线之间,是频率最高的无线电波,它的频带宽度比所有普通无线电波波段总和宽1000倍。

一般情况下,微波又可划分为分米波、厘米波和毫米波和亚毫米四个波段。

3.微波具有如下主要特点:(1)似光性;(2)穿透性;(3)宽频带特性;(4)热效应特性;(5)散射特性;(6)抗低频干扰特性;(7)视距传输特性;(8)分布参数的不确定性;(9)电磁兼容和电磁环境污染。

4.微波技术的主要应用:(1)在雷达上的应用;(2)在通讯方面的应用;(3)在科学研究方面的应用;(4)在生物医学方面的应用;(5)微波能的应用。

f λ31081051010(m)(Hz)3103231063109-13101210-43101510-73101810-10无线电波宇宙射线射频目录绪论 (1)目录 (2)一、均匀传输线理论 (3)二、规则金属波导 (4)三、微波集成传输线……………………5四、微波网络基础 (5)五、微波元器件 (6)六、天线辐射与接收的基本理论 (7)七、电波传播概论 (8)八、线天线 (9)九、面天线 (10)十、微波应用系统 (11)心得体会 (12)本课程我们共学习了十章,主要学习了均匀传输线理论、规则金属波导、微波集成传输线、微波网络基础、微波元器件、天线辐射与接收理论、电波传播概论、线天线、面天线、微波应用系统。

1.4传输线的传输功率、效率与损耗

1.4传输线的传输功率、效率与损耗

1.4 传输线的传输功率、效率与损耗传输线传输功率效率与损耗传输功率本节要点传输效率 损耗 功率容量Decibels (dB)作为单位功率值常用分贝来表示,这需要选择一个功率单位作为参考,常用的参考单位有1mW 和1W 。

如果用1mW 作参考,分贝表示为:=)mW (lg 10)dBm (P P 如1mW=0dBm 10mW=10dBm 1W=30dBm 0.1mW=−10dBm如果1W 作参考,分贝表示为:如1W=0dBW10W=10dBW0.1W=−10dBW)W (lg 10)dB (P P =插入损耗1.5 阻抗匹配阻抗匹配具有三种不同的含义,分别是负载阻抗匹配、源阻抗匹配和共轭阻抗匹配。

抗匹配源阻抗匹配和共轭阻抗匹配本节内容三种匹配阻抗匹配的方法与实现1. 三种匹配(impedance matching)入射波射波反射波Z 0Z lZ (1)g负载阻抗匹配:负载阻抗等于传输线的特性阻抗。

此时传输线上只有从信源到负载的入射波,而无反射波。

(2)源阻抗匹配:电源的内阻等于传输线的特性阻抗。

()阻抗内阻等传输线特性阻抗对匹配源来说,它给传输线的入射功率是不随负载变化的,负载有反射时,反射回来的反射波被电源吸收。

E gZ gZ in=Z g* E g负载阻抗匹配Z l =Z 0 Z =Z 信号源阻抗匹配g 0 共轭阻抗匹配Z in =Z g *匹配器1匹配器2*g in ZZ =Z in =Z 02. 阻抗匹配的实现方法隔离器或阻抗匹配衰减器负载匹配的方法:从频率上划分有窄带匹配和宽带匹配;从实现手段上划分有λ/4阻抗变换器法、支节调配法。

(1) λ/4阻抗变换器匹配方法此处接λ/4阻抗变换器lR Z Z 001=Z Z =0in电容性负载Z 0若是l 1λ/401Z Z =电感性负载又如何?Z 0Z 0Z 01ρR x =Z 0/ρZ i n =Z 0(2) 支节调配法(stub tuning)(2)(i)支节调配器是由距离负载的某固定位置上的并联或串联终端短路或开路的传输线(称之为支节)构成的。

微波技术与天线复习知识要点

微波技术与天线复习知识要点

微波技术与天线复习知识要点绪论●微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段;●微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~●微波的特点要结合实际应用:似光性,频率高频带宽,穿透性卫星通信,量子特性微波波谱的分析第一章均匀传输线理论●均匀无耗传输线的输入阻抗2个特性定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关;两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in z= Z in z+λ/22、λ/4变换性: Z in z- Z in z+λ/4=Z02证明题:作业题●均匀无耗传输线的三种传输状态要会判断1.行波状态:无反射的传输状态▪匹配负载:负载阻抗等于传输线的特性阻抗▪沿线电压和电流振幅不变▪电压和电流在任意点上同相2.纯驻波状态:全反射状态▪负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数●传输线的三类匹配状态知道概念▪负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波;▪源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源;此时,信号源端无反射;▪共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值;共轭匹配的目的就是使负载得到最大功率;●传输线的阻抗匹配λ/4阻抗变换P15和P17●阻抗圆图的应用与实验结合史密斯圆图是用来分析传输线匹配问题的有效方法;1.反射系数圆图:Γz=|Γ1|e jΦ1-2βz= |Γ1|e jΦΦ1为终端反射系数的幅度,Φ=Φ1-2βz是z处反射系数的幅角;反射系数圆图中任一点与圆心的连线的长度就是与该点相应的传输线上某点处的反射系数的大小;2.阻抗原图点、线、面、旋转方向:➢在阻抗圆图的上半圆内的电抗x>0呈感性,下半圆内的电抗x<0呈容性;➢实轴上的点代表纯电阻点,左半轴上的点为电压波节点,其上的刻度既代表r min又代表行波系数K,右半轴上的点为电压波腹点,其上的刻度既代表r max又代表驻波比ρ;➢|Γ|=1的圆图上的点代表纯电抗点;➢实轴左端点为短路点,右端点为开路点,中心点处是匹配点;➢在传输线上由负载向电源方向移动时,在圆图上应顺时针旋转,;反之,由电源向负载方向移动时,应逆时针旋转;3.史密斯圆图:将上述的反射系数圆图、归一化电阻圆图和归一化电抗圆图画在一起,就构成了完整的阻抗圆图;4.基本思想:➢特征参数归一阻抗归一和电长度归一;➢以系统不变量|Γ|作为史密斯圆图的基底;➢把阻抗或导纳、驻波比关系套覆在|Γ|圆上;●回波损耗、功率分配等问题的分析✓回波损耗问题:1.定义为入射波功率与反射波功率之比通常以分贝来表示,即Lrz=10lgP in/Pr dB对于无耗传输线,ɑ=0,Lr与z无关,即Lrz=-20lg|Γ1| dB2.插入损耗:定义为入射波功率与传输功率之比3.|Γ1|越大,则| Lr |越小;|Γ1|越小,则| L in|越大;P21:有关回波损耗的例题例1-4✓功率分配问题:1.入射波功率、反射波功率和传输功率计算公式反映出了它们之间的分配关系;P192.传输线的传输效率:η=负载吸收功率/始端传输功率3.传输效率取决于传输线的损耗和终端匹配情况第二章规则金属波导●导波系统中的电磁波按纵向场分量的有无,可分为TE波、TM波和TEM波三种类型;知道概念➢TEM波:导行波既无纵向磁场有无纵向电场,只有横向电场和磁场,故称为横电磁波;E z=0而H z=0➢TM波E波:只有纵向电场,又称磁场纯横向波;E z≠0而H z=0➢TE波H波:只有纵向磁场,又称电场纯横向波;E z=0而H z≠0●导行条件:k c<k时,f>f c为导行波;●矩形波导、圆波导主要模式的特点及应用✧矩形波导:将由金属材料制成的、矩形截面的、内充空气的规则金属波导称为矩形波导;1)纵向场分量E z和H z不能同时为零,不存在TEM波;2)TE波:横向的电波,纵向场只有磁场;➢TE波的截止波数k c,➢矩形波导中可以存在无穷多种TE导模,用TE mn表示;➢最低次波形为TE10,截止频率最低;3)TM波➢TM11模是矩形波导TM波的最低次模,其他均为高次模;4)主模TE10的场分布及其工作特性➢主模的定义:在导行波中截止波长最长截止频率最低的导行模➢特点:场结构简单、稳定、频带宽和损耗小等;✧圆波导:若将同轴线的内导体抽走,则在一定条件下,由外导体所包围的圆形空间也能传输电磁能量,这就是圆形波导;➢应用:远距离通信、双极化馈线以及微波圆形谐振器等;➢圆形波导也只能传输TE和TM波形;➢主模TE11,截止波长最长,是圆波导中的最低次模;圆波导中TE11模的场分布与矩形波导的TE10模的场分布很相似,因此工程上容易通过矩形波导的横截面逐渐过渡变为圆波导;即构成方圆波导变换器;➢圆对称TM01模:圆波导的第一个高次模,由于它具有圆对称性故不存在极化简并模;因此常作为雷达天线与馈线的旋转关节中的工作模式;➢低损耗的TE01模:是圆波导的高次模式,它与TM11模是简并模;它是圆对称模,故无极化简并;当传输功率一定时,随着频率升高,管壁的热损耗将单调下降;故其损耗相对于其他模式来说是低的,故可将工作在此模式下的圆波导用于毫米波的远距离传输或制作高Q值的谐振腔;●熟悉模式简并概念及其区别1.矩形波导中的E-H简并:对相同的m和n,TE mn和TM mn模具有相同的截止波长或相同的截止频率;虽然它们的场分布不同,但是具有相同的传输特性;2.圆波导中有两种简并模:➢E-H简并:TE0n模和TM1n模的简并➢极化简并模:考虑到圆波导的轴对称性,因此场的极化方向具有不确定性,使导行波的场分布在φ方向存在cosmφ和sinmφ两种可能的分布,它们独立存在,相互正交,截止波长相同,构成同一导行模的极化简并模;●熟悉矩形波导壁电流分布及应用●波导激励的几种类型1.电激励2.磁激励3.电流激励●方圆波导转换器的作用圆波导中TE11模的场分布与矩形波导的TE10模的场分布很相似,因此工程上容易通过矩形波导的横截面逐渐过渡变为圆波导;即构成方圆波导变换器;第三章微波集成传输线●带状线、微带线的结构及特点1.带状线:➢是由同轴线演化而来的,即将同轴线的外导体对半分开后,再将两半外导体向左右展平,并将内导体制成扁平带线;➢主要传输的是TEM波;可存在高次模;➢用途:替代同轴线制作高性能的无源元件;➢特点:宽频带、高Q值、高隔离度➢缺点:不宜做有源微波电路;2.微带线:➢是由双导体传输线演化而来的,即将无限薄的导体板垂直插入双导体中间,再将导体圆柱变换成导体带,并在导体带之间加入介质材料,从而构成了微带线;微带线是半开放结构;➢工作模式:准TEM波●带状线、微带线特征参数的计算会查图➢带状线和微带线的传输特性参量主要有:特性阻抗Z0、衰减常数ɑ、相速v p和波导波长λg ●介质波导主模及其特点➢主模HE11模的优点:a)不具有截止波长;b)损耗较小;c)可直接由矩形波导的主模TE10激励;第四章微波网络基础●熟练掌握阻抗参量、导纳参量、转移参量、散射参量结合元件特性和传输参量的定义P84-P93➢阻抗矩阵Z➢导纳矩阵Y➢转移矩阵A➢散射矩阵S➢传输矩阵T●掌握微波网络思想在微波测量中的应用三点法的条件➢前提条件:令终端短路、开路和接匹配负载时,测得的输入端的反射系数分别为Γs,Γo和Γm,从而可以求出S11, S12, S22;第五章微波元器件●匹配负载螺钉调配器原理、失配负载;衰减器、移相器作用➢匹配负载作用:消除反射,提高传输效率,改善系统稳定性;➢螺钉调配器:螺钉是低功率微波装置中普遍采用的调谐和匹配原件,它是在波导宽边中央插入可调螺钉作为调配原件;螺钉深度不同等效为不同的电抗原件,使用时为了避免波导短路击穿,螺钉·都设计成为了容性,即螺钉旋入波导中的深度应小于3b/4b为波导窄边尺寸;➢失配负载:既吸收一部分微波功率又反射一部分微波功率,而且一般制成一定大小驻波的标准失配负载,主要用于微波测量;➢衰减器,移相器作用:改变导行系统中电磁波的幅度和相位;●了解定向耦合器的工作原理P106➢定向耦合器是一种具有定向传输特性的四端口元件,它是由耦合装置联系在一起的两对传输系统构成的;➢利用波程差;●熟练掌握线圆极化转换器的工作原理及作用●了解场移式隔离器的作用P122➢根据铁氧体对两个方向传输的波型产生的场移作用不同而制成的;●了解铁氧体环行器的分析及作用P123➢环行器是一种具有非互易特性的分支传输系统;第六章天线辐射与接收的基本理论第七章电波传播概论●天波通信、地波通信、视距波通信的概念1.天波通信:指自发射天线发出的电波在高空被电离层反射后到达接收点的传播方式,也成为电离层电波传播;主要用于中波和短波波段2.地波通信:无线电波沿地球表面传播的传播方式;主要用于长、中波波段和短波的低频段;3.视距波通信:指发射天线和接收天线处于相互能看见的视距距离内的传播方式;地面通信、卫星通信以及雷达等都可以采用这种传播方式;主要用于超短波和微波波段的电波传播●天线的作用●无线电波传输是产生失真的原因无线电波通过煤质除产生传输损耗外,还会使信号产生失真——振幅失真和相位失真两个原因:1.煤质的色散效应:色散效应是由于不同频率的无线电波在煤质中的传播速度有差别而引起的信号失真;2.随机多径传输效应:会引起信号畸变;因为无线电波在传输时通过两个以上不同长度的路径到达接收点;接收天线收到的信号是几个不同路径传来的电场强度之和;。

无线数据传输功率损耗计算

无线数据传输功率损耗计算

无线数据传输功率损耗计算功率灵敏度(dBm dBmV dBuV)dBm=10log(Pout/1mW),其中Pout是以mW为单位的功率值dBmV=20log(Vout /1mV),其中Vout是以mV为单位的电压值dBuV=20log(Vout /1uV),其中Vout是以uV为单位的电压值换算关系:Pout=Vout×Vout/RdBmV=10log(R/0.001)+dBm,R为负载阻抗dBuV=60+dBmV应用举例无线通信距离的计算这里给出自由空间传播时的无线通信距离的计算方法:所谓自由空间传播系指天线周围为无限大真空时的电波传播,它是理想传播条件。

电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射。

通信距离与发射功率、接收灵敏度和工作频率有关。

[Lfs](dB)=32.44+20lgd(km)+20lgf(MHz)式中Lfs为传输损耗,d为传输距离,频率的单位以MHz计算。

由上式可见,自由空间中电波传播损耗(亦称衰减)只与工作频率f和传播距离d有关,当f或d增大一倍时,[Lfs]将分别增加6dB.下面的公式说明在自由空间下电波传播的损耗Los = 32.44 + 20lg d(Km) + 20lg f(MHz)Los=20Lg(4π/c)+20Lg(f(Hz))+20Lg(d(m))=20Lg(4π/3x10^8) +20Lg(f(MHz)x10^6)+20Lg(d(km)x10^3)=20Lg(4π/3)-160+20Lgf+120+20Lgd+60=32.45+20Lgf+20Lgd, d 单位为km,f 单位为MHzLos 是传播损耗,单位为dB,一般车内损耗为8-10dB,馈线损耗8dBd是距离,单位是Kmf是工作频率,单位是MHz例:如果某路径的传播损耗是50dB,发射机的功率是10dB,那末接收机的接收信号电平是-40dB。

下面举例说明一个工作频率为433.92MHz,发射功率为+10dBm(10mW),接收灵敏度为-105dBm的系统在自由空间的传播距离:1. 由发射功率+10dBm,接收灵敏度为-105dBmLos = 115dB2. 由Los、f计算得出d =30公里这是理想状况下的传输距离,实际的应用中是会低于该值,这是因为无线通信要受到各种外界因素的影响,如大气、阻挡物、多径等造成的损耗,将上述损耗的参考值计入上式中,即可计算出近似通信距离。

传输线与变压器工作方式特点

传输线与变压器工作方式特点

传输线与变压器工作方式特点一、传输线的工作方式特点1. 传输线的定义传输线是一种用于将电能或信号从一个地方传输到另一个地方的设备,通常由导体、绝缘层和外部层组成。

2. 传输线的工作原理当电信号通过导体时,会在导体内部产生电场和磁场。

这些电场和磁场会相互作用,形成一种波动,即所谓的电磁波。

这些电磁波会沿着导线向前传播,并在终端处被接收。

3. 传输线的特点(1)信号衰减小:由于导体内部电阻小,因此信号在传输过程中衰减较小;(2)带宽高:由于信号可以以较高的频率进行传输,因此带宽较高;(3)抗干扰能力强:由于采用了屏蔽措施和绝缘措施,因此抗干扰能力强。

二、变压器的工作方式特点1. 变压器的定义变压器是一种将交流电能从一个电路转移到另一个电路,并改变其大小或形式的设备。

它通常由两个或更多个线圈和一个铁芯组成。

2. 变压器的工作原理变压器的工作原理基于电磁感应定律。

当一个交流电源施加在一个线圈上时,会产生一个交变磁场。

这个磁场会穿过另一个线圈,并在其中产生一定的电势差。

3. 变压器的特点(1)功率大:由于变压器采用了铁芯,因此可以承载较大的功率;(2)效率高:由于变压器内部没有机械运动部件,因此效率较高;(3)可靠性高:由于变压器内部结构简单,因此可靠性较高。

三、传输线与变压器的联系1. 传输线与变压器的关系传输线和变压器都是用来传输电能或信号的设备。

传输线主要用于将信号从一个地方传输到另一个地方,而变压器主要用于改变电能大小或形式。

2. 传输线与变压器的配合使用在实际应用中,常常需要将信号从一种形式转换为另一种形式,并通过传输线进行传输。

这时就需要使用变压器对信号进行转换。

例如,在音频放大器中,需要将低电平的音频信号转换为高电平的信号,然后通过传输线传输到扬声器中。

3. 传输线与变压器的优化为了提高传输线和变压器的性能,常常需要对其进行优化。

例如,在传输线中可以采用更好的绝缘材料和屏蔽措施,以提高信号质量。

《微波技术与天线》第二版刘学观 第1章

《微波技术与天线》第二版刘学观 第1章

(1-1-5)
式中, Z=R+jωL, Y=G+jωC, 分别称为传输线单位长串联阻抗和 单位长并联导纳。
第1章 均匀传输线理论 2. 均匀传输线方程的解 将式(1- 1- 5)第1式两边微分并将第 2 式代入, 得
d 2U ( z ) ZYU ( z ) 0 2 dz
同理可得
d I ( z) ZYI ( z ) 0 2 dz
第1章 均匀传输线理论
图 1-1 各种微波传输线 (a) 双导体传输线; (b) 波导; (c) 介质传输线
第1章 均匀传输线理论 对均匀传输线的分析方法通常有两种: 一种是场分析法, 即
从麦克斯韦尔方程出发, 求出满足边界条件的波动解, 得出传输
线上电场和磁场的表达式, 进而分析传输特性; 第二种是等效电 路法, 即从传输线方程出发, 求出满足边界条件的电压、 电流波 动方程的解, 得出沿线等效电压、电流的表达式, 进而分析传输 特性。前一种方法较为严格, 但数学上比较繁琐, 后一种方法实
b Z0 ln r a
60
(1-1-17)
式中, εr为同轴线内、外导体间填充介质的相对介电常数。 常
用的同轴线的特性阻抗有50 Ω 和75Ω两种。
第1章 均匀传输线理论 2) 传播常数 γ 传播常数 γ 是描述传输线上导行波沿导波系统传播过程中 衰减和相移的参数, 通常为复数,由前面分析可知
1 2 1 2
。 对于 LC
R G j LC 1 jL 1 jC
1 ( RY0 GZ 0 ) j LC 2
于是小损耗传输线的衰减常数α和相移常数β分别为
(1-1-19)
1 α= (RY0+GZ0) 2 LC β=ω

无线数据传输功率损耗计算

无线数据传输功率损耗计算

无线数据传输功率损耗计算功率灵敏度(dBm dBmV dBuV)dBm=10log(Pout/1mW),其中Pout是以mW为单位的功率值dBmV=20log(Vout /1mV),其中Vout是以mV为单位的电压值dBuV=20log(Vout /1uV),其中Vout是以uV为单位的电压值换算关系:Pout=Vout×Vout/RdBmV=10log(R/0.001)+dBm,R为负载阻抗dBuV=60+dBmV应用举例无线通信距离的计算这里给出自由空间传播时的无线通信距离的计算方法:所谓自由空间传播系指天线周围为无限大真空时的电波传播,它是理想传播条件。

电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射。

通信距离与发射功率、接收灵敏度和工作频率有关。

[Lfs](dB)=32.44+20lgd(km)+20lgf(MHz)式中Lfs为传输损耗,d为传输距离,频率的单位以MHz计算。

由上式可见,自由空间中电波传播损耗(亦称衰减)只与工作频率f和传播距离d有关,当f或d增大一倍时,[Lfs]将分别增加6dB.下面的公式说明在自由空间下电波传播的损耗Los = 32.44 + 20lg d(Km) + 20lg f(MHz)Los=20Lg(4π/c)+20Lg(f(Hz))+20Lg(d(m))=20Lg(4π/3x10^8)+20Lg(f(MHz)x10^6)+20Lg(d(km)x10^3)=20Lg(4π/3)-160+20Lgf+120+20Lgd+60=32.45+20Lgf+20Lgd, d 单位为km,f 单位为MHzLos 是传播损耗,单位为dB,一般车内损耗为8-10dB,馈线损耗8dBd是距离,单位是Kmf是工作频率,单位是MHz例:如果某路径的传播损耗是50dB,发射机的功率是10dB,那末接收机的接收信号电平是-40dB。

下面举例说明一个工作频率为433.92MHz,发射功率为+10dBm(10mW),接收灵敏度为-105dBm的系统在自由空间的传播距离:1. 由发射功率+10dBm,接收灵敏度为-105dBmLos = 115dB2. 由Los、f计算得出d =30公里这是理想状况下的传输距离,实际的应用中是会低于该值,这是因为无线通信要受到各种外界因素的影响,如大气、阻挡物、多径等造成的损耗,将上述损耗的参考值计入上式中,即可计算出近似通信距离。

第1章均匀传输线理论详解

第1章均匀传输线理论详解
第1章 均匀传输线理论
第1章
1.1 1.2 1.3 1.4
均匀传输线理论
均匀传输线方程及其解 传输线阻抗与状态参量 无耗传输线的状态分析 传输线的传输功率、 效率与损耗
1.5
1.6 1.7
阻抗匹配
史密斯圆图及其应用 同轴线的特性阻抗


第1章 均匀传输线理论
传输线
电路:导线
e.g.50Hz交流电电线
无纵向电磁场分量的电磁波称为横电磁波,即TEM
波,TEM波只能够存在于双导体或多导体中。
另外, 传输线本身的不连续性可以构成各种形式的
微波无源元器件 , 这些元器件和均匀传输线、 有源
元器件及天线一起构成微波系统。
第1章 均匀传输线理论
一、传输线的种类
1、双导体传输线(TEM波传输线): 它由两根或两根以上平行导体构成 , 因其传输的电 磁波是横电磁波( TEM 波)或准 TEM 波 , 故又称为 TEM波传输线。
dU ( z ) Z I ( z) dz
dI ( z ) Y U ( z ) dz
移相
dU 2 ( z ) dI ( z ) Z Z Y U ( z ) 2 dz dz
dI 2 ( z ) Z Y I ( z) 0 2 dz
dI 2 ( z ) dU ( z ) Y Y Z I ( z) 2 dz dz
从微分的角度,对很小的Δz, 忽略高阶小量,有: u ( z , t ) u ( z z , t ) u ( z , t ) z z i ( z , t ) i ( z z , t ) i ( z , t ) z z 从电路角度,应用基尔霍夫定律,可得: i ( z , t ) u(z, t)+R﹒Δz﹒i(z, t)+ L z - u(z+Δz, t)=0 t u( z z, t ) i(z, t)+G﹒Δz﹒u(z+Δz, t)+ C﹒Δz﹒ -i(z+Δz, t)=0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4 传输线的传输功率、效率与损耗传输线传输功率效率与损耗传输功率本节要点传输效率 损耗 功率容量Decibels (dB)作为单位功率值常用分贝来表示,这需要选择一个功率单位作为参考,常用的参考单位有1mW 和1W 。

如果用1mW 作参考,分贝表示为:=)mW (lg 10)dBm (P P 如1mW=0dBm 10mW=10dBm 1W=30dBm 0.1mW=−10dBm如果1W 作参考,分贝表示为:如1W=0dBW10W=10dBW0.1W=−10dBW)W (lg 10)dB (P P =插入损耗1.5 阻抗匹配阻抗匹配具有三种不同的含义,分别是负载阻抗匹配、源阻抗匹配和共轭阻抗匹配。

抗匹配源阻抗匹配和共轭阻抗匹配本节内容三种匹配阻抗匹配的方法与实现1. 三种匹配(impedance matching)入射波射波反射波Z 0Z lZ (1)g负载阻抗匹配:负载阻抗等于传输线的特性阻抗。

此时传输线上只有从信源到负载的入射波,而无反射波。

(2)源阻抗匹配:电源的内阻等于传输线的特性阻抗。

()阻抗内阻等传输线特性阻抗对匹配源来说,它给传输线的入射功率是不随负载变化的,负载有反射时,反射回来的反射波被电源吸收。

E gZ gZ in=Z g* E g负载阻抗匹配Z l =Z 0 Z =Z 信号源阻抗匹配g 0 共轭阻抗匹配Z in =Z g *匹配器1匹配器2*g in ZZ =Z in =Z 02. 阻抗匹配的实现方法隔离器或阻抗匹配衰减器负载匹配的方法:从频率上划分有窄带匹配和宽带匹配;从实现手段上划分有λ/4阻抗变换器法、支节调配法。

(1) λ/4阻抗变换器匹配方法此处接λ/4阻抗变换器lR Z Z 001=Z Z =0in电容性负载Z 0若是l 1λ/401Z Z =电感性负载又如何?Z 0Z 0Z 01ρR x =Z 0/ρZ i n =Z 0(2) 支节调配法(stub tuning)(2)(i)支节调配器是由距离负载的某固定位置上的并联或串联终端短路或开路的传输线(称之为支节)构成的。

可分为单支节(single-stub)调配器、双支节(double-stub)调配器及多支节(p)调配器(multiple-stub)调配器。

串联单支节匹配器并联单支节匹配器1'l 1max l ABZ 0Z lZ 0B Z 02l A ′′λ此处为第一波腹点ll φ1max =AB1'l 1min l ′Y 0Y 02l A ′B Y 0λλ±=l 此输应此处为第一波节点441min φπl 此处输入导纳应(c)多支节调配(multiple-stub tuning)单支节匹配的主要缺点是它仅能实现在点频上匹配,要展宽频带,可采用多支节结构来实现。

1.6 史密斯圆图及其应用史密斯圆图(smith chart)是用来分析传输线匹配问题的有效方法,它具有概念明晰、求解直观、精配问题的有效方法它具有概念明晰求解直观精度较高等特点,被广泛应用于射频工程中。

本节要点史密斯圆图史密斯圆图应用1(f i ffi i i )1.反射系数圆(reflection coefficient circles)传输线上任意一点反射系数表达为()()()11in in +−=Γz z z z z 传输线任射数()()0Z z Z z z in in =为归一化输入阻抗。

为一复数极坐标形式为φβφj )2(j ee)(l z l l z Γ=Γ=Γ−Γ(z )为复数,极坐标形式为:于顺时针转动;反之,由电源向负载移动时,时,反射系数经历一周。

针转动。

沿传输线每移动时,反射系数经历2/λ为不值时反射系数圆图如任一点与圆心连线的长度就是与该点相应的传输线上某点处的反射系数的大小连线与的那段实轴间的夹角就是反射系数的幅角 当|Γl |为不同值时反射系数圆图如下。

数的大小,连线与的那段实轴间的夹角就是反射系数的幅角。

o0=φ对于任一个确定的负载阻抗的归一化值,都能在圆图中找到一个与之相对应的点,它是传输线端接这一负载时计算的起点。

其起点为实轴左边的端点°同心圆的半径表示反射系数的大小(即φ=180处)沿传输线移动的距离以波长为单位来计量13i 3.阻抗圆图(smith chart )实轴右半边为向电源电压波腹点又代表驻波比ρ实轴左半边为电压波节点又代表行波系数K将反射系数圆图归一化电图、归化电阻圆图和归一化电抗圆图画在一起,为完向负载整的阻抗圆图,也称为史密斯圆图。

结论阻抗圆图上的重要点线面结论:阻抗圆图上的重要点、线、面x =+1电抗圆弧上半圆电感性r =1的纯电阻圆纯电阻线开路点短路点匹配点纯电抗圆=-1x 1电抗圆弧下半圆电容性结论在阻抗圆图的上半圆内的电抗为x >0呈感性;下半圆内的电抗为x <0呈容性;实轴上的点代表纯电阻点,左半轴上的点为电压波节点,其上的刻度既代表r min ,又代表行波系数K ,右半轴上的点为电压波腹点,其上的刻度既代表r max ,又代表驻波比ρ; 圆图旋转一周为λ/2;|Γ|=1的圆周上的点代表纯电抗点;实轴左端点为短路点,右端点为开路点;中心点处有r =1、x =0,是匹配点;在传输线上由负载向电源方向移动时在圆图上应顺时针在传输线上由负载向电源方向移动时,在圆图上应顺时针旋转;反之,由电源向负载方向移动时,应逆时针旋转。

4.导纳圆图有时为了分析问题方便需要用到导纳圆图 有时为了分析问题方便,需要用到导纳圆图。

实际上由无耗传输线的λ⁄4的阻抗变换特性,将整个阻抗圆图旋转180°即得到导纳圆图。

阻抗圆图变为导纳圆图并不需要对圆图作任何修正,且保留了圆图上的所有已标注好的数字。

由于阻抗与导纳是倒数的关系。

导纳圆图上的重要点、线、面b =+1电纳圆弧上半圆电容性g =1的纯电导圆纯电导线短路点开路点匹配点纯电抗圆=-1b 1电纳圆弧下半圆电感性[例1-3]已知传输线的特性阻抗Z 0=50Ω。

假设传输线的负载阻抗为Z l =25+j25Ω,求离负载z =0.2λ处的等效阻抗。

解:先求出归一化负载阻抗0.5+j0.5,在圆图上找出与此相对应的点P ,以圆图中心点O 为中心、以OP 1,以圆图中点为中以1为半径,顺时针(向电源方向)旋转0.2λ到达点P 2,查出P 2点的归一化阻抗2−j1.04,将其乘以特性阻抗即可得到z =0.2λ处的等效阻抗为100 −j52(Ω)[例1-4]在特性阻抗Z 0=50Ω的无耗传输线上测得驻波比ρ=5,电压最小点出现在z =λ/3处,求负载阻抗。

电压波节点处等效阻抗为一纯电阻r min = K=1/ ρ=0.2,此点落在圆图的左半实轴上,从r min =0.2点沿等ρ的圆反时针(向负载方得到归化负载为故负载阻抗为解:向)转λ/3,得到归一化负载为0.77+j1.48,故负载阻抗为Z l =(0.77+j1.48)×50=38.5+j74(Ω)[15]例1-5]设一负载阻抗为Z l =100+j50Ω接入特性阻抗为Z 0=50Ω的传输线上。

要用支节调配法实现负载与传输线匹配,试用Smith 圆图求支节的长度及离负载的距离。

解:首先在圆图上找到与归一化阻抗2+j 相对应的点P 1其归一化导纳即为0.4-j0.2其归化导纳即为0.4j0.2,在圆图上体现为由P 1点变到中心对称的P 2点,P 2点对应的向电源方向的电长度为0.463 。

将P 2点沿等|Γl |圆顺时针旋转与的电导圆交于A 点B 点AB0.463点的导纳为1+j1,对应的电长度为0.159,B点的导A对应的电长度为0159纳为1-j1,对应的电长度为0.338。

(1)支节离负载的距离为d=0.037λ+0.159λ=0.196λd′= 0.037λ+0.338λ=0.375λ(2)短路支节的长度:短路支节对应的归一化导纳为0−j1和0+j1,分别与1+j1和1-j1中的虚部相抵消。

由于短路支节负载为短路,对应导纳圆图的右端点。

路支节负载为短路对应导纳圆图的右端点将短路点顺时针旋转至纯电纳圆(单位圆)与b= −1和b1的交点A,B,旋转的长度分别为:=1l=0.375λ−0.25λ=0.125λl′=0.125λ+0.25λ=0.375λ因此,从以上分析可以得到两组答案,它们分别是d=0.196λ,,l=0.125λ和d′=0.375λ,l′=0.375λ与用公式(1-5-21)和(1-5-22)算出的结果相同。

1521(1522)算出的结果相同某天线阻抗圆图某天线阻抗圆图。

相关文档
最新文档