最新重庆中考数学题位复习系统之反比例函数与几何综合

合集下载

重庆全国中考数学反比例函数的综合中考模拟和真题分类汇总

重庆全国中考数学反比例函数的综合中考模拟和真题分类汇总

重庆全国中考数学反比例函数的综合中考模拟和真题分类汇总一、反比例函数1.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,∴当1≤x≤6时,反比例函数y的值:≤y≤2【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.2.如图,P1、P2(P2在P1的右侧)是y= (k>0)在第一象限上的两点,点A1的坐标为(2,0).(1)填空:当点P1的横坐标逐渐增大时,△P1OA1的面积将________(减小、不变、增大)(2)若△P1OA1与△P2A1A2均为等边三角形,①求反比例函数的解析式;②求出点P2的坐标,并根据图象直接写在第一象限内,当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y= 的函数值.【答案】(1)减小(2)解:①如图所示,作P1B⊥OA1于点B,∵A1的坐标为(2,0),∴OA1=2,∵△P1OA1是等边三角形,∴∠P1OA1=60°,又∵P1B⊥OA1,∴OB=BA1=1,∴P1B= ,∴P1的坐标为(1,),代入反比例函数解析式可得k= ,∴反比例函数的解析式为y= ;②如图所示,过P2作P2C⊥A1A2于点C,∵△P2A1A2为等边三角形,∴∠P2A1A2=60°,设A1C=x,则P2C= x,∴点P2的坐标为(2+x, x),代入反比例函数解析式可得(2+x) x= ,解得x1= ﹣1,x2=﹣﹣1(舍去),∴OC=2+ ﹣1= +1,P2C= (﹣1)= ﹣,∴点P2的坐标为( +1,﹣),∴当1<x< +1时,经过点P1、P2的一次函数的函数值大于反比例函数y= 的函数值【解析】【解答】解:(1)当点P1的横坐标逐渐增大时,点P1离x轴的距离变小,而OA1的长度不变,故△P1OA1的面积将减小,故答案为:减小;【分析】(1)当点P1的横坐标逐渐增大时,点P1离x轴的距离变小,而OA1的长度不变,故△P1OA1的面积将减小;(2)①由A1的坐标为(2,0),△P1OA1是等边三角形,求出P1的坐标,代入反比例函数解析式即可;②由△P2A1A2为等边三角形,求出点P2的坐标,得出结论.3.如图,Rt△ABO的顶点A是双曲线y= 与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO= .(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.【答案】(1)解:设A点坐标为(x,y),且x<0,y>0,则S△ABO= •|BO|•|BA|= •(﹣x)•y= ,∴xy=﹣3,又∵y= ,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)解:由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),A、C两点坐标满足∴交点A为(﹣1,3),C为(3,﹣1),∴S△AOC=S△ODA+S△ODC= OD•(|x1|+|x2|)= ×2×(3+1)=4.【解析】【分析】两解析式的k一样,根据面积计算双曲线中的k较易,由公式=2S△ABO,可求出k;(2)求交点就求两解析式联立的方程组的解,可分割△AOC为S△ODA+S△ODC,即可求出.4.函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.(1)分别求出当2≤x≤4时,三个函数:y=2x+1,y= ,y=2(x﹣1)2+1的最大值和最小值;(2)若y= 的值不大于2,求符合条件的x的范围;(3)若y= ,当a≤x≤2时既无最大值,又无最小值,求a的取值范围;(4)y=2(x﹣m)2+m﹣2,当2≤x≤4时有最小值为1,求m的值.【答案】(1)解:y=2x+1中k=2>0,∴y随x的增大而增大,∴当x=2时,y最小=5;当x=4时,y最大=9.∵y= 中k=2>0,∴在2≤x≤4中,y随x的增大而减小,∴当x=2时,y最大=1;当x=4时,y最小= .∵y=2(x﹣1)2+1中a=2>0,且抛物线的对称轴为x=1,∴当x=1时,y最小=1;当x=4时,y最大=19(2)解:令y= ≤2,解得:x<0或x≥1.∴符合条件的x的范围为x<0或x≥1(3)解:①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y= 无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,∴当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0(4)解:①当m<2时,有2(2﹣m)2+m﹣2=1,解得:m1=1,m2= (舍去);②当2≤m≤4时,有m﹣2=1,解得:m3=3;③当m>4时,有2(4﹣m)2+m﹣2=1,整理得:2m2﹣15m+29=0.∵△=(﹣15)2﹣4×2×29=﹣7,无解.∴m的值为1或3.①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y= 无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,∴当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0;【解析】【分析】(1)根据k=2>0结合一次函数的性质即可得出:当2≤x≤4时,y=2x+1的最大值和最小值;根据二次函数的解析式结合二次函数的性质即可得出:当2≤x≤4时,y=2(x﹣1)2+1的最大值和最小值;(2)令y= ≤2,解之即可得出x的取值范围;(3)①当k>0时,如图得当0<x≤2时,得到y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,得到y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y=无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,于是得到结论;(4)分m<2、2≤m≤4和m>4三种情况考虑,根据二次函数的性质结合当2≤x≤4时有最小值为1即可得出关于m的一元二次方程(一元一次方程),解之即可得出结论.5.如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC 的形状并证明你的结论.【答案】(1)解:设反比例函数的解析式为(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1。

中考压轴题-反比例函数综合(八大题型+解题方法)—冲刺2024年中考数学考点(全国通用)(解析版)

中考压轴题-反比例函数综合(八大题型+解题方法)—冲刺2024年中考数学考点(全国通用)(解析版)

中考压轴题反比例函数综合(八大题型+解题方法)1.求交点坐标联立反比例函数与一次函数图象的解析式进行求解,特别地,反比例函数与正比例函数图象的两个交点关于原点对称.2.结合图象比较函数值的大小如图,一次函数y=k1x+b与反比例函数图象交于A,B 两点,过点A,B分别作y 轴的平行线,连同y 轴,将平面分为I,Ⅱ,Ⅲ,IV 四部分,在I,Ⅲ区域内,y₁<y₂,自变量的取值范围为x<x B或0<x<x A;在Ⅱ,IV区域内,y1>y₂,自变量的取值范围为x B<x<0或x>x A.3.反比例函数系数k的几何意义及常用面积模型目录:题型1:反比例函数与几何的解答证明 题型2:存在性问题题型3:反比例函数的代数综合 题型4:动态问题、新定义综合 题型5:定值问题 题型6:取值范围问题 题型7:最值问题题型8:情景探究题(含以实际生活为背景题)题型1:反比例函数与几何的解答证明1.(2024·湖南株洲·一模)如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在x 轴上,OC 在y 轴上,4OA =,2OC =(不与B ,C 重合),反比例函数()0,0k y k x x=>>的图像经过点D ,且与AB 交于点E ,连接OD ,OE ,DE .(1)若点D 的横坐标为1. ①求k 的值;②点P 在x 轴上,当ODE 的面积等于ODP 的面积时,试求点P 的坐标; (2)延长ED 交y 轴于点F ,连接AC ,判断四边形AEFC 的形状 【答案】(1)①2;②15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭(2)四边形AEFC 是平行四边形,理由见解析【分析】(1)①根据矩形的性质得到90BCO B AOC ∠=∠=∠=︒,得()1,2D ,把()1,2D 代入()0,0ky k x x=>>即可得到结论;②由D ,E 都在反比例函数ky x =的图像上,得到1COD AOE S S ==△△,根据三角形的面积公式得到1111315241243222224ODE S =⨯−⨯⨯−⨯⨯−⨯⨯=△,设(),0P x ,根据三角形的面积公式列方程即可得到结论;(2)连接AC ,根据题意得到,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫ ⎪⎝⎭,设EF 的函数解析式为y ax b =+,解方程得到84k OF +=,求得24kCF OF AE =−==,根据平行四边形的判定定理即可得到结论.【解析】(1)解:①∵四边形ABCO 是矩形,4OA =, ∴90BCO B AOC ∠=∠=∠=︒,4BC OA ==, ∵2OC =,点D 的横坐标为1, ∴()1,2D ,2AB OC ==,∵反比例函数()0,0ky k x x =>>的图像经过点D ,∴122k =⨯=, ∴k 的值为2; ②∵()1,2D ,∴1CD =,∵D ,E 都在反比例函数2y x =的图像上,∴1COD AOE S S ==△△,∴111422AOE S OA AE AE==⋅=⨯△,∴12AE =,∴13222BE AB AE =−=−=, ∴1111315241243222224ODES =⨯−⨯⨯−⨯⨯−⨯⨯=△,∵点P 在x 轴上,ODE 的面积等于ODP 的面积, 设(),0P x ,∴115224ODP S x =⨯⨯=△, 解得:154x =或154x =−,∴点P 的坐标为15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭;(2)四边形AEFC AEFC 是平行四边形. 理由:连接AC ,∵4OA =,2OC =,D ,E 都在反比例函数()0,0ky k x x =>>的图像上,∴,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫⎪⎝⎭,设EF 的函数解析式为:y ax b =+,∴2244k a b k a b ⎧⨯+=⎪⎪⎨⎪+=⎪⎩,解得:1284a kb ⎧=−⎪⎪⎨+⎪=⎪⎩, ∴EF 的函数解析式为:1824k y x +=−+, 当0x =时,得:84ky +=,∴84k OF +=, ∴24kCF OF AE =−==,又∵CF AE ∥,∴四边形AEFC 是平行四边形.【点睛】本题是反比例函数与几何的综合,考查待定系数法确定解析式,反比例函数图像上的点的坐标的特征,矩形的性质,平行四边形的判定,三角形的面积等知识点.掌握反比例函数图像上的点的坐标的特征,矩形的性质是解题的关键.题型2:存在性问题2.(2024·四川成都·二模)如图①,O 为坐标原点,点B 在x 轴的正半轴上,四边形OACB 是平行四边形,4sin 5AOB ∠=,反比例函数(0)ky k x =>在第一象限内的图象经过点A ,与BC 交于点F .(1)若10OA =,求反比例函数解析式;(2)若点F 为BC 的中点,且AOF 的面积12S =,求OA 的长和点C 的坐标;(3)在(2)中的条件下,过点F 作EF OB ∥,交OA 于点E (如图②),点P 为直线EF 上的一个动点,连接PA ,PO .是否存在这样的点P ,使以P 、O 、A 为顶点的三角形是直角三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由. 【答案】(1)48(0)y x x =>C(3)存在,满足条件的点P 或(或或(【分析】(1)先过点A 作AH OB ⊥,根据4sin 5AOB ∠=,10OA =,求出AH 和OH 的值,从而得出A 点坐标,再把它代入反比例函数中,求出k 的值,即可求出反比例函数的解析式; (2)先设(0)OA a a =>,过点F 作FM x ⊥轴于M ,根据4sin 5AOB ∠=,得出45AH a =,35OH a=,求出AOHS △的值,根据12AOF S =△,求出平行四边形AOBC 的面积,根据F 为BC 的中点,求出6OBF S =△,根据12BF a =,FBM AOB ∠=∠,得出12BMFS BM FM =⋅,23650FOM S a =+△,再根据点A ,F 都在k y x =的图象上,12AOHSk=,求出a ,最后根据AOBC S OB AH =⋅平行四边形,得出OB AC ==C 的坐标;(3)分别根据当90APO ∠=︒时,在OA 的两侧各有一点P ,得出1P ,2P ;当90PAO ∠=︒时,求出3P ;当90POA ∠=︒时,求出4P 即可.【解析】(1)解:过点A 作AH OB ⊥于H ,4sin 5AOB ∠=,10OA =,8AH ∴=,6OH =,A ∴点坐标为(6,8),根据题意得:86k=,可得:48k =,∴反比例函数解析式:48(0)y x x =>;(2)设(0)OA a a =>,过点F 作FM x ⊥轴于M ,过点C 作CN x ⊥轴于点N , 由平行四边形性质可证得OH BN =,4sin 5AOB ∠=,45AH a ∴=,35OH a=, 2143625525AOHS a a a ∴=⋅⋅=△,12AOF S =△,24AOBC S ∴=平行四边形,F 为BC 的中点,6OBFS∴=,12BF a=,FBM AOB ∠=∠,25FM a ∴=,310BM a =,2112332251050BMF S BM FM a a a ∴=⋅=⋅⋅=△,23650FOMOBFBMFSSSa ∴=+=+,点A ,F 都在ky x =的图象上,12AOH FOM S S k ∴==△△,∴226362550a a =+,a ∴OA ∴=AH ∴=OH =24AOBC S OB AH =⋅=平行四边形,OB AC ∴==ON OB OH ∴=+=C ∴;(3)由(2)可知A ,B 0),F .存在三种情况:当90APO ∠=︒时,在OA 的两侧各有一点P ,如图,设PF 交OA 于点J ,则J此时,AJ PJ OJ ==,P ∴,(P ',当90PAO ∠=︒时,如图,过点A 作AK OB ⊥于点K ,交PF 于点L .由AKO PLA △∽△,可得PLP ,当90POA ∠=︒时,同理可得(P .综上所述,满足条件的点P 的坐标为或(或或(.【点睛】此题考查了反比例函数的综合,用到的知识点是三角函数、平行四边形、反比例函数、三角形的面积等,解题的关键是数形结合思想的运用.3.(2024·广东湛江·一模)【建立模型】(1)如图1,点B 是线段CD 上的一点,AC BC ⊥,AB BE ⊥,ED BD ⊥,垂足分别为C ,B ,D ,AB BE =.求证:ACB BDE ≌;【类比迁移】(2)如图2,点()3,A a −在反比例函数3y x=图象上,连接OA ,将OA 绕点O 逆时针旋转90︒到OB ,若反比例函数k y x =经过点B .求反比例函数ky x=的解析式; 【拓展延伸】(3)如图3抛物线223y x x +−与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C 点,已知点()0,1Q −,连接AQ ,抛物线上是否存在点M ,便得45MAQ ∠=︒,若存在,求出点M 的横坐标.【答案】(1)见解析;(2)3y x =−;(3)M 的坐标为39,24⎛⎫ ⎪⎝⎭或()1,4−−.【分析】(1)根据题意得出90C D ABE ︒∠=∠=∠=,A EBD ∠=∠,证明()AAS ACB BDE ≌,即可得证;(2)如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .求解()3,1A −−,1AC =,3OC =.利用ACO ODB ≌△△,可得()1,3B −;由反比例函数ky x =经过点()1,3B −,可得3k =−,可得答案;(3)如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y⊥轴于点E .证明AQO QDE ≌,可得AO QE =,OQ DE =,可得()1,2D ,求解1322AM y x =+:,令2132322x x x +=+−, 可得M 的坐标为39,24⎛⎫ ⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,可得M 的坐标是()1,4−−.【解析】证明:(1)如图,∵AC BC ⊥,AB BE ⊥,ED BD ⊥, ∴90C D ABE ︒∠=∠=∠=,∴90,90ABC A ABC EBD ∠+∠=︒∠+∠=︒, ∴A EBD ∠=∠, 又∵AB BE =, ∴()AAS ACB BDE ≌.(2)①如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .将()3,A a −代入3y x =得:1a =−,∴()3,1A −−,1AC =,3OC =.同(1)可得ACO ODB ≌△△, ∴1OD AC ==,3BD OC ==, ∴()1,3B −,∵反比例函数ky x =经过点()1,3B −,∴3k =−, ∴3y x =−;(3)存在;如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y ⊥轴于点E .∵45MAQ ∠=︒,QD AQ ⊥, ∴45MAQ ADQ ∠=∠=︒, ∴AQ QD =,∵DE y ⊥轴,QD AQ ⊥,∴90AQO EQD EQD QDE ∠+∠=∠+∠=︒,90AOQ QED ∠=∠=︒, ∴AQO QDE ∠=∠, ∵AQ QD =, ∴AQO QDE ≌, ∴AO QE =,OQ DE =,令2230y x x =+−=,得13x =−,21x =,∴3AO QE ==,又()0,1Q −,∴1OQ DE ==, ∴()1,2D ,设AM 为y kx b =+,则230k b k b +=⎧⎨−+=⎩,,解得:1232k b ⎧=⎪⎪⎨⎪=⎪⎩,∴1322AM y x =+: 令2132322x x x +=+−,得132x =,23x =−(舍去), 当32x =时,233923224y ⎛⎫=+⨯−= ⎪⎝⎭, ∴39,24M ⎛⎫⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,得11x =−,23x =−(舍去)∴当=1x −时,()()212134y =−+⨯−−=−,∴()1,4M −−.综上:M 的坐标为39,24⎛⎫⎪⎝⎭或()1,4−−.【点睛】本题考查的是全等三角形的判定与性质,反比例函数的应用,二次函数的性质,一元二次方程的解法,熟练的利用类比的方法解题是关键.题型3:反比例函数的代数综合4.(2024·湖南长沙·一模)若一次函数y mx n =+与反比例函数ky x=同时经过点(),P x y 则称二次函数2y mx nx k +=-为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请说明理由;(2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数()122=+++y n x m 与反比例函数2024y x=存在“共享函数”()()2102024y m t x m t x ++−=-,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−,见解析 (2)2(3)2429y x x =+−或(29155y x x −−−=【分析】(1)判断21y x =−与3y x =是否有交点,计算即可;(2)根据定义,12210n m tm m t +=+⎧⎨+=−⎩,得到39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,结合8t n m <<,构造不等式组解答即可. (3)根据定义,得“共享函数”为()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=结合6m x m ≤≤+,“共享函数”的最小值为3,分类计算即可.本题考查了新定义,解方程组,解不等式组,抛物线的增减性,熟练掌握定义,抛物线的增减性是解题的关键.【解析】(1)21y x =−与3y x =存在“共享函数”,理由如下:根据题意,得213y x y x =−⎧⎪⎨=⎪⎩,解得322x y ⎧=⎪⎨⎪=⎩,13x y =−⎧⎨=−⎩,故函数同时经过3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−, 故21y x =−与3y x =存在“共享函数”.(2)∵一次函数()122=+++y n x m 与反比例函数2024y x =存在“共享函数”()()2102024y m t x m t x ++−=-,∴12210n m tm m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, ∵8t n m <<, ∴82489869n n m n n +⎧=⎪⎪⎨+⎪⎪⎩<>,解得24n 6<<, ∴327n +9<<, ∴339n +1<<,∴13m <<, ∵m 是整数, ∴2m =.(3)根据定义,得一次函数y x m =+和反比例函数213m y x +=的“共享函数”为 ()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=,∵()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=.∴抛物线开口向上,对称轴为直线2mx =−,函数有最小值25134m −−,且点与对称轴的距离越大,函数值越大,∵6m x m ≤≤+,当62mx m =−+≥时,即4m ≤−时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭>, ∴6x m =+时,函数取得最小值,且为2225613182324m m y m m m ⎛⎫=++−−=++ ⎪⎝⎭,又函数有最小值3,∴218233m m ++=,解得99m m =−=−故9m =− ∴“共享函数”为(29155y x x −−−=当2m x m =−≤时,即0m ≥时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭<, ∴x m =时,函数取得最小值,且为2225131324m m y m m ⎛⎫=+−−=− ⎪⎝⎭,又函数有最小值3,∴2133m −=,解得4,4m m ==−(舍去); 故4m =,∴“共享函数”为2429y x x =+−; 当62mm m −+<<时,即40m −<<时,∴2mx =−时,函数取得最小值,且为25134m y =−−,又函数有最小值3,∴251334m −−=, 方程无解,综上所述,一次函数y x m =+和反比例函数213m y x += 的“共享函数”为2429y x x =+−或(29155y x x −−−=5.(2024·江苏南京·模拟预测)若一次函数y mx n =+与反比例函数ky x=同时经过点(,)P x y 则称二次函数2y mx nx k =+−为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请求出“共享点”.如果不存在,请说明理由; (2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数(1)22y n x m =+++与反比例函数2024y x=存在“共享函数” 2()(10)2024y m t x m t x =++−−,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)点P 的坐标为:3(2,2)或(1,3)−−;(2)2m =(3)222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【分析】(1)联立21y x =−与3y x =并整理得:2230x x −−=,即可求解;(2)由题意得12210n m t m m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,而8t n m <<,故624n <<,则9327n <+<,故13m <<,m 是整数,故2m =;(3)①当162m m +≤−时,即4m ≤−,6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,即可求解;②当162m m m <−<+,即40m −<<,函数在12x m=−处取得最小值,即22211()13322m m m −−−−=,即可求解;③当0m ≥时,函数在x m =处,取得最小值,即可求解. 【解析】(1)解:(1)21y x =−与3y x =存在“共享函数”,理由如下:联立21y x =−与3y x =并整理得:2230x x −−=,解得:32x =或1−, 故点P 的坐标为:3(2,2)或(1,3)−−;(2)解:一次函数(1)22y n x m =+++与反比例函数2024y x =存在“共享函数”2()(10)2024y m t x m t x =++−−,依据“共享函数”的定义得: 12210n m tm m t +=+⎧⎨+=−⎩,解得:39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, 8t n m <<,∴8698249n n n n +⎧<⎪⎪⎨+⎪<⎪⎩, 解得:624n <<;9327n ∴<+<, 13m ∴<<,m 是整数,2m ∴=;(3)解:由y x m =+和反比例函数213m y x +=得:“共享函数”的解析式为22(13)y x mx m =+−+, 函数的对称轴为:12x m=−; ①当162m m+≤−时,即4m ≤−, 6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,解得9m =−9−②当162m m m <−<+,即40m −<<, 函数在12x m =−处取得最小值,即22211()13322m m m −−−−=,无解;③当0m ≥时,函数在x m =处,取得最小值,即222133m m m +−−=,解得:4m =±(舍去4)−,综上,9m =−4,故“共享函数”的解析式为222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【点睛】本题是一道二次函数的综合题,主要考查了一次函数与反比例函数的性质,一次函数与反比例函数图象上点的坐标的特征,二次函数的性质,一元一次不等式组的解法,一元二次方程的解法.本题是阅读型题目,理解题干中的定义并熟练应用是解题的关键.6.(2024·湖南长沙·模拟预测)我们规定:若二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)与x 轴的两个交点的横坐标1x ,2x 满足122x x =−,则称该二次函数为“强基函数”,其中点()1,0x ,()2,0x 称为该“强基函数”的一对“基点”.(1)判断:下列函数中,为“强基函数”的是______(仅填序号).①228y x x =−−;②21y x x =++.(2)已知二次函数()2221y x t x t t =−+++为“强基函数”,求:当12x −≤≤时,函数22391y x tx t =+++的最大值.(3)已知直线1y x =−+与x 轴交于点C ,与双曲线()20y x x=−<交于点A ,点B 的坐标为()3,0−.若点()1,0x ,()2,0x 是某“强基函数”的一对“基点”,()12,P x x 位于ACB △内部.①求1x 的取值范围;②若1x 为整数,是否存在满足条件的“强基函数”2y x bx c =++?若存在,请求出该“强基函数”的解析式;若不存在,请说明理由. 【答案】(1)① (2)当23t =−时函数最大值为8或当13t =−时函数最大值为4;(3)①1x 的取值范围是:120x −<<或110x −<<;②21122y x x =+−【分析】(1)根据抛物线与x 轴的交点情况的判定方法分别判定①与②与x 轴的交点情况,再求解交点坐标,结合新定义,从而可得答案; (2)由()22210y x t x t t =−+++=时,可得1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,根据新定义可得23t =−或13t =−,再分情况求解函数的最大值即可;(3))①先得到点A 、B 、C 的坐标,然后分122x x =−或212x x =−两种情况,列出关于1x 的不等式组,然后解不等式组即可;②根据1x 为整数,先求出1x 的值,然后根据二次函数的交点式直接得到二次函数的解析式即可.【解析】(1)解:①∵228y x x =−−; ∴()()2Δ2418432360=−−⨯⨯−=+=>,∴抛物线与x 轴有两个交点,∵228=0x x −−,∴14x =,22x =−,∴122x x =−,∴228y x x =−−是“强基函数” ②∵21y x x =++, ∴214111430∆=−⨯⨯=−=−<,∴抛物线与x 轴没有交点,∴21y x x =++不是“强基函数” 故答案为:①; (2)∵二次函数()2221y x t x t t=−+++为“强基函数”,∴()()22Δ21410t t t ⎡⎤=−+−+=>⎣⎦,∵()22210y x t x t t =−+++=时, ∴1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,∴()21t t =−+或12t t +=−,解得:23t =−或13t =−,当23t =−时,函数为225y x x =−+,如图,∵12x −≤≤,此时当=1x −时,函数最大值为1258y =++=; 当13t =−时,函数为22y x x =−+,如图,∵12x −≤≤,此时当=1x −或2x =时,函数最大值为1124y =++=;(3)①联立()201y x x y x ⎧=−<⎪⎨⎪=−+⎩,解得:12x y =−⎧⎨=⎩, ∴点A 的坐标为:()1,2−,把0y =代入 1y x =−+得:10x −+=, 解得:1x =,∴点C 的坐标为()1,0, 设直线AB 为1y kx b =+,∴11302k b k b −+=⎧⎨−+=⎩,解得:113k b =⎧⎨=⎩,∴直线AB 的解析式为:3y x =+, ∵点()1,0x ,()2,0x 是某“强基函数”的一对“基点”, ()12,P x x 位于ACB △内部.当122x x =−时, ∴111,2P x x ⎛⎫− ⎪⎝⎭, ∴点P 在直线2xy =−上,∵点111,2P x x ⎛⎫− ⎪⎝⎭位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111103212x x x x x ⎧⎪<⎪⎪−+⎨⎪⎪−−+⎪⎩<<, 解得:120x −<<;当212x x =−时,∵P 点坐标为()11,2x x −,∴点P 在直线2y x =−上,∵点P 位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111102321x x x x x <⎧⎪−<+⎨⎪−<−+⎩,解得:110x −<<;综上分析可知,1x 的取值范围是:120x −<<或110x −<<;②存在;理由如下:∵1x 为整数,∴当120x −<<时,11x =−,∴此时212x =,此时,“强基函数”的一对“基点”为()1,0−,1,02⎛⎫ ⎪⎝⎭, ∴“强基函数”为()21111222y x x x x ⎛⎫=+−=+− ⎪⎝⎭; 当110x −<<时,则没有符合条件的整数1x 的值,不存在符合条件的“强基函数”; 综上,“强基函数”为21122y x x =+−. 【点睛】本题考查的是一次函数,反比例函数,二次函数的综合应用,新定义的含义,本题难度大,灵活应用各知识点,理解新定义的含义是解题的关键.题型4:动态问题、新定义综合7.(2024·山东济南·一模)如图1,直线14y ax =+经过点()2,0A ,交反比例函数2k y x=的图象于点()1,B m −,点P 为第二象限内反比例函数图象上的一个动点.(1)求反比例函数2y 的表达式;(2)过点P 作PC x ∥轴交直线AB 于点C ,连接AP ,BP ,若ACP △的面积是BPC △面积的2倍,请求出点P 坐标;(3)平面上任意一点(),Q x y ,沿射线BA Q ',点Q '怡好在反比例函数2k y x=的图象上;①请写出Q 点纵坐标y 关于Q 点横坐标x 的函数关系式3y =______;②定义}{()()min ,a a b a b b a b ⎧≤⎪=⎨>⎪⎩,则函数{}13min ,Y y y =的最大值为______. 【答案】(1)26y x =−(2)点P 坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭ (3)①3621y x =−++;②8【分析】本题考查了反比例函数与一次函数的交点问题,坐标与图形,解题的关键是运用分类讨论的思想.(1)先根据点()2,0A 求出1y 的解析式,然后求出点B 的坐标,最后将点B 的坐标代入2y 中,求出k ,即可求解;(2)分两种情况讨论:当点P 在AB 下方时,当点P 在AB 上方时,结合“若ACP △的面积是BPC △面积的2倍”,求出点C 的坐标,将点C 的纵坐标代入反比例函数解析式,即可求解;(3)①根据题意可得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',则()1,2Q x y +'−,将其代入26y x =−中,即可求解;②分为:当{}131min ,Y y y y ==时,13y y ≤;当{}133min ,Y y y y ==时,13y y >;分别解不等式即可求解.【解析】(1)解:直线14y ax =+经过点()2,0A ,,∴240x +=, 解得:2a =−,∴124y x =−+,点()1,B m −在直线124y x =−+上,∴()2146m =−⨯−+=,∴()1,6B −,∴166k =−⨯=−, ∴26y x =−;(2)①当点P 在AB 下方时,2ACP BPC S S =,∴:2:1AC BC =,过点C 作CH x ⊥轴于点H ,过点B 作BR x ⊥轴于点R ,∴23AC CH AB BR ==, ∴23C B y y =,()1,6B −,∴4C y =,把4C y =代入26y x =−中, 得:32C x =−, ∴3,42P ⎛⎫− ⎪⎝⎭; ②当点P 在AB 上方时,2ACP BPC S S =,∴:1:1AB BC =,∴B 为AC 的中点,()2,0A ,()1,6B −,∴()4,12C −,把12y =代入26y x =−中,得:12x =−, ∴1,122P ⎛⎫− ⎪⎝⎭,综上所述,点P 的坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭;(3)① 由(),Q x y ,沿射线BA Q ', 得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',∴()1,2Q x y +'−,点()1,2Q x y +'−恰好在反比例函数26y x =−的图象上, ∴621y x −=−+, ∴3621y x =−++;②a .当{}131min ,Y y y y ==时,13y y ≤, 即62421x x −+≤−++, 当1x >−时,()()()2141621x x x x −+++≤−++,解得:2x ≥或2x ≤−(舍去),∴2x =时,函数{}131min ,Y y y y ==有最大值,最大值为2240−⨯+=;当1x <−时,()()()2141621x x x x −+++≥−++,解得:21x −≤<−,∴2x =−时,函数{}131min ,Y y y y ==有最大值,最大值为()2248−⨯−+=;b .当{}133min ,Y y y y ==时,13y y >, 即62421x x −+>−++,当1x >−时,()()()2141621x x x x −+++>−++,解得:2x >或<2x −(舍去), ∴362021y >−+=+,即0Y >;当1x <−时,()()()2141621x x x x −+++<−++,解得:2<<1x −−,∴328y <<,即28Y <<;综上所述,函数{}13min ,Y y y =的最大值为8,故答案为:8.8.(2024·四川成都·一模)如图,矩形OABC 交反比例函数k y x=于点D ,已知点()0,4A ,点()2,0C −,2ACD S =△.(1)求k 的值;(2)若过点D 的直线分别交x 轴,y 轴于R ,Q 两点,2DRDQ =,求该直线的解析式; (3)若四边形有一个内角为60︒,且有一条对角线平分一个内角,则称这个四边形为“角分四边形”.已知点P在y 轴负半轴上运动,点Q 在x 轴正半轴上运动,若四边形ACPQ 为“角分四边形”,求点P 与点Q 的坐标.【答案】(1)4k =−;(2)26y x =+或22y x =−+;(3)(()020P ,,Q ,−或 ()()04320P ,,−或()()040P ,,Q −【分析】(1)利用面积及矩形的性质,用待定系数法即可求解;(2)分两种情况讨论求解:R 在x 轴正半轴上和在负半轴上两种情况分别求解即可;(3)分三种情况:当AO 平分CAQ ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60AQP ∠=︒时,分别结合图形求解. 【解析】(1)解:2ACD S =△, 即122AD OA ⨯⨯=, ()0,4A ,1422AD ∴⨯=,1AD ∴=,()1,4D ∴−, 41k∴=−,4k ∴=−;(2)①如图,当2DR DQ =时,13DQ RQ =,AD OR ,13DQ AD RQ OR ∴==,1AD =,3OR ∴=,()3,0R ∴−,设直线RQ 为11y k x b =+, 把()3,0R −,()1,4D −代入11y k x b =+,得1111304k b k b −+=⎧⎨−+=⎩,解得1126k b =⎧⎨=⎩,直线RQ 为26y x =+,②如图,当2DR DQ =时,1DQ RQ =,AD OR ,1DQ AD RQ OR ∴==,1AD =,1OR ∴=,()1,0R ∴,设直线RQ 为22y k x b =+,把()1,0R ,()1,4D −代入22y k x b =+,得222204k b k b +=⎧⎨−+=⎩,解得2222k b =−⎧⎨=⎩,直线RQ 为22y x =−+,综上所述,直线RQ 的表达式为26y x =+或22y x =−+;(3)解:①当AO 平分CAQ ∠,60CPQ ∠=︒时,CAO QAO AO AOAOC AOQ ∠=∠⎧⎪=⎨⎪∠=⎩,()ASA AOC AOQ ∴≌, CO QO ∴=即AP 垂直平分CQ ,()2,0Q ∴,60CPQ ∠=︒,30CPO ∴∠=︒,tan30OC OP ∴===︒,(0,P ∴−,②当CO 平分ACP ∠,60CPQ ∠=︒时,同理ACO PCO ≌,得4OA OP ==,()0,4P ∴−,PC == 作CM PQ ⊥于M ,60CPQ ∠=︒,1cos602PM PC ∴=⨯︒==sin60CM PC =⨯︒== 90POQ CMQ ,PQO PQO ∠=∠=︒∠=∠,CMQ POQ ∴∽,MQ CM OQ OP ∴=,即MQ OQ =,)2222OQ OP PQ MQ +==② ,联立①,②,解得32OQ =或32OQ =(舍),()32,0Q ∴,③当CO 平分ACP ∠,60AQP ∠=︒时,同理 ACO PCO ≌,得4OA OP ==,AC CP = 同理ACQ PCQ ≌,得AQ PQ =∴APQ 是等边三角形()0,4P ∴−,8AP AQ PQ ,===OQ =, ()Q ∴,综上所述,P 、Q 的坐标为(()0,,2,0P Q −或 ()()0,4,32,0P Q −或()()0,4,P Q −.【点睛】此题是反比例函数综合题,主要考查了待定系数法,解直角三角形,求一次函数解析式,相似三角形的性质和判定,正确作出辅助线,解方程组,灵活运用待定系数法求函数解析式是解本题的关键. 题型5:定值问题9.(2024·山东济南·模拟预测)如图①,已知点()1,0A −,()0,2B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT 的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)()0,6或()0,2或()0,6− (3)12MN HT =,其值不发生改变,证明见解析【分析】(1)根据中点坐标公式可得,1D x =,设()1,D t ,由平行四边形对角线中点坐标相同可知()2,2C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:∵()1,0A −,E 为AD 中点且点E 在y 轴上,1D x ∴=, 设()1,D t ,()C m n ,,∵四边形ABCD 是平行四边形,∴AC BD 、的中点坐标相同, ∴101222022m t n +−⎧=⎪⎪⎨−+⎪=⎪⎩, ∴22m n t ==−,()22C t ∴−,,∵C 、D 都在反比例函数4y x =的图象上,()22k t t ∴==−,4t ∴=, 4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,①当AB 为边时:如图1,若ABPQ 为平行四边形,则1002240422p q p −++⎧=⎪⎪⎨−⎪−=⎪⎩,解得16p q =⎧⎨=⎩,此时()11,4P ,()10,6Q ;如图2,若ABQP 为平行四边形,则1002242022p q p −++⎧=⎪⎪⎨−+⎪+=⎪⎩,解得16p q =−⎧⎨=−⎩,此时()21,4P −−,()20,6Q −;②如图3,当AB 为对角线时,则010*******p q p +−+⎧=⎪⎪⎨+⎪−=⎪⎩解得12p q =−⎧⎨=⎩,()31,4P ∴−−,()30,2Q ;综上所述,满足题意的Q 的坐标为()0,6或()0,2或()0,6−;(3)解:12MN HT =,其值不发生改变,证明如下: 如图4,连NH 、NT 、NF ,∵M 是HT 的中点,MN HT ⊥,∴MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,45ABF ABH ∴∠=∠=︒,在BFN 与BHN △中,BF BH NBF NBH BN BN =⎧⎪∠=∠⎨⎪=⎩,()SAS BFN BHN ∴≌,NF NH NT ∴==,BFN BHN ∠=∠,∵90BFA BHA ==︒∠∠,NTF NFT AHN ∴∠=∠=∠,∵180ATN NTF ∠+∠=︒,∴180ATN AHN ∠+∠=︒,∴3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.10.(2024·山东济南·二模)如图①,已知点(1,0)A −,(0,2)B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)1(0,6)Q ,2(0,6)Q −,3(0,2)Q(3)结论:MN HT 的值不发生改变,12MN HT =证明见解析【分析】(1)设(1,)D t ,由DC AB ∥,可知(2,2)C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设(0,)Q y ,4(,)P x x ,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:(1,0)A −,(0,2)B −,E 为AD 中点, 1D x ∴=,设(1,)D t ,又DC AB ∥,(2,2)C t ∴−,24t t ∴=−,4t ∴=,4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设(0,)Q y ,4(,)P x x , ①当AB 为边时:如图1,若ABPQ 为平行四边形,则102x −+=,解得1x =,此时1(1,4)P ,1(0,6)Q ;如图2,若ABQP 为平行四边形,则122x −=, 解得=1x −,此时2(1,4)P −−,2(0,6)Q −;②如图3,当AB 为对角线时,AP BQ =,且AP BQ ∥; ∴122x −=,解得=1x −,3(1,4)P ∴−−,3(0,2)Q ;故1(1,4)P ,1(0,6)Q ;2(1,4)P −−,2(0,6)Q −;3(1,4)P −−,3(0,2)Q ;(3) 解:结论:MNHT 的值不发生改变,理由:如图4,连NH 、NT 、NF ,MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,ABF ABH ∴∠=∠,在BFN 与BHN △中,BF BH ABF ABH BN BN =⎧⎪∠=∠⎨⎪=⎩,()BFN BHN SAS ∴≌,NF NH NT ∴==, NTF NFT AHN ∴∠=∠=∠,四边形ATNH 中,180ATN NTF ∠+∠=︒,而NTF NFT AHN ∠=∠=∠,所以,180ATN AHN ∠+∠=︒,所以,四边形ATNH 内角和为360︒,所以3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.【点睛】此题是反比例函数综合题,主要考查了待定系数法求反比例函数的解析式、正方形的性质、等腰三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.题型6:取值范围问题11.(2024·江苏宿迁·二模)中国象棋棋盘上双方的分界处称为“楚河汉界”,以“楚河汉界”比喻双方对垒的分界线.在平面直角坐标系中,为了对两个图形进行分界,对“楚河汉界线”给出如下定义:点()11,P x y 是图形1G 上的任意一点,点()22,Q x y 是图形2G 上的任意一点,若存在直线()0l y kx b k =+≠∶满足11y kx b ≤+且22y kx b ≥+,则直线(0)y k b k =+≠就是图形1G 与2G 的“楚河汉界线”.例如:如图1,直线4l y x =−−∶是函数6(0)y x x=<的图像与正方形OABC 的一条“楚河汉界线”.(1)在直线①2y x =−,②41y x =−,③23y x =−+,④31y x =−−中,是图1函数6(0)y x x=<的图像与正方形OABC 的“楚河汉界线”的有______;(填序号) (2)如图2,第一象限的等腰直角EDF 的两腰分别与坐标轴平行,直角顶点D 的坐标是()2,1,EDF 与O 的“楚河汉界线”有且只有一条,求出此“楚河汉界线”的表达式;(3)正方形1111D C B A 的一边在y 轴上,其他三边都在y 轴的右侧,点(2,)M t 是此正方形的中心,若存在直线2y x b =−+是函数2)304(2y x x x =−++≤≤的图像与正方形1111D C B A 的“楚河汉界线”,求t 的取值范围.【答案】(1)①④;(2)25y x =−+;(3)7t ≤−或9t ≥.【分析】(1)根据定义,结合图象,可判断出直线为3y x =−或31y x =−−与双曲线6(0)y x x =<及正方形ABCD最多有一个公共点,即可求解;(2)先作出以原点O 为圆心且经过EDF 的顶点D 的圆,再过点D 作O 的切线,求出该直线的解析式即可;(3)先由抛物线与直线组成方程组,则该方程组有唯一一组解,再考虑直线与正方形有唯一公共点的情形,数形结合,分类讨论,求出t【解析】(1)解:如图,从图可知,2y x =−与双曲线6(0)y x x =<和正方形OABC 只有一个公共点,31y x =−−与双曲线6(0)y x x =<和正方形OABC 没有公共点,41y x =−、23y x =−+不在双曲线6(0)y x x =<及正方形ABCD 之间, 根据“楚河汉界线”定义可知,直线2y x =−,31y x =−−是双曲线6(0)y x x =<与正方形OABC 的“楚河汉界线”, 故答案为:①④;(2)解:如图,连接OD ,以O 为圆心,OD 长为半径作O ,作DG x ⊥轴于点G ,过点D 作O 的切线DM ,则MD OD ⊥,∵MD OD ⊥,DG x ⊥轴, ∴90ODM OGD ∠=∠=︒, ∴90MOD OMD ∠+∠=︒, ∵90MOD DOG ∠+∠=︒, ∴OMD DOG ∠=∠, ∴tan tan OMD DOG ∠=∠, ∵()2,1D ,∴1DG =,2OG =,∴1tan tan 2DG OMD DOG OG ∠=∠==,OG ==∵tan ODOMD DM ∠=,∴12=,∴1122MN DM ∴==⨯=∴5OM =,∴()0,5M ,设直线MD 的解析式为y mx n =+,把()0,5M 、()2,1D 代入得,521n m n =⎧⎨+=⎩,解得25m n =−⎧⎨=⎩,∴25y x =−+,∴EDF 与O 的“楚河汉界线”为25y x =−+; (3)解:由2223y x b y x x =−+⎧⎨=−++⎩得,2430x x b −+−=, ∵直线与抛物线有唯一公共点, ∴0=,∴164120b −+=,解得7b =, ∴此时的“楚河汉界线”为27y x =−+,当正方形1111D C B A 在直线27y x =−+上方时,如图,∵点()2,M t 是此正方形的中心,∴顶点()10,2A t −,∵顶点()10,2A t −不能在直线27y x =−+下方,得27t −≥,解得9t ≥;当正方形1111D C B A 在直线27y x =−下方时,如图,对于抛物线223y x x =−++,当0x =时,3y =;当4x =时,5y =−; ∴直线23y x =−+恰好经过点()0,3和点()4,5−;对于直线23y x =−+,当4x =时,5y =−,由()12,2C t +不能在直线23y x =−+上方,得25t ≤−+, 解得7t ≤−;综上所述,7t ≤−或9t ≥.【点睛】此题考查了一次函数、正方形的性质、三角函数、一次函数的应用、二元二次方程组,一元二次方程的根的判别式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.题型7:最值问题12.(2024·辽宁·一模)【发现问题】随着时代的发展,在现代城市设计中,有许多街道是设计的相互垂直或平行的,因此往往不能沿直线行走到目的地,只能按直角拐弯的方式行走.我们可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点()11,A x y 和()22,B x y ,用以下方式定义两点间的“折线距离”:()1212,d A B x x y y =−+−.【提出问题】(1)①已知点()4,1A ,则(),d O A =______;②函数()2630y x x =+−≤≤的图象如图1,B 是图象上一点,若(),5d O B =,则点B 的坐标为______; (2)函数()30y x x=>的图象如图2,该函数图象上是否存在点C ,使(),2d O C =?若存在,求出其坐标;若不存在,请说明理由; 【拓展运用】(3)已知函数()21460y x x x =−+≥和函数()2231y x x =+≥−的图象如图3,D 是函数1y 图象上的一点,E是函数2y 图象上的一点,当(),d O D 和(),d O E 分别取到最小值的时候,请求出(),d D E 的值.【答案】(1)①5;②()14,(2)不存在,理由见解析(3)()15,4d D E =【分析】本题在新定义下考查了一次方程和分式方程的解法,二次函数的最值,关键是紧靠定义来构造方程和函数.(1)①代入定义中的公式求; ②设出函数()2630y x x =+−≤≤的图象上点B 的坐标,通过(),5d O B =建立方程,解方程;(2)设出函数()30y x x =>的图象上点C 的坐标,通过(),2d O C =建立方程,看方程解的情况;(3)设出函数()21460y x x x =−+≥的图象上点D 的坐标,将()d O D ,表示成函数,利用二次函数的性质求函数最值,可求得点D 的坐标;设出函数()2231y x x =+≥−的图象上点E 的坐标,利用一次函数的性质,可求得点E 的坐标;再按定义求得(),d D E 的值即可.【解析】 解:(1)①∵点()4,1A ,点()00O ,,∴()40105d O A =−+−=,;故答案为:5; ②设点()26B x x +,,∵(),5d O B =, ∴265x x ++=,∵30x −≤≤, ∴265x x −++=, ∴=1x −, ∴点()14B ,.故答案为:()14,; (2)不存在,理由如下:设点3C m m ⎛⎫ ⎪⎝⎭,, ∵(),2d O C =,∴32m m +=,∵0m >, ∴32m m +=,∴2230m m −+=,∵80∆=−<,∴此方程没有实数根, ∴不存在符合条件的点C ;(3)设点D 为()246n nn −+,,∴()246d O D n n n =+−+,,∵0n ≥,()2246220n n n −+=−+>,∴()222315463624d O D n n n n n n ⎛⎫=+−+=−+=−+⎪⎝⎭,, ∴当32n =时,()d O D ,最小,最小值为154,此时点D 坐标为3924⎛⎫ ⎪⎝⎭,. 设点E 为()23e e +,,∴()23d O Ee e =++,,当10e −≤<时,()233d O Ee e e =−++=+,,∴当1e =−时,()d O E ,最小,最小值为2;当0e ≥时,()2333d O Ee e e =++=+,,∴当0e =时,()d O E ,最小,最小值为3;∴此时点E 坐标为()11−,.∴()395515,1124244d D E =−−+−=+=.13.(2024·四川成都·模拟预测)如图,在平面直角坐标系中,已知直线132y x =−与反比例函数ky x=的图象交于点()8,Q t ,与y 轴交于点R ,动直线()08x m m =<<与反比例函数的图象交于点K ,与直线QR 交于点T .(1)求t 的值及反比例函数的表达式;(2)当m 为何值时,RKT △的面积最大,且最大值为多少? (3)如图2,ABCO 的顶点C 在反比例函数()0ky x x=>的图象上,点P 为反比例函数图象上一动点,过点P 作MN x ∥轴交OC 于点N ,交AB 于点M .当点P 的纵坐标为2,点C 的横坐标为1且8OA =时,求PNPM的值.【答案】(1)1t =,反比例函数的表达式为8y x =; (2)当3m =时,RKT △的面积最大,且最大值为254;(3)1517PN PM =【分析】(1)将()8,Q t 代入直线132y x =−,求出t 的值,再将点Q 的坐标代入反比例函数,求出k 的值,即可得到反比例函数解析式;(2)设8,K m m ⎛⎫ ⎪⎝⎭,1,32T m m ⎛⎫− ⎪⎝⎭,则81813322KT m m m m ⎛⎫=−−=−+ ⎪⎝⎭,进而表示出 RKT RTKQTKS SS=+△()2125344m =−−+,结合二次函数的性质,即可求出最值;(3)先求出P 、C 两点的坐标,再利用待定系数法求出直线OC 的解析式,进而得到点N 的坐标,得出PN的长,然后利用平行四边形的性质,得出PM 的长,即可求出PNPM 的值.【解析】(1)解:()8,Q t 在直线132y x =−上,18312t ∴=⨯−=,()8,1Q ∴,()8,1Q 在反比例函数ky x =上,818k ∴=⨯=,。

2024年中考数学总复习考点梳理专题三反比例函数综合题

2024年中考数学总复习考点梳理专题三反比例函数综合题
2
∵点F在直线CD上,
∴-
3 2
×
20 3
+b=0,
∴b=10,
∴直线CD的表达式为y=- 3 x+10.
2
H
第1题图

专题三 反比例函数综合题
2. (2023甘肃省卷)如图,一次函数y=mx+n的图象与y轴交于点
A,与反比例函数y=
6 x
(x>0)的图象交于点B(3,a).
(1)求点B的坐标;
解:(1)∵点B(3,a)在反比例函数y= 6 (x>0)
∴k=-1×4=-4,
∴反比例函数的表达式为y2=-
4 x

第4题图
专题三 反比例函数综合题
(2)在第二象限内,当y1<y2时,直接写出x的取值范围; 【解法提示】由题图易得在第二象限内,当y1<y2时,-1<x <0. (2)-1<x<0;
第4题图
专题三 反比例函数综合题
(3)点P在x轴负半轴上,连接PA,且PA⊥AB,求点P坐标.
∵B(4,-6),∴BG=4, ∵S△OBE=12 OE·BG=20, ∴OE=10,
∴E(0,10),
∴直线AB向上平移10个单位得到直线CD,
∴直线CD的表达式为y=-
3 2
x+10.

G
第1题图
专题三 反比例函数综合题
【一题多解】如图,连接BF,过点B作BH⊥x轴于点H,
∵A(-4,6)在正比例函数y=kx上,
2
(1)求这两个函数的解析式;
解:(1)∵反比例函数图象过点A(4,1),
标轴于点 E,F,连接 OD,BD,若 △OBD的面积为20,求直
线 CD的表达式. (2)如图,连接BE,
过点B作BG⊥y轴于点G,

【精选】重庆市中考数学题型复习题型四反比例函数综合题类型二与几何图形结合课件

【精选】重庆市中考数学题型复习题型四反比例函数综合题类型二与几何图形结合课件
二、听思路。
思路就是我们思考问题的步骤。例如老师在讲解一道数学题时,首先思考应该从什么地方下手,然后在思考用什么方法,通过什么样的过程来进行解 答。听课时关键应该弄清楚老师讲解问题的思路。
三、听问题。
对于自己预习中不懂的内容,上课时要重点把握。在听讲中要特别注意老师和课本中是怎么解释的。如果老师在讲课中一带而过,并没有详细解答, 大家要及时地把它们记下来,下课再向老师请教。
四、听方法。
在课堂上不仅要听老师讲课的结论而且要认真关注老师分析、解决问题的方法。比如上语文课学习汉字,一般都是遵循着“形”、“音”、“义”的 研究方向;分析小说,一般都是从人物、环境、情节三个要素入手;写记叙文,则要从时间、地点、人物和事情发生的起因、经过、结果六个方面进行 叙述。这些都是语文学习中的一些具体方法。其他的科目也有适用的学习方法,如解数学题时,会用到反正法;换元法;待定系数法;配方法;消元法; 因式分解法等,掌握各个科目的方法是大家应该学习的核心所在。
标函为数1y=,又∵图点象E在上反,比∴例y1=1时,x= ,∴E( ,1),∴OE=
3 =2,∴CD=42OE=4,∴CD=BD,又∵四边形ABCD是菱形,∴△ABD和△BCD都是等边三 x 角形,且边长为4,∴∠BAD=60°,∴∠FAG= ∠BAD=303°,∵DF⊥AB, 3
∴AF=BF= AB=2,∴AG=
题型四 反比例函数综合 题
类型二 与几何图形结合
典例精讲
例 2 如图,菱形ABCD的四个顶点均在坐标轴上,对角
线AC、BD交于原点O,DF⊥AB交AC于点G,反比例函
数y= 3 (x>0)的图象经过线段DC的中点E,若BD=4,
x
则AG的长为( )
A. 4 3 C. 23 +1

重庆中考反比例函数专题训练

重庆中考反比例函数专题训练

重庆中考反比例函数专题训练1、 如图,在平面直角坐标系中,一次函数bkx y +=的图象分别交x 轴、y 轴于点A 、点B ,与反比例函数xm y=的图象交于点C 、点D ,DE ⊥x 轴于点E ,已知点C 的坐标是(6,-1),AE=6 ,21tan =∠DAE ;(1)求反比例函数和一次函数的解析式;(2)根据图象回答:当x 为何值时,一次函数的值大于反比例函数的值?2、如图,在平面直角坐标系中,经过点A (-1,0)的一次函数)0(≠+=a b ax y 的图象与反比例函数)0(≠=k x k y 的图象相交于P 、Q 两点,过点P 作PB ⊥x 轴于点B ,已知点B 的坐标是(2,0),23t a n =∠PAB ;(1)求反比例函数和一次函数的解析式;(2)设一次函数与y 轴相交于点C ,求四边形OBPC 的面积;3、已知:如图,在平面直角坐标系中,一次函数)0(1≠+=k b kx y 的图象与反比例函数)0(2≠=m xm y 的图象相交于二、四象限内的A 、B 两点,过点A 作AC ⊥x 轴于点C ,连接OA 、OB 、BC ,已知OC =4,点B 的纵坐标是-6 ,2tan =∠OAC ;(1)求反比例函数和直线AB 的解析式;(2)求四边形OACB 的面积;4、已知:如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象在第一象限只有一个交点,一次函数的图象与x 轴、y 轴分别相交于B 、C 两点,AD 垂直平分OB ,垂足为D 点,13=OA,13132cos=∠ABO(1)求点A 的坐标和反比例函数解析式;(2)求一次函数的解析式;;5、已知:如图,在平面直角坐标系xOy 中,一次函数0(≠+=k b kx y 的图象与反比例函数xm y=(x <0)的图象相交于第二象限内的A 、B 两点,过点A 作AC ⊥x 轴于点C ,已知OA=5,OC =4,点B 的纵坐标是6 ,2tan =∠OAC ;(1)求反比例函数和一次函数的解析式; (2)求△AOB 的面积;6、已知:如图,在平面直角坐标系中,一次函数(1≠+=k b kx y 的图象与反比例函数)0(2≠=m xm y 的图象相交于A 、B 两点,与x 轴相交于点C ,已知BC=BO =5,点D 的坐标是(-6,0) ,32tan =∠OCB ;(1)求反比例函数和直线AB 的解析式;(2)求点A 的坐标;并根据图像直接写出当1y >2y 时x 的取值范围;y7、如图,在平面直角坐标系中,一次函数ax y +=的图象与反比例函数xk y =的图象交于A 、B 两点,与x 轴相交于点D ,与y 轴相交于点C ,已知点D 的坐标是(-2,0),点A 的横坐标是2 ,21tan=∠CDO ;(1)求点A 的坐标;(2)求反比例函数和一次函数的解析式; (3)求△AOB 的面积;8、已知:如图,一次函数)0(1≠+=k b kx y 的图象与反比例函数)0(2≠=m xm y 的图象相交于A 、B 两点,已知OA =10,点B 的坐标是(23-,m ),31ta n =∠A O C;(1)求反比例函数和一次函数的解析式; (2)根据你观察的图像,直接写出使函数值1y <2y 时自变量x 的取值范围;y9、已知:如图,反比例函数xm y=(m >0)的图象与一次函数)0(1≠+=k b kx y 的图象相交于A 、B 两点,AC ⊥x 轴于点C ,若OC=1,且 31tan =∠AOC ,点D 与点C 关于原点O 对称;(1)求反比例函数和一次函数的解析式;(2)根据你观察的图像,写出不等式xm <bkx+成立的解集;10、如图,在平面直角坐标系中,一次函数bax y +=(0≠a)的图象与反比例函数xk y =(0≠k)的图象相交于A 、D 两点,其中D 点的纵坐标为-4,直线bax y+=与y 轴相交于点B ,作AC ⊥y 轴相交于点C ,已知OB=OC=2,21tan=∠ABO ;(1)求点A 的坐标;(2)求反比例函数和直线AB 的解析式; (3)连接OA 、OD ,求△AOD 的面积;11、如图,在平面直角坐标系中,直线AB :bax y +=(0≠a)与反比例函数xm y=(0≠m)的图象交于B 点,与x 轴相交于点A ,已知 CB=BO=5,54tan =∠OAB ,点C 的坐标是(-6,0);(1)求反比例函数和直线AB 的解析式;(2)求线段AB 的长;12、如图,若直线 bax y +=(0≠a)与x 轴相交于点A (25,0),与双曲线xm y=(0≠m)的图象在第二象限交于B 点,且 OA=OB ,△OAB 的面积为25;(1)求双曲线的解析式和直线AB的解析式;(2)求ABO ∠tan 的值;13、如图,在平面直角坐标系xOy 中,一次函数bkx y +=(0≠k)与反比例函数xm y=(0≠m)的图象相交于A 点,与x 轴相交于点B ,AC ⊥x 轴于点C ,AB=10, OB=OC ,43tan =∠ABC ;(1)求反比例函数和一次函数的解析式;(2)若一次函数与反比例函数的图象的另一交点为D 点,连接OA 、OD ,求△AOD 的面积;14、如图,在平面直角坐标系xOy 中,一次函数b kx y +=1(0≠k )与反比例函数xm y =2(m <0)的图象交于点A (-2,n )及另一点,与两坐标轴分别相交于点C 、D 两点,过点A 作AH ⊥x 轴于点H ,若OC=2OH ,△ACH 的面积为9;(1)求反比例函数和一次函数AB 的解析式及另一交点B 的坐标; (2)根据图像,直接写出当1y >2y 时自变量x 的取值范围;15、已知点A 与点B (-3,2)关于y 轴对称,一次函数b mx y +=(0≠m )与反比例函数xk y=的图象都经过点A ,且点C (2,0)在一次函数bmx y+=的图象上,(1)求反比例函数和一次函数AB 的解析式;(2)若两个函数的另一个交点为点D ,求△AOD 的面积;16、如图,在平面直角坐标系xOy 中,已知一次函数bkx y +=(0≠k)的图象经过点A 与点C (0,-4),反比例函数xm y=(0≠m)的图象经过点A (1,-3),且与一次函数的图象相交于另一点B (3,n ); (1)试确定反比例函数和一次函数解析式;(2)根据图像,直接写出反比例函数值大于一次函数值时自变量x 的取值范围;。

第三节 反比例函数(玩转重庆9年中考真题)

第三节 反比例函数(玩转重庆9年中考真题)

第三章函数第三节反比例函数玩转重庆9年中考真题(~) 命题点1 反比例函数与几何图形综合题类型一与三角形结合(9年1考)1.(重庆A卷12题4分)如图,反比例函数y=-6x在第二象限的图象上有两点A、B,它们的横坐标分别为-1、-3,直线AB与x轴交于点C,则△AOC的面积为() A. 8 B. 10 C. 12 D. 24第1题图【拓展猜押1】如图,若双曲线y=kx与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为()拓展猜押1题图A. 23B. 53 2C. 934 D.536类型二与四边形结合(9年4考)2. (重庆A卷12题4分)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=3x的图象经过A、B两点,则菱形ABCD的面积为()A. 2B. 4C. 2 2D. 4 2第2题图第3题图3. (重庆B卷12题4分)如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,33),反比例函数y=kx的图象与菱形对角线AO交于D点,连接BD,当DB⊥x轴时,k的值是()A. 6 3B. -6 3C. 12 3D. -12 34. (重庆B卷12题4分)如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数y=kx(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN.下列结论:①△OCN≌△OAM;②ON=MN;③四边形DAMN与△MON 面积相等;④若∠MON=45°,MN=2,则点C的坐标为(0,2+1).其中正确结论的个数是()A. 1B. 2C. 3D. 4第4题图第5题图5. (重庆A卷18题4分)如图,菱形OABC的顶点O是坐标原点,顶点A在x 轴的正半轴上,顶点B、C均在第一象限,OA=2,∠AOC=60°.点D在边AB 上,将四边形ODBC沿直线OD翻折,使点B和点C分别落在这个坐标平面内的点B′和点C′处,且∠C′DB′=60°.若某反比例函数的图象经过点B′,则这个反比例函数的解析式为______________.【变式改编1】如图,菱形OABC的顶点O是坐标原点,顶点A在x轴的正半轴上,顶点B、C均在第一象限,∠AOC=60°,点D在边AB上,将四边形ODBC 沿直线OD翻折,使点B和点C分别落在这个坐标平面内的点B′和点C′处,且∠C′DB′=60°. 若反比例函数y=-33x的图象经过点B′,则菱形OABC的边长为________.变式改编1题图命题点2反比例函数与一次函数、几何图形综合题(9年8考)6. (重庆B卷12题4分)如图,正方形ABCD的顶点B、C在x轴的正半轴上,反比例函数y=kx(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,23).过点E的直线l交x轴于点F,交y轴于点G(0,-2).则点F的坐标是()A. (54,0) B. (74,0) C.(94,0) D. (114,0)第6题图象与反比例函数y=kx(k≠0)的图象交于第二、第四象限内的A,B两点,与y轴交于C点.过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=43,点B的坐标为(m,-2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.第7题图8. (重庆B卷22题10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,-4),连接AO,AO=5,sin∠AOC=3 5.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.第8题图的图象与反比例函数y=kx(k≠0)的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,-2),tan∠BOC=2 5.(1)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E 的坐标.第9题图【变式改编2】如图,在平面直角坐标系xOy中,反比例函数y=mx的图象与一次函数y=k(x-2)的图象交点为A(3,2),B(a,b).(1)求反比例函数与一次函数的解析式及B点坐标;(2)若C是y轴上的点,且满足△ABC的面积为10.求C点坐标.变式改编2题图【拓展猜押2】如图,△OAB为等腰直角三角形,斜边OB边在x轴负半轴上,一次函数y =-17x +47与△OAB 交于E 、D 两点,与x 轴交于C 点,反比例函数y =k x (k ≠0)的图象的一支过E 点,若S △AED =S △DOC ,则k 的值为 ( )A. 1B. 2C. -1D. -3拓展猜押2题图答案命题点1 反比例函数与几何综合题1. C 【解析】本题考查反比例函数性质、待定系数法求直线解析式及三角形面积的计算.∵点A 、B 都在反比例函数y =-6x 的图象上,且点A 、B 的横坐标分别是-1、-3,代入到函数解析式中,可得A 、B 两点的纵坐标分别为6、2,∴A (-1,6),B (-3,2),设直线AB 的解析式为:y =kx +b ,代入A 、B 两点,得:623k b k b =-+⎧⎨=-+⎩,解得:28k b =⎧⎨=⎩,则直线AB 的解析式为:y =2x +8,令y =0,解得:x =-4,则点C 的坐标为(-4,0),∴OC =4,S △AOC =12OC ·|y A |=12×4×6=12.【拓展猜押1】 C 【解析】因为△AOB 是等边三角形,所以∠AOB =∠ABO =60°,如解图,过点C 作CM ⊥OB 于M ,过点D 作DN ⊥OB 于N ,所以△OCM ∽△BDN ,所以OC DB =OM BN =CM DN ,又因为OC =3BD ,我们不妨设OM =3a ,则BN =a ,所以C (3a ,33a ),D(5-a ,3a ),又因为点C 和点D 均在双曲线上,所以3a ·33a =(5-a )3a ,解之得a 1=12,a 2=0(不合题意,应舍去),所以k =3a ×33a =93a 2=93×14=934.拓展猜押1题解图 第2题解图2. D 【解析】∵当y =3时,即3=3x ,解得x =1,∴A (1,3);当y =1时,即1=3x ,解得x =3,∴B (3,1).如解图,过点A 作AE ∥y 轴交CB 的延长线于E 点,则AE =3-1=2,BE =3-1=2,∴AB =22+22=22,∴在菱形ABCD 中,BC =AB =22,∴S 菱形ABCD =BC ×AE =22×2=4 2.第3题解图3. D 【解析】连接BC ,过点C 作CE ⊥x 轴于E 点,如解图.∵在菱形ABOC 中,OC =OB ,∠BOC =60°,∴△BOC 是等边三角形.∵CE ⊥BO ,∴∠OCE=30°,BE =EO .∵C (m ,33),∴CE =33,∵sin60°=CE OC ,∴OC =CE sin 60°=3332=6,∴OB =6.∵在菱形ABOC 中,∠AOB =12∠BOC =30°,∴tan30°=BD BO ,∴BD =BO ·tan30°=6×33=23,∴D (-6,23),∴k =(-6)·23=-12 3.4. C 【解析】本题是反比例函数和几何图形结合的结论判断题,逐项分析如下:序号 逐项分析 正误①S△CON=S△MOA=12k,∴OC·CN=OA·AM,又∵OC=OA, ∴CN=AM.又∵∠OCB=∠OAB=90°,∴△OCN≌△OAM√②由①知△OCN≌△OAM,∴ON=OM,若ON=MN,则△ONM是等边三角形,∠NOM=60°,题目中没有给出可以得到此结论的条件×③根据①的结论,设正方形边长为a,CN=AM=b.S四边形DAMN=12(a+b)(a-b)=12a2-12b2,S△MON=a2-12ab-12ab-12(a-b)2=12a2-12b2, ∴S四边形DAMN=S△MON√④如解图,延长BA到E,使AE=CN,连接OE,则△OCN≌△OAE,∴∠EOA=∠NOC,ON=OE,∴∠MOE=∠MOA+∠CON=90°-∠MON=45°,∴∠MOE=∠MON,又∵OM=OM,∴△NOM≌△EOM,∴ME=MN=2,即CN+AM=2,∴CN=AM=1,Rt△NMB中,BN=BM=MN2=2,∴AB=2+1, ∴C(0, 2+1)√第4题解图5. y=33x-【解析】∵四边形OABC是菱形,∴∠ABC=∠AOC=60°.由折叠的性质知∠CDB=∠C′DB′=60°,∴△CDB为等边三角形,如解图,∴DB=BC=2,∴点D与点A重合.∴点B′与点B关于OA即x轴对称.易求得点B 的坐标为(3,3),故点B′的坐标为(3,-3),所以经过点B′的反比例函数的解析式为y=33x-.第5题解图变式改编1题解图【变式改编1】2【解析】如解图,∵四边形OABC是菱形,∠AOC=60°,∴△AOC和△ABC都是等边三角形,由轴对称的性质可知∠CDB=∠C′DB′=60°,CD=C′D,DB=B′D,∴点D与点A重合.过点B′作B′E⊥x轴于点E,则∠B′ED=90°,在Rt△DB′E中,∠EDB′=60°,设AB′=x,∴OE=x+x 2=3x2,EB′=32x,∵点B′在第四象限,∴点B′(32x,-32x).∵点B′在反比例函数y=-33x的图象上,则32x·(-32x)=-33,解得x=2,则菱形OABC的边长是2.命题点2反比例函数与一次函数、几何图形综合题6.C【解析】∵四边形ABCD是正方形,点A的坐标为(m,2),∴正方形ABCD的边长为2,即BC=2.∵点E的坐标为(n,23),点E在边CD上,∴点E的坐标为(m +2,23).把A (m ,2)和E (m +2,23)代入y =k x,得2232k mkm ⎧=⎪⎪⎨⎪=⎪+⎩,解得21k m =⎧⎨=⎩,∴点E 的坐标为(3,23).∵点G 的坐标为(0,-2),设直线GE 的解析式为:y=ax +b (a ≠0),可得,2233b a b -=⎧⎪⎨=+⎪⎩,解得892a b ⎧=⎪⎨⎪=-⎩,∴直线GE 的解析式为:y=89x -2.∵点F 在直线GE 上,且点F 在x 轴上,可设点F 的坐标为(c ,0),代入GE 的解析式,令y =0,求得c =94,∴点F 的坐标为(94,0). 7. 解:(1)在Rt △AOH 中,tan ∠AOH =43,OH =3, ∴AH =OH·tan ∠AOH =4,∴AO 22OH AH +=32+42=5,∴C △AOH =AO +OH +AH =5+3+4=12. .......................................................(5分) (2)由(1)得,A (-4,3),把A (-4,3)代入反比例函数y =kx 中,得k =-12,∴反比例函数解析式为y =12x-,...................................................................(7分) 把B (m ,-2)代入反比例函数y =12x-中,得m =6, ∴B (6,-2),..................................................................................................(8分) 把A (-4,3),B (6,-2)代入一次函数y =ax +b 中,得6243a b a b +=-⎧⎨-+=⎩, ∴121a b ⎧=-⎪⎨⎪=⎩, ∴一次函数的解析式为y =-12x +1. ...............................................................(10分)8.第8题解图解:(1)如解图,过点A 作AE ⊥x 轴于点E , ∵OA =5,sin ∠AOC =35, ∴AE =OA ·sin ∠AOC =5×35=3, OE =22OA AE -=4,∴A (-4,3),........................................................................................................(3分)设反比例函数的解析式为y =kx (k ≠0), 把A (-4,3)代入解析式,得k =-12, ∴反比例函数的解析式为y =12x-. .................................................................(5分) (2)把B (m ,-4)代入y =12x-中,得m =3,∴B (3,-4).设直线AB 的解析式为:y =k x +b ,把A (-4,3)和B (3,-4)代入得,4334k b k b -+=⎧⎨+=-⎩,解得11k b =-⎧⎨=-⎩, ∴直线AB 的解析式为:y =-x -1,.................................................................(8分) 则直线AB 与y 轴的交点D (0,-1),∴S △AOB =S △AOD +S △BOD =12×1×4+12×1×3=3.5. ......................................(10分)第9题解图9. 解:(1)如解图,过点B 作BD ⊥x 轴于点D .∵点B 的坐标为(n ,-2), ∴BD =2.在Rt △BDO 中,tan ∠BOC =BDOD ,∵tan ∠BOC =2OD=25, ∴OD =5. ..........................................................................................................(1分)又∵点B 在第三象限,∴点B 的坐标为(-5,-2).(2分) 将B (-5,-2)代入y =k x ,得-2=5k-,∴k =10,..............................................................................................................(3分) ∴该反比例函数的解析式为y =10x. .................................................................(4分) 将点A (2,m )代入y =10x,得m =102=5, ∴A (2,5).........................................................................................................(5分) 将A (2,5)和B (-5,-2)分别代入y =ax +b ,得2552a b a b +=⎧⎨-+=-⎩,解得13a b =⎧⎨=⎩,...............................................................................(6分) ∴该一次函数的解析式为y =x +3. ..................................................................(7分) (2)在y =x +3中,令y =0,即x +3=0, ∴x =-3,∴点C 的坐标为(-3,0),∴OC =3. .........................................................................................................(8分) 又∵在x 轴上有一点E (O 除外),使S △BCE =S △BCO ,∴CE =OC =3,..............................................................................................(9分) ∴OE =6,∴E (-6,0)...................................................................................................(10分) 【变式改编2】 解:(1)把点A (3,2)分别代入反比例函数解析式和一次函数解析式得,3m=2,k (3-2)=2, 解得m =6,k =2,∴反比例函数解析式为y =6x,一次函数解析式为y =2x -4; 由624y xy x ⎧=⎪⎨⎪=-⎩,解得121231,26x x y y ==-⎧⎧⎨⎨==-⎩⎩,∴B 点坐标(-1,-6).变式改编2题解图(2)设一次函数与y 轴交于D 点,如解图, 在y =2x -4中,令x =0得y =-4, ∴D 点坐标为(0,-4), ∵S △ABC =S △ACD +S △BCD =10,∴12×CD ×3+12×CD ×1=10,解得CD =5, ∴C 点坐标为(0,1)或(0,-9).拓展猜押2题解图【拓展猜押2】 D 【解析】如解图,作EF ⊥OB 于F ,AG ⊥OB 于G ,设E (m ,n ),∴OF =-m ,EF =n ,∵△OAB 为等腰直角三角形,∴∠ABO =45°,∵EF⊥OB,∴EF=BF=n,∴OB=-m+n,∴AG=12OB=12(-m+n),∵一次函数y=-17x+47与x轴交于C点,∴C(4,0),∴BC=-m+n+4,∵S△AED=S△DOC ,∴S△ABO=S△EBC,∴12OB·AG=12BC·EF,即12(-m+n)·12(-m+n)=12(-m+n+4)·n,整理得,m2=n2+8n,∵点E是直线y=-17x+47上的点,∴n=-17m+47,得出m=4-7n,代入m2=n2+8n化简得,3n2-4n+1=0,解得n=1或n=13,∴m=-3或m=53>0(舍去),∴E(-3,1),∵反比例函数y=kx(k≠0)的图象过E点,∴k=mn=-3.。

2023中考数学专项: 反比例函数与几何图形综合问题(重点突围)(学生版)

2023中考数学专项: 反比例函数与几何图形综合问题(重点突围)(学生版)

专题16反比例函数与几何图形综合问题【中考考向导航】目录【直击中考】 (1)【考向一反比例函数中K值的几何意义】 (1)【考向二反比例函数与三角形的综合问题】 (4)【考向三反比例函数与矩形的综合问题】 (6)【考向四反比例函数与菱形的综合问题】 (9)【考向五反比例函数与正方形的综合问题】 (11)【考向六反比例函数与圆的综合问题】 (15)【直击中考】【考向一反比例函数中K值的几何意义】【变式训练】1.(2023·安徽宿州·统考一模)如图,若反比例函数______在反比例函数3.(2022·黑龙江绥化·校考二模)如图,在过点A、C两点,点B在4.(2023秋·安徽池州·九年级统考期末)AC交y轴于点B,若点B是=【考向二反比例函数与三角形的综合问题】(1)求反比例函数的解析式;(2)过点A作AP垂直OA,交反比例函数的图象于点①求直线AC的解析式;②求点P的坐标.【变式训练】(1)求反比例函数的解析式;(2)坐标平面内有一点D,若以A(1)求反比例函数的表达式;(2)求等边△ACD的边长.【考向三反比例函数与矩形的综合问题】(1)直接写出B,C,D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点值.【变式训练】上两点,的顶点【考向四反比例函数与菱形的综合问题】(1)求k的值及AB所在直线的函数表达式;(2)将这个菱形沿x轴正方向平移,当顶点【变式训练】是菱形,点(1)求一次函数与反比例函数的解析式;(2)设点P是直线AB上一动点,且ABCD(1)求双曲线y2的函数关系式及(2)判断点B是否在双曲线上,并说明理由;(3)若BA的延长线与双曲线【考向五反比例函数与正方形的综合问题】(1)求反比例函数的解析式;(2)若将正方形ABCD沿x轴向右平移得到正方形标,并判断点B′是否在该反比例函数的图象上,说明理由.【变式训练】在平面直角坐标系中,点(1)求反比例函数的解析式;(2)求四边形OAFM 的面积.2.(2022·山东济南·校考一模)如图,四边形35AE OE =.中点,以备用图4.(2022春·江苏苏州·八年级星海实验中学校考期中)如图,在平面直角坐标系中,四边形ABCD 为正方形,已知点()6,0A -、()7,3D -,点B 、C 在第二象限内.(1)点B 的坐标_________;(2)将正方形ABCD 以每秒2个单位的速度沿x 轴向右平移t 秒,若存在某一时刻t ,使在第一象限内点B 、D 两点的对应点B '、D ¢正好落在某反比例函数的图像上,请求出此时t 的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在y 轴上的点P 和反比例函数图像上的点Q ,使得以P 、Q 、B '、D ¢四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点Q 的坐标;若不存在,请说明理由.【考向六反比例函数与圆的综合问题】【变式训练】在反比例函数。

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)知识点总结1. 反比例函数k 的集合意义:①过反比例函数图像上任意一点作坐标轴的垂线,两垂线与坐标轴构成一个矩形,矩形的面积等于k 。

②过反比例函数图像上任意一点作其中一条坐标轴的垂线,并连接这个点与原点,则构成一个三角形。

这个三角形的面积等于2k 。

2. 待定系数法求反比例函数解析式:在反比例函数中只有一个系数k ,所以只需要在图像上找一个对应的点即可求出k 的值,从而求出反比例函数解析式。

3. 反比例函数与一次函数的不等式问题: 若反比例函数()0≠=k x ky 与一次函数()0≠+=k b kx y 有交点,则不等式b kx xk +>的解集取反比例函数图像在一次函数图像上方的部分所对应的自变量取值范围;等式b kx xk+<的解集取反比例函数图像在一次函数图像下方的部分所对应的自变量取值范围。

反比例函数与一次函数的交点把自变量分成三部分。

练习题1、(2022•日照)如图,矩形OABC 与反比例函数y 1=xk1(k 1是非零常数,x >0)的图像交于点M ,N ,与反比例函数y 2=xk2(k 2是非零常数,x >0)的图像交于点B ,连接OM ,ON .若四边形OMBN 的面积为3,则k 1﹣k 2=( )A .3B .﹣3C .23 D .﹣23【分析】根据矩形的性质以及反比例函数系数k 的几何意义即可得出结论. 【解答】解:∵y 1、y 2的图像均在第一象限, ∴k 1>0,k 2>0,∵点M 、N 均在反比例函数y 1=(k 1是非零常数,x >0)的图像上,∴S △OAM =S △OCN =k 1,∵矩形OABC 的顶点B 在反比例函数y 2=(k 2是非零常数,x >0)的图像上,∴S 矩形OABC =k 2,∴S 四边形OMBN =S 矩形OABC ﹣S △OAM ﹣S △OCN =3, ∴k 2﹣k 1=3, ∴k 1﹣k 2=﹣3, 故选:B .2、(2022•牡丹江)如图,等边三角形OAB ,点B 在x 轴正半轴上,S △OAB =43,若反比例函数y =xk(k ≠0)图像的一支经过点A ,则k 的值是( )A .233 B .23C .433 D .43【分析】根据正三角形的性质以及反比例函数系数k 的几何意义,得出S △AOC =S △AOB =2=|k |,即可求出k 的值.【解答】解:如图,过点A 作AC ⊥OB 于点C , ∵△OAB 是正三角形, ∴OC =BC ,∴S △AOC =S △AOB =2=|k |,又∵k >0, ∴k =4,故选:D .3、(2022•郴州)如图,在函数y =x2(x >0)的图像上任取一点A ,过点A 作y 轴的垂线交函数y =﹣x8(x <0)的图像于点B ,连接OA ,OB ,则△AOB 的面积是( )A .3B .5C .6D .10【分析】根据反比例函数系数k 的几何意义进行计算即可. 【解答】解:∵点A 在函数y =(x >0)的图像上, ∴S △AOC =×2=1,又∵点B 在反比例函数y =﹣(x <0)的图像上, ∴S △BOC =×8=4, ∴S △AOB =S △AOC +S △BOC =1+4 =5, 故选:B .4、(2022•黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数y =x 3的图像上,顶点A 在反比例函数y =xk的图像上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .﹣1D .﹣2【分析】设B (a ,),根据四边形OBAD 是平行四边形,推出AB ∥DO ,表示出A 点的坐标,求出AB =a ﹣,再根据平行四边形面积公式列方程,解出即可.【解答】解:设B (a ,), ∵四边形OBAD 是平行四边形, ∴AB ∥DO , ∴A (,),∴AB =a ﹣,∵平行四边形OBAD 的面积是5, ∴(a ﹣)=5,解得k =﹣2, 故选:D .5、(2022•十堰)如图,正方形ABCD 的顶点分别在反比例函数y =xk 1(k 1>0)和y =xk 2(k 2>0)的图像上.若BD ∥y 轴,点D 的横坐标为3,则k 1+k 2=( )A .36B .18C .12D .9【分析】连接AC交BD于E,延长BD交x轴于F,连接OD、OB,设AE=BE=CE=DE =m,D(3,a),根据BD∥y轴,可得B(3,a+2m),A(3+m,a+m),即知k1=3(a+2m)=(3+m)(a+m),从而m=3﹣a,B(3,6﹣a),由B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,得k1=3(6﹣a)=18﹣3a,k2=3a,即得k1+k2=18﹣3a+3a=18.【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图像上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B .6、(2022•邵阳)如图是反比例函数y =x1的图像,点A (x ,y )是反比例函数图像上任意一点,过点A 作AB ⊥x 轴于点B ,连接OA ,则△AOB 的面积是( )A .1B .C .2D .【分析】由反比例函数的几何意义可知,k =1,也就是△AOB 的面积的2倍是1,求出△AOB 的面积是.【解答】解:∵A (x ,y ), ∴OB =x ,AB =y ,∵A 为反比例函数y =图像上一点, ∴xy =1,∴S △ABO =AB •OB =xy =1=,故选:B .7、(2022•内江)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数y =x 8和y =xk的图像交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣22【分析】利用k 的几何意义解题即可. 【解答】解:∵直线l ∥y 轴, ∴∠OMP =∠OMQ =90°,∴S △OMP =×8=4,S △OMQ =﹣k . 又S △POQ =15, ∴4﹣k =15, 即k =11,∴k =﹣22. 故选:D .8、(2022•东营)如图,△OAB 是等腰直角三角形,直角顶点与坐标原点重合,若点B 在反比例函数y =x1(x >0)的图像上,则经过点A 的函数图像表达式为 .【分析】作AD ⊥x 轴于D ,BC ⊥x 轴于C ,根据△OAB 是等腰直角三角形,可证明△BOC ≌△OAD ,利用反比例函数k 的几何意义得到S △OBC =,则S △OAD =,所以|k |=,然后求出k 得到经过点A 的反比例函数解析式. 【解答】解:如图,作AD ⊥x 轴于D ,BC ⊥x 轴于C , ∴∠ADO =∠BCO =90°,∵∠AOB =90°, ∴∠AOD +∠BOC =90°, ∴∠AOD +∠DAO =90°, ∴∠BOC =∠DAO , ∵OB =OA ,∴△BOC ≌△OAD (AAS ),∵点B 在反比例函数y =(x >0)的图像上, ∴S △OBC =, ∴S △OAD =, ∴k =﹣1,∴经过点A 的反比例函数解析式为y =﹣. 故答案为:y =﹣.9、(2022•盐城)已知反比例函数的图像经过点(2,3),则该函数表达式为 . 【分析】利用反比例函数的定义列函数的解析式,运用待定系数法求出函数的解析式即可. 【解答】解:令反比例函数为y =(k ≠0), ∵反比例函数的图像经过点(2,3), ∴3=, k =6,∴反比例函数的解析式为y =. 故答案为:y =.10、(2022•湖北)在反比例函数y =xk 1−的图像的每一支上,y 都随x 的增大而减小,且整式x 2﹣kx +4是一个完全平方式,则该反比例函数的解析式为 . 【分析】由整式x 2﹣kx +4是一个完全平方式,可得k =±4,由反比例函y =的图像的每一支上,y 都随x 的增大而减小,可得k ﹣1>0,解得k >1,则k =4,即可得反比例函数的解析式.【解答】解:∵整式x 2﹣kx +4是一个完全平方式,∴k =±4, ∵反比例函数y =的图像的每一支上,y 都随x 的增大而减小,∴k ﹣1>0, 解得k >1, ∴k =4,∴反比例函数的解析式为y =. 故答案为:y =.35.(2022•陕西)已知点A (﹣2,m )在一个反比例函数的图像上,点A '与点A 关于y 轴对称.若点A '在正比例函数y =21x 的图像上,则这个反比例函数的表达式为 .【分析】根据轴对称的性质得出点A '(2,m ),代入y =x 求得m =1,由点A (﹣2,1)在一个反比例函数的图像上,从而求得反比例函数的解析式. 【解答】解:∵点A '与点A 关于y 轴对称,点A (﹣2,m ), ∴点A '(2,m ),∵点A '在正比例函数y =x 的图像上, ∴m ==1,∴A (﹣2,1),∵点A (﹣2,1)在一个反比例函数的图像上, ∴反比例函数的表达式为y =﹣, 故答案为:y =﹣.11、(2022•攀枝花)如图,正比例函数y =k 1x 与反比例函数y =xk 2的图像交于A (1,m )、B 两点,当k 1x ≤xk2时,x 的取值范围是( )A .﹣1≤x <0或x ≥1B .x ≤﹣1或0<x ≤1C .x ≤﹣1或x ≥1D .﹣1≤x <0或0<x ≤1【分析】根据反比例函数的对称性求得B 点的坐标,然后根据图像即可求得. 【解答】解:∵正比例函数y =k 1x 与反比例函数y =的图像交于A (1,m )、B 两点,∴B (﹣1,﹣m ), 由图像可知,当k 1x ≤时,x 的取值范围是﹣1≤x <0或x ≥1,故选:A .37.(2022•东营)如图,一次函数y 1=k 1x +b 与反比例函数y 2=xk 2的图像相交于A ,B 两点,点A 的横坐标为2,点B 的横坐标为﹣1,则不等式k 1x +b <xk2的解集是( )A .﹣1<x <0或x >2B .x <﹣1或0<x <2C .x <﹣1或x >2D .﹣1<x <2【分析】根据两函数图像的上下位置关系结合交点横坐标,即可得出不等式k 1x +b <的解集,此题得解.【解答】解:观察函数图像可知,当﹣1<x <0或x >2时,一次函数y 1=k 1x +b 的图像在反比例函数y 2=的图像的下方,∴不等式k 1x +b <的解集为:﹣1<x <0或x >2,故选:A .12、(2022•朝阳)如图,正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =xk(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点,则不等式ax >xk的解集为( )A .x <﹣2或x >2B .﹣2<x <2C .﹣2<x <0或x >2D .x <﹣2或0<x <2【分析】根据关于原点对称的点的坐标特征求得B (2,﹣m ),然后根据函数的图像的交点坐标即可得到结论.【解答】解:∵正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点, ∴B (2,﹣m ),∴不等式ax >的解集为x <﹣2或0<x <2, 故选:D .13、(2022•无锡)一次函数y =mx +n 的图像与反比例函数y =xm的图像交于点A 、B ,其中点A 、B 的坐标为A (﹣m1,﹣2m )、B (m ,1),则△OAB 的面积是( ) A .3B .413C .27D .415【分析】根据反比例函数图像上点的坐标特征求出m ,进而求出点A 、B 的坐标,根据三角形的面积公式计算即可.【解答】解:∵点A (﹣,﹣2m )在反比例函数y =上, ∴﹣2m =,解得:m =2,∴点A 的坐标为:(﹣,﹣4),点B 的坐标为(2,1), ∴S △OAB =××5﹣××4﹣×2×1﹣×1=,故选:D .14、(2022•荆州)如图是同一直角坐标系中函数y 1=2x 和y 2=x2的图像.观察图像可得不等式2x >x2的解集为( )A .﹣1<x <1B .x <﹣1或x >1C .x <﹣1或0<x <1D .﹣1<x <0或x >1【分析】结合图像,数形结合分析判断.【解答】解:由图像,函数y 1=2x 和y 2=的交点横坐标为﹣1,1, ∴当﹣1<x <0或x >1时,y 1>y 2,即2x >, 故选:D .15、(2022•怀化)如图,直线AB 交x 轴于点C ,交反比例函数y =xa 1−(a >1)的图像于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为( )A.8B.9C.10D.11【分析】设点B的坐标为(m,),然后根据三角形面积公式列方程求解.【解答】解:设点B的坐标为(m,),∵S△BCD=5,且a>1,∴×m×=5,解得:a=11,故选:D.16、(2022•宁夏)在显示汽车油箱内油量的装置模拟示意图中,电压U一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积V与电路中总电阻R总(R总=R+R0)是反比例关系,电流I与R总也是反比例关系,则I与V的函数关系是()A.反比例函数B.正比例函数C.二次函数D.以上答案都不对【分析】由油箱中油的体积V与电路中总电阻R总是反比例关系,电流I与R总是反比例关系,可得V=I(为常数),即可得到答案.【解答】解:由油箱中油的体积V与电路中总电阻R总是反比例关系,设V•R总=k(k为常数),由电流I与R总是反比例关系,设I•R总=k'(k为常数),∴=,∴V=I(为常数),∴I与V的函数关系是正比例函数,故选:B.17、(2022•宜昌)已知经过闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系.根据下表判断a和b的大小关系为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据等量关系“电流=”,即可求解.【解答】解:∵闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系,∴40a=80b,∴a=2b,∴a>b,故选:A.18、(2022•丽水)已知电灯电路两端的电压U为220V,通过灯泡的电流强度I(A)的最大限度不得超过0.11A.设选用灯泡的电阻为R(Ω),下列说法正确的是()A.R至少2000ΩB.R至多2000ΩC.R至少24.2ΩD.R至多24.2Ω【分析】利用已知条件列出不等式,解不等式即可得出结论.【解答】解:∵电压U一定时,电流强度I(A)与灯泡的电阻为R(Ω)成反比例,∴I=.∵已知电灯电路两端的电压U为220V,∴I=.∵通过灯泡的电流强度I(A)的最大限度不得超过0.11A,∴≤0.11,∴R≥2000.故选:A.19、(2022•郴州)科技小组为了验证某电路的电压U(V)、电流I(A)、电阻R(Ω)三者之间的关系:I=U,测得数据如下:那么,当电阻R=55Ω时,电流I=A.【分析】由表格数据求出反比例函数的解析式,再将R=55Ω代入即可求出答案.【解答】解:把R=220,I=1代入I=得:1=,解得U=220,∴I=,把R=55代入I=得:I==4,故答案为:4.20、(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图像如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.【分析】设p=,把(0.1,1000)代入得到反比例函数的解析式,再把S=0.25代入解析式即可解决问题.【解答】解:设p=,∵函数图像经过(0.1,1000),∴k=100,∴p=,当S=0.25m2时,物体所受的压强p==400(Pa),故答案为:400.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019重庆中考数学题位复习系统之反比例函数与几何综合典例剖析例1(2018•重庆)如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A.B.3 C.D.5【分析】由已知,可得菱形边长为5,设出点D坐标,即可用勾股定理构造方程,进而求出k值.【解答】解:过点D做DF⊥BC于F由已知,BC=5∵四边形ABCD是菱形∴DC=5∵BE=3DE∴设DE=x,则BE=3x∴DF=3x,BF=x,FC=5﹣x在Rt△DFC中,DF2+FC2=DC2∴(3x)2+(5﹣x)2=52∴解得x=1∴DE=3,FD=3设OB=a则点D坐标为(1,a+3),点C坐标为(5,a)∵点D、C在双曲线上∴1×(a+3)=5a∴a=∴点C坐标为(5,)∴k=故选:C.【点评】本题是代数几何综合题,考查了数形结合思想和反比例函数k值性质.解题关键是通过勾股定理构造方程.例2(2018•重庆)如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数y=(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为,则k的值为()A.B.C.4 D.5【分析】根据题意,利用面积法求出AE,设出点B坐标,表示点A的坐标.应用反比例函数上点的横纵坐标乘积为k构造方程求k.【解答】解:设AC与BD、x轴分别交于点E、F.由已知,A、B横坐标分别为1,4∴BE=3∵四边形ABCD为菱形,AC、BD为对角线∴S=4×AE•BE=菱形ABCD∴AE=设点B的坐标为(4,y),则A点坐标为(1,y+)∵点A、B同在y=图象上∴4y=1•(y+)∴y=∴B点坐标为(4,)∴k=5故选:D.【点评】本题考查了菱形的性质、应用面积法构造方程,以及反比例函数图象上点的坐标与k之间的关系.跟踪训练1.(2015•重庆)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C.2D.4【分析】过点A作x轴的垂线,与CB的延长线交于点E,根据A,B两点的纵坐标分别为3,1,可得出横坐标,即可求得AE,BE,再根据勾股定理得出AB,根据菱形的面积公式:底乘高即可得出答案.【解答】解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱形ABCD=底×高=2×2=4,故选:D.【点评】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.2.(2015•重庆)如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3),反比例函数y=的图象与菱形对角线AO交D点,连接BD,当DB⊥x轴时,k的值是()A.6B.﹣6C.12D.﹣12【分析】首先过点C作CE⊥x轴于点E,由∠BOC=60°,顶点C的坐标为(m,3),可求得OC的长,又由菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,可求得OB的长,且∠AOB=30°,继而求得DB的长,则可求得点D 的坐标,又由反比例函数y=的图象与菱形对角线AO交D点,即可求得答案.【解答】解:过点C作CE⊥x轴于点E,∵顶点C的坐标为(m,3),∴OE=﹣m,CE=3,∵菱形ABOC中,∠BOC=60°,∴OB=OC==6,∠BOD=∠BOC=30°,∵DB⊥x轴,∴DB=OB•tan30°=6×=2,∴点D的坐标为:(﹣6,2),∵反比例函数y=的图象与菱形对角线AO交D点,∴k=xy=﹣12.故选:D.【点评】此题考查了菱形的性质以及反比例函数图象上点的坐标特征.注意准确作出辅助线,求得点D的坐标是关键.3.(2014•重庆)如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C,则△AOC的面积为()A.8 B.10 C.12 D.24【分析】根据已知点横坐标得出其纵坐标,进而求出直线AB的解析式,求出直线AB与x轴横坐标交点,即可得出△AOC的面积.【解答】解:∵反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,∴x=﹣1,y=6;x=﹣3,y=2,∴A(﹣1,6),B(﹣3,2),设直线AB的解析式为:y=kx+b,则,解得:,则直线AB的解析式是:y=2x+8,∴y=0时,x=﹣4,∴CO=4,∴△AOC的面积为:×6×4=12.故选:C.【点评】此题主要考查了反比例函数图象上点的坐标特征以及待定系数法求一次函数解析式,得出直线AB的解析式是解题关键.4.(2014•重庆)如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,﹣2),则点F的坐标是()A.(,0)B.(,0)C.(,0)D.(,0)【分析】由A(m,2)得到正方形的边长为2,则BC=2,所以n=2+m,根据反比例函数图象上点的坐标特征得到k=2•m=(2+m),解得m=1,则E点坐标为(3,),然后利用待定系数法确定直线GF的解析式为y=x﹣2,再求y=0时对应自变量的值,从而得到点F的坐标.【解答】解:∵正方形的顶点A(m,2),∴正方形的边长为2,∴BC=2,而点E(n,),∴n=2+m,即E点坐标为(2+m,),∴k=2•m=(2+m),解得m=1,∴E点坐标为(3,),设直线GF的解析式为y=ax+b,把E(3,),G(0,﹣2)代入得,解得,∴直线GF的解析式为y=x﹣2,当y=0时,x﹣2=0,解得x=,∴点F的坐标为(,0).故选:C.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式.5.(2013•重庆)如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN.下列结论:①△OCN≌△OAM;②ON=MN;③四边形DAMN与△MON面积相等;④若∠MON=45°,MN=2,则点C的坐标为(0,).其中正确结论的个数是()A.1 B.2 C.3 D.4=S△OAM=k,即【分析】根据反比例函数的比例系数的几何意义得到S△ONCOC•NC=OA•AM,而OC=OA,则NC=AM,在根据“SAS”可判断△OCN≌△OAM;根据全等的性质得到ON=OM,由于k的值不能确定,则∠MON的值不能确定,无法确定△ONM为等边三角形,则ON≠MN;根据S=S△OAM=k和S△OND+S△OND=S△OAM+S△OMN,即可得到S四边形DAMN=S△OMN;作NE⊥OM于E点,则△ONE 四边形DAMN为等腰直角三角形,设NE=x,则OM=ON=x,EM=x﹣x=(﹣1)x,在Rt△NEM中,利用勾股定理可求出x2=2+,所以ON2=(x)2=4+2,易得△BMN为等腰直角三角形,得到BN=MN=,设正方形ABCO的边长为a,在Rt△OCN中,利用勾股定理可求出a的值为+1,从而得到C点坐标为(0,+1).【解答】解:∵点M、N都在y=的图象上,∴S △ONC =S △OAM =k ,即OC•NC=OA•AM ,∵四边形ABCO 为正方形, ∴OC=OA ,∠OCN=∠OAM=90°, ∴NC=AM ,∴△OCN ≌△OAM ,所以①正确; ∴ON=OM , ∵k 的值不能确定, ∴∠MON 的值不能确定,∴△ONM 只能为等腰三角形,不能确定为等边三角形, ∴ON ≠MN ,所以②错误; ∵S △OND =S △OAM =k ,而S △OND +S 四边形DAMN =S △OAM +S △OMN ,∴四边形DAMN 与△MON 面积相等,所以③正确; 作NE ⊥OM 于E 点,如图, ∵∠MON=45°,∴△ONE 为等腰直角三角形, ∴NE=OE , 设NE=x ,则ON=x ,∴OM=x , ∴EM=x ﹣x=(﹣1)x , 在Rt △NEM 中,MN=2, ∵MN 2=NE 2+EM 2,即22=x 2+[(﹣1)x ]2,∴x 2=2+, ∴ON 2=(x )2=4+2,∵CN=AM ,CB=AB , ∴BN=BM ,∴△BMN 为等腰直角三角形, ∴BN=MN=,设正方形ABCO的边长为a,则OC=a,CN=a﹣,在Rt△OCN中,∵OC2+CN2=ON2,∴a2+(a﹣)2=4+2,解得a1=+1,a2=﹣1(舍去),∴OC=+1,∴C点坐标为(0,+1),所以④正确.故选:C.【点评】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、比例系数的几何意义和正方形的性质;熟练运用勾股定理和等腰直角三角形的性质进行几何计算.6.(2013•重庆)如图,菱形OABC的顶点O是坐标原点,顶点A在x轴的正半轴上,顶点B、C均在第一象限,OA=2,∠AOC=60°.点D在边AB上,将四边形OABC沿直线OD翻折,使点B和点C分别落在这个坐标平面的点B′和C′处,且∠C′DB′=60°.若某反比例函数的图象经过点B′,则这个反比例函数的解析式为y=﹣.【分析】连接AC,求出△BAC是等边三角形,推出AC=AB,求出△DC′B′是等边三角形,推出C′D=B′D,得出CB=BD=B′C′,推出A和D重合,连接BB′交x轴于E,求出AB′=AB=2,∠B′AE=60°,求出B′的坐标是(3,﹣),设经过点B′反比例函数的解析式是y=,代入求出即可.【解答】解:连接AC,∵四边形OABC是菱形,∴CB=AB,∠CBA=∠AOC=60°,∴△BAC是等边三角形,∴AC=AB,∵将四边形OABC沿直线OD翻折,使点B和点C分别落在这个坐标平面的点B′和C′处,∴BD=B′D,CD=C′D,∠DB′C′=∠ABC=60°,∵∠B′DC′=60°,∴∠DC′B′=60°,∴△DC′B′是等边三角形,∴C′D=B′D,∴CB=BD=B′C′,即A和D重合,连接BB′交x轴于E,则AB′=AB=2,∠B′AE=180°﹣(180°﹣60°)=60°,在Rt△AB′E中,∠B′AE=60°,AB′=2,∴AE=1,B′E=,OE=2+1=3,即B′的坐标是(3,﹣),设经过点B′反比例函数的解析式是y=,代入得:k=﹣3,即y=﹣,故答案为:y=﹣.【点评】本题考查了折叠性质,菱形性质,等边三角形的性质和判定的应用,主要考查学生的计算能力,题目比较好,有一定的难度.7. 如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x 轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=()A.B.C.D.12【分析】所给的三角形面积等于长方形面积减去三个直角三角形的面积,然后即可求出B的横纵坐标的积即是反比例函数的比例系数.【解答】解:∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),∵BD=3AD,∴D(,b),∵点D,E在反比例函数的图象上,∴=k,∴E(a,),∵S=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=ab﹣﹣k﹣•(b﹣)=9,△ODE∴k=,故选:C.【点评】此题考查了反比例函数的综合知识,利用了:①过某个点,这个点的坐标应适合这个函数解析式;②所给的面积应整理为和反比例函数上的点的坐标有关的形式.8.(2018•江北区模拟)如图,反比例函数y=(x>0)的图象经过矩形OABC 对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为24,则k的值为()A.2 B.4 C.6 D.8【分析】本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、□OABC的面积与|k|的关系,列出等式求出k值.=|k|,S△【解答】解:由题意得:E、M、D位于反比例函数图象上,则S△OCE=|k|,OAD过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,则S矩形ABCO=4S□ONMG=4|k|,由于函数图象在第一象限,∴k>0,则++24=4k,∴k=8.故选:D.【点评】本题考查了反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.9.如图,△AOB中,点C为边AB的中点,反比例函数y=(k>0)的图象经过A,C两点,若△AOB的面积为12,则k的值是()A.8 B.7.5 C.6 D.4【分析】如图,过A,C两点作x轴的垂线,垂足分别为M,N,连接CO.根据已知条件得到S=S△OBC=6,由反比例函数的性质可以知道S△AOC=S梯形AMNC=6,△ACO根据图形的面积公式即可得到结论.【解答】解:如图,过A,C两点作x轴的垂线,垂足分别为M,N,连接CO.=12,∵C是AB的中点,又∵S△AOB=S△OBC=6,∴S△ACO=S梯形AMNC=6,由反比例函数的性质可以知道,S△AOC∵C是AB中点,CN∥AM,∴CN是直角三角形AMB的中位线,∴S=S梯形AMNC,△CNB由反比例函数知,S=,同时S梯形AMNC=6,S△CNB=S梯形AMNC.△AOM=S△AOM+S梯形AMNC+S△CNB,∵S△AOB解得k=8.故选:A.【点评】本题考查了反比例函数系数k的几何意义,三角形的面积的计算,正确的作出辅助线是解题的关键.10.(2018•南岸区模拟)如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是()A.(﹣2,2)B.(3,2) C.(﹣3,2)D.(﹣6,1)【分析】根据点A的坐标为(0,﹣1),AB∥x轴,反比例函数y=(k≠0)经过▱ABCD的顶点B,即可得到AB=﹣k,再根据平行四边形ABCD的面积是18,即可得到k=﹣6,即y=﹣,依据CD经过点(0,2),即可得到点D的坐标为(﹣3,2).【解答】解:如图,∵点A的坐标为(0,﹣1),AB∥x轴,反比例函数y=(k ≠0)经过▱ABCD的顶点B,∴点B的坐标为(﹣k,﹣1),即AB=﹣k,又∵点E(0,2),∴AE=2+1=3,又∵平行四边形ABCD的面积是18,∴AB×AE=18,∴﹣k×3=18,∴k=﹣6,∴y=﹣,∵CD经过点(0,2),∴令y=2,可得x=﹣3,∴点D的坐标为(﹣3,2),故选:C.【点评】本题主要考查了平行四边形的面积、待定系数法求反比例函数和一次函数解析式,根据平行四边形得面积求出k的值是解答本题的关键.11.(2015春•石河子校级月考)如图,在平面直角坐标系中,直线y=2x+4与x 轴、y轴分别交于A、B两点,以AB为边在第二象限作正方形ABCD,点D在双曲线y=上,将正方形ABCD沿x轴正方向平移a个单位长度后,点C恰好落在此双曲线上,则a的值是()A.1 B.2 C.3 D.4【分析】作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F,易证△OAB ≌△FDA≌△BEC,求得A、B的坐标,根据全等三角形的性质可以求得C、D的坐标,从而利用待定系数法求得反比例函数的解析式,进而求得G的坐标,则a 的值即可求解.【解答】解:过点CE⊥y轴于点E,交双曲线于点G,过点D作DF⊥x轴于点F,在y=2x+4中,令x=0,解得:y=4,即B的坐标是(0,4),令y=0得:x=﹣2,即A的坐标是(﹣2,0),则OB=4,OA=2,∵∠BAD=90°,∴∠BAO+∠DAF=90°,∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,在△OAB和△FDA中,,∴△OAB≌△FDA,同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=4,DF=OA=BE=2,∴D的坐标是(﹣6,2),C的坐标是(﹣4,6).将点D代入y=得:k=﹣12,则函数的解析式是:y=﹣∴OE=6,则C的纵坐标是6,把y=6代入y=﹣得:x=﹣2,则G的坐标是(﹣2,6),∴CG=4﹣2=2.∴a=2.故选:B.【点评】本题考查了反比例函数综合,用到的知识点是正方形的性质、全等三角形的判定与性质以及待定系数法求函数的解析式等,难度适中,正确求得C、D 的坐标是关键,注意掌握数形结合思想与方程思想的应用.12.(2015秋•重庆校级月考)如图,菱形ABCD的顶点A在x轴的正半轴上,∠DAB=60°,若将菱形ABCD沿AB翻折得到菱形ABC′D′,D′点恰好落在x轴上,双曲线y=(x>0)恰好经过点C和C′,过C作CE垂直C′B的延长线于E,连接CC′,已知S△CEC′=,则k的值是()A.3 B.3C.6D.6【分析】连接CA,连接DE,过D、C′分别作DM⊥x轴,C′N⊥x轴,根据菱形的性质可得AB=BC=AD=DC,DB⊥AC,CE=AE=AC,DE=EB=DB,再由∠DAB=60°证明△ABD是等边三角形,可得BD=AB=BC′,设菱形边长为x,则EB=x,CE= x,根据S△CEC′=,求出x的值,然后可得C和C′的纵坐标,设C(a,2),则有C′(a+3,),利用反比例函数图象上点的坐标特点可得2a=(a+3),计算出a的值,进而可得k的值.【解答】解:连接CA,连接DE,过D、C′分别作DM⊥x轴,C′N⊥x轴,∵四边形ABCD是菱形,∴AB=BC=AD=DC,DB⊥AC,CE=AE=AC,DE=EB=DB,∵将菱形ABCD沿AB翻折,得到菱形ABC′D′,∴两菱形全等,即AD′=BC′=C′D′=AB,∵∠DAB=60°,∴△ABD是等边三角形,∴BD=AB=BC′,设菱形边长为x,则EB=x,CE=x,∴EC′=x,∵S=,△CEC′∴•x•x=,解得:x=2,∵∠DAB=60°,∴∠DAM=∠C′D′N=60°∴AM=D′N=1,根据勾股定理得:DM=C′N=,即CW过点E,设C(a,2),则有C′(a+3,),∵双曲线y=(x>0)恰好经过点C和C′,∴2a=(a+3),解得:a=3,则k=3×2=6.故选:C.【点评】此题主要考查了折叠的性质,菱形的性质,坐标与图形性质,以及反比例函数图象上点的坐标特点,关键是掌握菱形四边相等,对角线互相垂直且平分,反比例函数图象上的点横纵坐标的积等于k.13.(2014•玉林二模)如图,正方形ABCD的顶点A、B分别在x轴、y轴的正半轴上,反比例函数的图象经过另外两个顶点C、D,且点D(4,n)(0<n<4),则k的值为()A.12 B.8 C.6 D.4【分析】过D作DE⊥x轴于E,FC⊥y轴于点F.可以证明△AOB≌△DEA,则可以利用n表示出A,B的坐标,即可利用n表示出C的坐标,根据C,D满足函数解析式,即可求得n的值.进而求得k的值.【解答】解:过D作DE⊥x轴于E,FC⊥y轴于点F,∴∠DEA=90°,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∴∠BAO+∠DAE=90°,∠DAE+∠ADE=90°,∴∠DAE=∠ABO,又∵AB=AD,∴△ABO≌△DAE.同理,△ABO≌△BCF.∴OA=DE=n,OB=AE=OE﹣OA=4﹣n,则A点的坐标是(n,0),B的坐标是(0,4﹣n).∴C的坐标是(4﹣n,4).由反比例函数k的性质得到:4(4﹣n)=4n,所以n=2.则D点坐标为(4,2),所以k=2×4=8.故选:B.【点评】本题考查了正方形的性质与反比例函数的综合应用,体现了数形结合的思想.14.(2016•重庆校级模拟)如图,在平面直角坐标系中,正方形ABCD的顶点O 在坐标原点,点B的坐标为(1,4),点A在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.【分析】作AD⊥x轴于D,CE⊥x轴于E,先通过证得△AOD≌△OCE得出AD=OE,OD=CE,设A(x,),则C(,﹣x),根据正方形的性质求得对角线解得F 的坐标,根据直线OB的解析式设出直线AC的解析式为:y=﹣x+b,代入交点坐标求得解析式,然后把A,C的坐标代入即可求得k的值.【解答】解:作AD⊥x轴于D,CE⊥x轴于E,∵∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴AD=OE,OD=CE,设A(x,),则C(,﹣x),∵点B的坐标为(1,4),∴OB==,直线OB为:y=4x,∵AC和OB互相垂直平分,∴它们的交点F的坐标为(,2),设直线AC的解析式为:y=﹣x+b,代入(,2)得,2=﹣×+b,解得b=,直线AC的解析式为:y=﹣x+,把A(x,),C(,﹣x)代入得,解得k=﹣.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求解析式,正方形的性质,三角形求得的判定和性质,熟练掌握正方形的性质是解题的关键.15。

相关文档
最新文档