第十四章 波动光学 练习3
波动光学试题答案版3

波动光学一、概念选择题1. 如图所示,点光源S 置于空气中,S 到P 点的距离为r ,若在S 与P 点之间置一个折射率为n (n >1),长度为l 的介质,此时光由S 传到P 点的光程为( D )(A )r (B )l r - (C )nl r - (D ))1(-+n l r2. 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中( C )(A )传播的路程相等,走过的光程相等;(B )传播的路程相等,走过的光程不相等;(C )传播的路程不相等,走过的光程相等;(D )传播的路程不相等,走过的光程不相等。
3. 来自不同光源的两束白光,例如两束手电筒光照射在同一区域内,是不能产生干涉图样的,这是由于( C )(A )白光是由不同波长的光构成的 (B )两光源发出不同强度的光(C )两个光源是独立的,不是相干光源 (D )不同波长,光速不同4. 真空中波长为λ的单色光,在折射率为n 的均匀透明媒质中,从A 点沿某一路径传播到B 点,路径的长度为l , 则A 、B 两点光振动位相差记为∆ϕ, 则( C )(A ) 当l = 3 λ / 2 ,有∆ϕ = 3 π(B ) 当 l = 3 λ / (2n ) , 有∆ϕ = 3 n π.(C ) 当 l = 3 λ /(2 n ) ,有∆ϕ = 3 π(D ) 当 l = 3 n λ / 2 , 有∆ϕ = 3 n π.5. 用单色光做双缝干涉实验,下述说法中正确的是 ( A )(A )相邻干涉条纹之间的距离相等(B )中央明条纹最宽,两边明条纹宽度变窄(C )屏与缝之间的距离减小,则屏上条纹宽度变窄(D )在实验装置不变的情况下,红光的条纹间距小于蓝光的条纹间距6. 用单色光垂直照射杨氏双缝时,下列说法正确的是( C )(A )减小缝屏距离,干涉条纹间距不变(B )减小双缝间距,干涉条纹间距变小(C )减小入射光强度, 则条纹间距不变(D )减小入射波长, 则条纹间距不变7. 一束波长为 λ 的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使透射光得到干涉加强,则薄膜最小的厚度为( D )(A ) λ / 4 (B ) λ / (4 n ) (C ) λ / 2 (D ) λ / (2 n )8. 有两个几何形状完全相同的劈尖:一个由空气中的玻璃形成,一个由玻璃中的空气形成。
波动光学习题

解:1.判断零级条纹( 0)的移动方向,
相折射率大的n2方向移动
S
S1 n1, d
P
O
2. (n2 1)d (n1 1)d
(n2 n1)d N
S2 n2 , d
d 8106 m
3.间距不变
例3 白光垂直照射在空气中厚度为 0.40mm旳玻璃片 上,玻璃旳折射率为1.50,试问在可见光范围内 (
3
因为 2 级缺级,实际呈现条纹旳全部级数为
0, 1, 3
例9、要测定硅片上二氧化硅薄膜旳厚度,
将薄膜旳一端做成劈尖形,用波长为
0
5461 A
旳绿光从空气照射硅片,观察反射光第7条暗
纹在与平行膜旳交线M处,二氧化硅旳折射率
为n2=1.5, 硅旳折射率为n3=3.4
求:二氧化硅薄膜旳厚度 n1 1
向平行于入射面;
(D)是部分偏振光。
例15 自然光以60°旳入射角照射到某一透明介质表面 时,反射光为线偏振光,则由此可拟定:
(A)折射光为线偏振光,折射角为30° (B)折射光为线偏振光,折射角为60°
(C)
(C)折射光为部分偏振光,折射角为30°
(D)折射光为部分偏振光,折射角为60°
分析: 此时入射角为布儒斯特角,ib 60
因为反射光较弱,不可能某一
振动方向旳光被完全反射,所以折
600
射光仍为部分偏振光。
又因为在入射角为布儒斯特角旳情
况下,反射光与折射光相互垂直,所以 折射角为300。
例16 在双缝干涉试验中,用单色自然光,在屏 上形成干涉条纹.若在两缝后放一种偏振片,则 (A) 干涉条纹旳间距不变,但明纹旳亮度加强. (B) 干涉条纹旳间距不变,但明纹旳亮度减弱. (C) 干涉条纹旳间距变窄,且明纹旳亮度减弱. (D) 无干涉条纹.
物理学教程第14篇波动光学

一、简单选择题:1.光波在介质中传播时,以下关于光程与光程差的描述正确的是(D )(A)光程仅与真空中的波长有关(B)光程仅与光波传播的几何路径有关(C)光程仅与介质的折射率无关(D)光程与光波传播的几何路径、介质的折射率都有关2.薄膜干涉是常见的光的干涉现象,如油膜、劈尖等,请问干涉条纹产生的区域是在( A )(A)薄膜上表面附近区域(B)薄膜内部区域(C)薄膜下表面附近区域(D)以上都不对3.对于光的本性认识,历史上存在着争论,以下哪位科学家首次验证了光具有波动性( B )(A)牛顿(B)托马斯-杨(C)菲涅耳(D)劳埃德4.杨氏双缝干涉实验是(A )(A)分波阵面法双光束干涉(B)分振幅法双光束干涉(C)分波阵面法多光束干涉(D)分振幅法多光束干涉5.在研究衍射时,可按光源和显示衍射图样的屏到障碍物的距离,将衍射分为菲涅耳衍射和夫琅和费衍射两类,其中夫琅和费衍射为( C )(A)光源到障碍物有限远,屏到障碍物无限远(B)光源到障碍物无限远,屏到障碍物有限远(C)光源和屏到障碍物的距离均为无限远(D)光源和屏到障碍物的距离均为有限远6.牛顿环是由一块曲率半径很大的平凸透镜与一平板玻璃相接触,构成空气劈尖,用单色光垂直入射到空气劈尖中,请问产生干涉条纹的区域是( C )(A)在凸透镜的上表面(B)在凸透镜内部(C)空气劈尖上表面(即凸透镜凸面)处(D)空气劈尖下表面7.关于光的本性的认识,以下现象不能支持波动性的是(A)(A)光电效应现象(B)光的双缝干涉现象(C)光的薄膜干涉现象(D)光的单缝衍射现象8.两光源是相干光源,它们所满足的条件是:( A )(A)频率相同、振动方向相同、相位差恒定(B)频率相同、振幅相同、相位差恒定(C)发出的光波传播方向相同、振动方向相同、振幅相同(D)发出的光波传播方向相同、频率相同、相位差恒定9.光波的衍射没有声波的衍射显著,这是由于(D )(A )光是电磁波 (B )光速比声速大(C )光有颜色 (D )光波波长比声波波长小得多10.根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的: ( D )(A ) 振动振幅之和;(B ) 光强之和;(C ) 振动振幅之和的平方;(D ) 振动的相干叠加。
(优选)第十四波动光学

第十四章 波动光学
课后练习二十六
7. 用波长为589.3nm的钠黄光观察牛顿环,测得 某一明环的半径为1.0×10-3m,而其外第四个明环的 半径为3.0×10-3m,求平凸透镜凸面的曲率半径.
解 明环半径为
rk
(k 1)R
2rk4 ຫໍສະໝຸດ (k 4 1)R2
r2 k4
rk2
4R
R rk24 - rk2
(b b)sin k
(b b)sin 106 sin 90
kmax
1.8
550 109
对于 kman 1.1、1.9、2.0 都只能观察到第一级
第十四章 波动光学
课后练习二十七
3. 孔径相同的微波望远镜和光学望远镜比较,前
者分辨率小的原因
(D)
(A) 微波更易被大气中的尘埃散射; (B) 微波更易被大气吸收; (C) 微波波长比可见光波长短; (D) 微波波长比可见光波长长.
1.22104rad
H
l
0
5 102 1.22 104
4.098102m 400m
第十四章 波动光学
课后练习二十七
5. 在单缝衍射实验中,波长为λ的单色光垂直入 射在宽度为5λ的单缝上,对应于衍射角θ 的方向上, 若单缝处波面恰好可分成 5 个半波带,则衍射角θ
= . 30°
b sin
(2k 1)
(优选)第十四波动光学
第十四章 波动光学
课后练习二十六
3. 双缝间距为0.5mm,被波长为600nm的单色光 垂直照射时,在缝后120cm处的屏上测得干涉条纹间 距为___1_.4_4_m__m__.
x
d d
120 102 0.5 103
大学物理第十四章波动光学课后习题答案及复习内容

第十四章波动光学一、基本要求1. 掌握光程的概念以及光程差和相位差的关系。
2. 理解获得相干光的方法,能分析确定杨氏双缝干涉条纹及薄膜等厚干涉条纹的位置,了解迈克尔逊干涉仪的工作原理。
3. 了解惠更斯-菲涅耳原理; 掌握用半波带法分析单缝夫琅和费衍射条纹的产生及其明暗纹位置的计算,会分析缝宽及波长对衍射条纹分布的影响。
4. 掌握光栅衍射公式。
会确定光栅衍射谱线的位置。
会分析光栅常数及波长对光栅衍射谱线分布的影响。
5. 了解自然光和线偏振光。
理解布儒斯特定律和马吕斯定律。
理解线偏振光的获得方法和检验方法。
6. 了解双折射现象。
二、基本内容1. 相干光及其获得方法只有两列光波的振动频率相同、振动方向相同、振动相位差恒定时才会发生干涉加强或减弱的现象,满足上述三个条件的两束光称为相干光。
相应的光源称为相干光源。
获得相干光的基本方法有两种:(1)分波振面法(如杨氏双缝干涉、洛埃镜、菲涅耳双面镜和菲涅耳双棱镜等);(2)分振幅法(如薄膜干涉、劈尖干涉、牛顿环干涉和迈克耳逊干涉仪等)。
2. 光程和光程差(1)光程把光在折射率为n的媒质中通过的几何路程r折合成光在真空x中传播的几何路程x,称x为光程。
nr(2)光程差在处处采用了光程概念以后就可以把由相位差决定的干涉加强,减弱等情况用光程差来表示,为计算带来方便。
即当两光源的振动相位相同时,两列光波在相遇点引起的振动的位相差πλδϕ2⨯=∆ (其中λ为真空中波长,δ为两列光波光程差) 3. 半波损失光由光疏媒质(即折射率相对小的媒质)射到光密媒质发生反射时,反射光的相位较之入射光的相位发生了π的突变,这一变化导致了反射光的光程在反射过程中附加了半个波长,通常称为“半波损失”。
4. 杨氏双缝干涉经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:(1)位相差为0或2π的整数倍,合成振动最强;(2)位相差π的奇数倍,合成振动最弱或为0。
其对应的光程差()⎪⎩⎪⎨⎧-±±=212λλδk k ()()最弱最强 ,2,1,2,1,0==k k 杨氏的双缝干涉明、暗条纹中心位置:dD k x λ±= ),2,1,0( =k 亮条纹 d D k x 2)12(λ-±= ),2,1( =k 暗条纹 相邻明纹或相邻暗纹间距:λd D x =∆ (D 是双缝到屏的距离,d 为双缝间距) 5. 薄膜干涉以21n n <为例,此时反射光要计“半波损失”, 透射光不计“半波损失”。
波动光学案例习题(含答案)

x (2k 1) d
d2
11/5 条纹间距
x
xk 1
xk
d
d
4
2.薄膜干涉 (分振幅法)
光程差
2d
n22
n12
s in 2
i
2
i
①
② n1 n2 d
n1 n2 n3 n1 n2 n3 n1 n2 n3
n1 n2 n3
11/5
n3
光程差不附加
2
光程差附加
2
5
光程差
2d
答: (C)
11/5
21
例: 在牛顿环实验装置中,曲率半径为R的平 凸透镜与平玻璃板在中心恰好接触,它们之间 充满折射率为n的透明介质,垂直入射到牛顿 环装置上的平行单色光在真空中的波长为λ, 则反射光形成的干涉条纹中暗环半径的表达式 为:
( A)r kR (C)r knR
(B)r kR / n (D)r k /(nR)
解: 条纹间距 x d D
dd
中央明纹两侧的第10级明纹中心间距
210x 210 D 0.11m
d
11/5
32
(2)将此装置用一厚度为 e 6.6106 m ,折射率
解: 据明环半径公式 rk
( k 1 )R
2
充液前: r120 19R / 2 充液后: r102 19R /( 2n )
n r120 1.36
11/5
r102
20
例,在相同的时间内,一束波长为λ的单色光在 空气中和在玻璃中:
(A)传播的路程相等,走过的光程相等 (B)传播的路程相等,走过的光程不相等 (C)传播的路程不相等,走过的光程相等 (D)传播的路程不相等,走过的光程不相等
波动光学练习题

波动光学练习题1. 介绍波动光学是物理学中的一个重要分支,研究光在传播过程中的波动性质。
它深入研究了光的传播和干涉、衍射、偏振、散射等现象,对于理解光的本质和应用具有重要意义。
本文将为大家介绍一些波动光学的练习题,以帮助读者更好地理解相关概念和原理。
2. 题目一:干涉现象一束波长为550nm的单色光以垂直入射的方式照射到一块玻璃薄膜上,该薄膜的折射率为1.5,厚度为500nm,折射率与入射角度无关。
求在此条件下,该薄膜表面反射光的相位差和干涉条纹的间距。
解析:根据菲涅尔公式,入射角为垂直入射的情况下,反射光的相位差为2δ,其中δ为反射光的相位改变:δ = 2πnt/λ其中n为玻璃的折射率,t为薄膜的厚度,λ为入射光的波长。
代入具体数值,可得:δ = 2π * 1.5 * 500 * 10^(-9) / 550 * 10^(-9) ≈ 5.455rad干涉条纹的间距d可以由以下公式计算得到:d = λ / (2sinθ)其中θ为反射光的角度。
由于入射角为垂直入射,故θ = 0,因此d无穷大,即干涉条纹间距无限宽。
3. 题目二:衍射光斑有一束波长为600nm的单色光通过一条宽度为0.1mm的狭缝照射到屏幕上,屏幕距离狭缝的距离为1m。
求衍射光斑的宽度和位置。
解析:根据夫琅禾费衍射公式,衍射光斑的宽度可以由以下公式计算得到:δy = (λL) / (2d)其中δy为衍射光斑的宽度,λ为入射光的波长,L为狭缝到屏幕的距离,d为狭缝的宽度。
代入具体数值,可得:δy = (600 * 10^(-9) * 1) / (2 * 0.1 * 10^(-3)) ≈ 3mm衍射光斑的位置可以由以下公式计算得到:y = (λL) / d其中y为光斑离中心的偏移距离。
代入具体数值,可得:y = (600 * 10^(-9) * 1) / (0.1 * 10^(-3)) ≈ 6mm所以,衍射光斑的宽度为3mm,位置偏移约为6mm。
波动光学习题参考答案

结束 返回
已知:
l 589.3 q = 2nl = 2×1.52×5×10-6
=3.83×10-5 (rad) = 8´ ´
结束 返回
15、 波长为680nm的平行光垂直地 照射到12cm长的两块玻璃片上,两玻璃片 一边相互接触,另一边被厚0.048mm的纸 片隔开,试问在这l2cm内呈现多少条明条 纹?
2n k550
2n
4n
=211.5k+105.8
令 k =0 e =105.8 (nm)
结束 返回
13、 彩色电视发射机常用三基色的分 光系统,如图所示,系用镀膜方法进行分色, 现要求红光的波长为600nm,绿光的波长为 520nm,设基片玻璃的折射率n3 =15.0,膜 材料的折射率 n2 =2.12。 空气的折射率为 0 n1 ,设入射角i =45 。 白光 i 试求膜的厚度。 红光 绿光 兰光
结束 返回
解:水膜正面反射干涉加强 l kl 2ne + 2 = k=2 4ne 4×1.33×380 =674 (nm) 红 l2 = = 2×2-1 2k-1 k=3
4ne 4×1.33×380 =404 (nm) 紫 l3 = = 2×3-1 2k-1 所以水膜呈现紫红色 k 的其它取值属于红外光或紫外光范围结束
x ´为k 级新的明条纹位置
x´
原来的光程差为 d = r 2 r 1 = dsinj = d x = kl D d b + d (x ´ x ) =0 两式相减得到: D´ D D Δ x ´= b (x ´ x ) <0 D´
即条纹向下移动,而条纹间距不变
D´ S 2
o
D
结束 返回
7、 用单色光源S照射双缝,在屏上形 成干涉图样,零级明条纹位于O 点,如图所 示。若将缝光源 S 移至位置S ´,零级明条 纹将发生移动。欲使零级明条纹移回 O 点, 必须在哪个缝处覆盖一薄云母片才有可能? 若用波长589nm的单 色光,欲使移动了4个 屏 S1 明纹间距的零级明纹 S´ O 移回到O点,云母片的 S 厚度应为多少?云母片 S2 的折射率为1.58。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十四章 波动光学 (三)
课后练习二十八
6.一束光是自然光 I0 与线偏振光 I1 的混合,当 它通过一偏振片时,则透射光的强度取决于偏振片的 取向,其强度可以变化5倍,求入射光中两种光的强 度各占入射光强度的比例。 解: 根据马吕斯特定律透射光 1 2 I = I0 + I1cos α 1 2 Imax = I0 + I1 2 1 I0 1 I + I = 3 1 0 Imin = I0 I1 = 2I0 2 I 2 1 Imax 5 = = I1 + I0 3 Imin 1
n2 = tan60 o = 3
i0 = 90o - γ = 60o
第十四章 波动光学 (三)
课后练习二十八
2.光强为 I 0 的一束自然光,连续通过三个偏振片之后, 透出的光强为I,其中P1与P3的偏振化方向正交,而P2 与P1和P3的偏振化方向均为45o,则光强 I 为
1 (A) 2
1 (B) 4
第十四章 波动光学 (三)
课后练习二十八
1.一束自然光从空气入射到某介质表面上,当折 射角为30o 时,反射光是完全偏振光,则此介质的折射 率为 ( D ) 1 (A) (B) 2 (C) 3 (D) 3 2 2 2 解:反射光是完全偏振光,则入射角应是布儒斯特角
n2 tani0 = =n2 n1
波动光学( 第十四章 波动光学(三)
课后练习二十八
4.一束光垂直入射在偏振片 P 上,以入射光线 为轴转动 P ,观察通过 P 的光强的变化过程,若 入射光是 自然 光,则将看到光强不变;若入射 光是 线偏振 光,则将看到光强明暗交替变化, 有时出现全暗;若入射光是 部分偏振 光,则将看 到光强明暗交替变化,但不出现全暗。
I0 2
1 (C) 8
I0 cos2 45o 2
1 (D) 16
I0
(C )
I0
I0 cos2 45o cos2 45o 2
P 1
P2
P3 I = I0 cos4 45o = I0
2 8
第十四章 波动光学 (三)
课后练习二十八
3.要使一束线偏振光通过偏振片之后振动方向转过90°角, 讨论下列光线的反射和折射 至少需要让这束光通过____块理想偏振片,在此情况下, 透射光强最大是原来的_______倍. 解:
第十四章 波动光学 (三)
课后练习二十八
5.测得一池静水的表面反射出来的太阳光是线 偏振光,求此时太阳处在地平线的多大仰角处(水的 折射率为1.33) 解: 根据布儒斯特定律 n2 tani0 = = n2 n1
i0
θ
i0 = arctan1.36.9o