_学年高中数学课时达标检测(十)正弦函数、余弦函数的性质(二)新人教A版必修4
高中数学 第一章 三角函数 1.4.2 正弦函数、余弦函数的性质(2)课后习题 新人教A版必修4(

高中数学第一章三角函数1.4.2 正弦函数、余弦函数的性质(2)课后习题新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章三角函数1.4.2 正弦函数、余弦函数的性质(2)课后习题新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章三角函数 1.4.2 正弦函数、余弦函数的性质(2)课后习题新人教A版必修4的全部内容。
1。
4.2 正弦函数、余弦函数的性质(二)一、A组1.函数y=|sin x|的一个单调增区间是()A.B。
C。
D.解析:画出y=|sin x|的图象即可求解。
故选C。
答案:C2.(2016·福建三明一中月考)y=cos(-π≤x≤π)的值域为()A. B.[-1,1]C. D.解析:因为-π≤x≤π,所以—.所以—≤cos≤1,y=cos(-π≤x≤π)的值域为。
答案:C3。
函数f(x)=3sin在下列区间内递减的是()A。
B.[—π,0]C。
D.解析:令2kπ+≤x+≤2kπ+,k∈Z可得2kπ+≤x≤2kπ+,k∈Z,∴函数f(x)的递减区间为,k∈Z。
从而可判断,∴在x∈时,f(x)单调递减.答案:D4。
函数f(x)=2sin(ω〉0)的最小正周期为4π,当f(x)取得最小值时,x的取值集合为()A.B.C.D。
解析:∵T==4π,∴ω=。
∴f(x)=2sin。
由x-=2kπ-(k∈Z),得x=4kπ-(k∈Z).答案:A5.已知函数f(x)=sin,x∈R,下列结论错误的是()A.函数f(x)的最小正周期为2πB.函数f(x)在区间上是增函数C。
人教A版高中数学四课堂达标·效果检测1.4.2正弦函数、余弦函数的性质(二)含解析

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课堂达标·效果检测1。
y=2sin x2的值域是( )A。
[-2,2]B。
[0,2]C。
[—2,0]D。
R【解析】选A。
因为x2≥0,所以sin x2∈[—1,1],所以y=2sin x2∈[—2,2].2.(2014·朝阳高一检测)sin 1°,sin 1,sinπ°的大小顺序是( )A. sin 1°〈sin 1<sinπ°B。
sin 1°〈sinπ°〈sin 1C. sinπ°〈sin 1°<sin 1D. sin 1<sin 1°〈sinπ°【解析】选B.因为1弧度≈57.3°,y=sin x,在0°〈x<90°上为增函数,且1°<π°〈1,所以sin 1°〈sinπ°〈sin 1.3.函数y=sin(x+π)在[—π2,π]上的递增区间为。
【解析】由x∈[-π2,π],得x+π∈[π2,2π],因为要求y=sin(x+π)在[-π2,π]上的增区间,所以3π2≤x+π≤2π,解得π2≤x≤π。
答案:[π2,π]4.函数y=sin 2x-sin x+1,x ∈[π3,3π4]的值域是 . 【解析】y=sin2x-sin x+1=(sin x-12)2+34,x ∈[π3,3π4],令t=sin x ,x ∈[π3,3π4],则t ∈[√22,1],因为y=(t —12)2+34,在t∈[√22,1]上为增函数,所以y ∈[3−√22,1]。
答案:[3−√22,1]5。
已知y=a-bcos 3x 的最大值为32,最小值为12,求实数a 与b 的值。
【解析】当b>0时,有3a b 21a b 2⎧+=⎪⎪⎨⎪-=⎪⎩,,解得a 11b 2=⎧⎪⎨=⎪⎩,;当b<0时,有3a b 21a b 2⎧-=⎪⎪⎨⎪+=⎪⎩,,解得a 11b .2=⎧⎪⎨=-⎪⎩,综上,a=1,b=12或a=1,b=12-。
高中数学必修四1.4.2正弦函数、余弦函数的性质(二)学案新人教A版必修4

二.探究与发现
【探究点一】正、余弦函数的定义域、值域 正弦曲线:
余弦曲线:
由正、余弦曲
线很
容易看出正弦函数、余弦函数的定义域都是实数集
R,值域都是
.
对于正弦函数 y= sin x ,x∈R 有:
当且仅当 x=
时,取得最大值
对于余弦函数 y= cos x ,x∈R 有:
1;当且仅当 x=
时,取得最小值- 1.
(即
同则增,异则减 ) 求解.
余弦函数 y= Acos( ω x+φ ) 的单调区间类似可求.
请同学们根据上面介绍的方法,写出求函数
1π y= sin -2x+ 3 单调递增区间的求法.
例 1.利用三角函数的单调性,比较下列各组数的大小.
(1)sin
-π18 与 sin
-
π 10
;
(2)sin 196 °与 cos 156 °;
(2)cos 870 °与 sin 980 °.
1π 例 2.求函数 y= 1+ sin - 2x+ 4 ,x∈[ - 4π , 4π] 的单调减区间.
小结
确定函数 y= Asin( ω x+ φ) 或 y= Acos( ω x+φ ) 单调区间的基本思想是整体换元思想,即将 ω x+ φ 视为一个整体.若 x 的系数为负,通常利用诱导公式化为正数再求解.有时还应兼顾 函数的定义域.
当 x∈ __________ 时,曲线逐渐上升,是增函数, 1;
当 x∈ __________ 时,曲线逐渐下降,是减函数,
sin x 的值由- 1 增大到 sin x 的值由 1 减小到-
1.
推广到整个定义域可得: 当 x∈ ___________________________ 时,正弦函数 y= sin x 是增函数,函数值由- 1 增大到 1; 当 x∈ ___________________________ 时,正弦函数 y= sin x 是减函数,= cos x ,x∈[ - π , π ] 的图象如图所示: 观察图象可知: 当 x∈ __________ 时,曲线逐渐上升,是增函数, cos x 的值由- 1 增大到 1;
新教材高中数学课时跟踪检测(三十九)正弦函数、余弦函数的性质(二)新人教A版必修第一册

新教材高中数学课时跟踪检测(三十九)正弦函数、余弦函数的性质(二)新人教A 版必修第一册课时跟踪检测(三十九) 正弦函数、余弦函数的性质(二)A 级——学考水平达标练1.函数y =1-2cos π2x 的最小值、最大值分别是( )A .-1,3B .-1,1C .0,3D .0,1解析:选A ∵cos π2x ∈[-1,1],∴-2cos π2x ∈[-2,2],∴y =1-2cos π2x ∈[-1,3],∴y min =-1,y max =3.2.下列不等式中成立的是( )A .sin ⎝ ⎛⎭⎪⎫-π8>sin ⎝ ⎛⎭⎪⎫-π10B .sin 3>sin 2C .sin 75π>sin ⎝ ⎛⎭⎪⎫-25π D .sin 2>cos 1解析:选D ∵sin 2=cos ⎝ ⎛⎭⎪⎫π2-2=cos ⎝ ⎛⎭⎪⎫2-π2,且0<2-π2<1<π,∴cos ⎝ ⎛⎭⎪⎫2-π2>cos 1,即sin 2>cos 1.故选D.3.函数y =|cos x |的一个单调减区间是( )A.⎣⎢⎡⎦⎥⎤-π4,π4B.⎣⎢⎡⎦⎥⎤π4,34πC.⎣⎢⎡⎦⎥⎤π,32π D.⎣⎢⎡⎦⎥⎤32π,2π 解析:选C 函数y =|cos x |=⎩⎪⎨⎪⎧cos x ,cos x ≥0,-cos x ,cos x <0,图象如下图所示:单调减区间有⎣⎢⎡⎦⎥⎤0,π2,⎣⎢⎡⎦⎥⎤π,32π,…,故选C.4.若函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0),且f (α)=-2,f (β)=0,|α-β|的最小值是π2,则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤2k π-5π6,2k π+π6(k ∈Z) B.⎣⎢⎡⎦⎥⎤k π-π3,kπ+π6(k ∈Z) C.⎣⎢⎡⎦⎥⎤2k π-2π3,2k π+π3(k ∈Z) D.⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z) 解析:选A 由题意可知14T =π2,所以T =2π,所以ω=1,所以f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3.由2k π-π2≤x +π3≤2k π+π2(k ∈Z),得2k π-5π6≤x ≤2k π+π6(k ∈Z),所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-5π6,2k π+π6(k ∈Z).故选A.5.设函数f (x )=2sin ⎝ ⎛⎭⎪⎫π2x +π5.若对任意x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为( )A .4B .2C .1D .12解析:选B 依题意得f (x 1)是f (x )的最小值,f (x 2)是f (x )的最大值.因此|x 1-x 2|=⎝ ⎛⎭⎪⎫k +12T (k ∈Z).∴当k =0时,|x 1-x 2|min =12T =12×2ππ2=2.故选B.6.函数y =sin x ⎝ ⎛⎭⎪⎫π6≤x ≤4π3的值域为________.解析:画出函数y =sin x ⎝ ⎛⎭⎪⎫π6≤x ≤4π3的图象,如图.由图象可知,当x =π2时,y max =1,当x =4π3时,y min =-32,所以函数y =sin x ⎝ ⎛⎭⎪⎫π6≤x ≤4π3的值域为⎣⎢⎡⎦⎥⎤-32,1.答案:⎣⎢⎡⎦⎥⎤-32,1 7.函数y =sin 2x -cos x +1的最大值为________.解析:y =sin 2x -cos x +1=-cos 2x -cos x +2=-⎝ ⎛⎭⎪⎫cos x +122+94,∵-1≤cos x ≤1,∴当cos x =-12时,y 取最大值94.答案:948.已知函数f (x )=-sin 2ωx (ω>0)的图象关于点M ⎝ ⎛⎭⎪⎫5π4,0对称,且在区间⎣⎢⎡⎦⎥⎤0,π2上是单调函数,则ω的值为________.解析:依题意得T 4≥π2,即T ≥2π,从而0<ω≤12.又sin ⎝ ⎛⎭⎪⎫2ω×5π4=0,即sin 5ωπ2=0, ∴5ωπ2=k π(k ∈Z),解得ω=25k (k ∈Z). 由0<ω≤12知,ω=25.答案:259.求函数y =3-4cos ⎝ ⎛⎭⎪⎫2x +π3,x ∈⎣⎢⎡⎦⎥⎤-π3,π6的最大值、最小值及相应的x 值. 解:因为x ∈⎣⎢⎡⎦⎥⎤-π3,π6,所以2x +π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,从而-12≤cos ⎝ ⎛⎭⎪⎫2x +π3≤1.所以当cos ⎝ ⎛⎭⎪⎫2x +π3=1,即2x +π3=0,x =-π6时,y min =3-4=-1.当cos ⎝ ⎛⎭⎪⎫2x +π3=-12,即2x +π3=2π3,x =π6时,y max =3-4×⎝ ⎛⎭⎪⎫-12=5. 综上所述,当x =-π6时,y min =-1;当x =π6时,y max =5.10.已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫3x +π4. (1)求f (x )的单调递增区间;(2)求f (x )的最小值及取得最小值时相应的x 值. 解:(1)令2k π-π≤3x +π4≤2k π(k ∈Z),解得2k π3-5π12≤x ≤2k π3-π12(k ∈Z).所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤2k π3-5π12,2k π3-π12(k ∈Z).(2)当3x +π4=2k π-π(k ∈Z)时,f (x )取最小值-2.即x =2k π3-5π12(k ∈Z)时,f (x )取最小值-2.B 级——高考水平高分练1.函数f (x )=sin ⎝ ⎛⎭⎪⎫π6+x +cos ⎝ ⎛⎭⎪⎫π3-x 的最大值为( )A .1B .32C . 3D .2解析:选D 由π6+x 与π3-x 互余,得f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6,故f (x )的最大值为2,故选D.2.已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是________.解析:依题意得T 2≥π2⇒T ≥π,又ω>0,所以2πω≥π⇒0<ω≤2.由π2<x <π得ωπ2+π3<ωx +π3<ωπ+π3, 由f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递减得⎩⎪⎨⎪⎧ωπ2+π3≥π2,ωπ+π3≤3π2⇒13≤ω≤76. 答案:⎣⎢⎡⎦⎥⎤13,763.若函数y =a -b sin x 的最大值为32,最小值为-12.(1)求a ,b 的值;(2)求函数y =-a sin x 取得最大值时x 的值.解:(1)当b >0时,⎩⎪⎨⎪⎧a +b =32,a -b =-12⇒⎩⎪⎨⎪⎧a =12,b =1.当b <0时,⎩⎪⎨⎪⎧a -b =32,a +b =-12⇒⎩⎪⎨⎪⎧a =12,b =-1.(2)由(1)知a =12,所以函数y =-a sin x =-12sin x ,所以当x =2k π-π2(k ∈Z)时,函数y =-a sin x 取得最大值.4.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ;(2)求函数y =f (x )的单调增区间.解:(1)因为x =π8是函数y =f (x )图象的对称轴.所以sin ⎝ ⎛⎭⎪⎫2×π8+φ=±1,所以π4+φ=k π+π2(k ∈Z),得φ=k π+π4(k ∈Z).又因为-π<φ<0,所以φ=-3π4.(2)由(1)知φ=-3π4,则f (x )=sin ⎝ ⎛⎭⎪⎫2x -3π4. 由2k π-π2≤2x -3π4≤2k π+π2(k ∈Z),得k π+π8≤x ≤k π+5π8(k ∈Z),所以函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -3π4的单调增区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z).5.定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-4,-3]上是增函数,α,β是锐角三角形的两个内角,则f (sin α)与f (cos β)的大小关系是________.解析:由f (x +1)=-f (x ), 得f (x +2)=-f (x +1)=f (x ),所以函数f (x )是周期函数,且2是它的一个周期.因为函数f (x )是偶函数且在[-4,-3]上是增函数, 所以函数f (x )在[0,1]上是增函数.又α,β是锐角三角形的两个内角,则有α+β>π2,即π2>α>π2-β>0, 因为y =sin x 在⎣⎢⎡⎦⎥⎤0,π2上为增函数,所以sin α>sin ⎝ ⎛⎭⎪⎫π2-β=cos β, 且sin α∈[0,1],cos β∈[0,1], 所以f (sin α)>f (cos β). 答案:f (sin α)>f (cos β)。
高中数学 课时达标检测(十)正弦函数、余弦函数的性质(二)新人教A版必修4

课时达标检测(十) 正弦函数、余弦函数的性质(二)一、选择题1.函数y =sin ⎝⎛⎭⎪⎫2x +5π2的一个对称中心是( ) A.⎝ ⎛⎭⎪⎫π8,0 B.⎝ ⎛⎭⎪⎫π4,0 C.⎝ ⎛⎭⎪⎫-π3,0 D.⎝ ⎛⎭⎪⎫3π8,0 答案:B2.下列关系式中正确的是( ) A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11°答案:C3.函数y =|sin x |+sin x 的值域为( )A .[-1,1]B .[-2,2]C .[-2,0]D .[0,2]答案:D 4.已知函数f (x )=sin ⎝⎛⎭⎪⎫x -π2(x ∈R),下面结论错误的是( ) A .函数f (x )的最小正周期为2πB .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数 C .函数f (x )的图象关于直线x =0对称D .函数f (x )是奇函数答案:D5.若函数y =f (x )同时满足下列三个性质:①最小正周期为π;②图象关于直线x =π3对称;③在区间⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.则y =f (x )的解析式可以是( ) A .y =sin ⎝⎛⎭⎪⎫2x -π6 B .y =sin ⎝ ⎛⎭⎪⎫x 2+π6 C .y =cos ⎝⎛⎭⎪⎫2x -π6 D .y =cos ⎝⎛⎭⎪⎫2x +π3 答案:A二、填空题6.设x ∈(0,π),则f (x )=cos 2x +sin x 的最大值是________.答案:54 7.函数f (x )=sin ⎝⎛⎭⎪⎫x -π4的图象的对称轴是________. 答案:x =k π+3π4,k ∈Z 8.函数y =-cos ⎝ ⎛⎭⎪⎫x 2-π3的单调递增区间是________. 答案:⎣⎢⎡⎦⎥⎤2π3+4k π,8π3+4k π,k ∈Z 三、解答题9.已知ω是正数,函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上是增函数,求ω的取值范围.解:由2k π-π2≤ωx ≤2k π+π2(k ∈Z)得 -π2ω+2k πω≤x ≤π2ω+2k πω(k ∈Z). ∴f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π2ω+2k πω,π2ω+2k πω (k ∈Z). 据题意:⎣⎢⎡⎦⎥⎤-π3,π4⊆⎣⎢⎡⎦⎥⎤-π2ω+2k πω,π2ω+2k πω(k ∈Z). 从而有⎩⎪⎨⎪⎧ -π2ω≤-π3,π2ω≥π4,ω>0,解得0<ω≤32. 故ω的取值范围是⎝ ⎛⎦⎥⎤0,32 10.求函数y =3-4cos ⎝ ⎛⎭⎪⎫2x +π3,x ∈⎣⎢⎡⎦⎥⎤-π3,π6的最大值、最小值及相应的x 值. 解:∵x ∈⎣⎢⎡⎦⎥⎤-π3,π6,∴2x +π3∈⎣⎢⎡⎦⎥⎤-π3,2π3, 从而-12≤cos ⎝⎛⎭⎪⎫2x +π3≤1.∴当cos ⎝⎛⎭⎪⎫2x +π3=1,即2x +π3=0, 即x =-π6时,y min =3-4=-1. 当cos ⎝⎛⎭⎪⎫2x +π3=-12,即2x +π3=2π3, 即x =π6时,y max =3-4×⎝ ⎛⎭⎪⎫-12=5.11.已知f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,x ∈⎣⎢⎡⎦⎥⎤π4,3π4,是否存在常数a ,b ∈Q ,使得f (x )的值域为{y |-3≤y ≤3-1}?若存在,求出a ,b 的值;若不存在,请说明理由.解:∵π4≤x ≤3π4, ∴2π3≤2x +π6≤5π3, ∴-1≤sin ⎝⎛⎭⎪⎫2x +π6≤32. 假设存在这样的有理数a ,b ,则当a >0时,⎩⎨⎧ -3a +2a +b =-3,2a +2a +b =3-1,解得⎩⎨⎧a =1,b =3-5(不合题意,舍去); 当a <0时,⎩⎨⎧ 2a +2a +b =-3,-3a +2a +b =3-1, 解得⎩⎪⎨⎪⎧a =-1,b =1. 故a ,b 存在,且a =-1,b =1.。
2019-2020学年高中数学人教版必修四课时达标检测(十) 正弦函数、余弦函数的性质(二) Word版含答案

课时达标检测(十) 正弦函数、余弦函数的性质(二)一、选择题1.函数y =sin ⎝ ⎛⎭⎪⎫2x +5π2的一个对称中心是( ) A.⎝ ⎛⎭⎪⎫π8,0 B.⎝ ⎛⎭⎪⎫π4,0 C.⎝ ⎛⎭⎪⎫-π3,0 D.⎝ ⎛⎭⎪⎫3π8,0 答案:B2.下列关系式中正确的是( ) A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11°答案:C3.函数y =|sin x |+sin x 的值域为( )A .[-1,1]B .[-2,2]C .[-2,0]D .[0,2]答案:D 4.已知函数f (x )=sin ⎝⎛⎭⎪⎫x -π2(x ∈R),下面结论错误的是( ) A .函数f (x )的最小正周期为2πB .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数 C .函数f (x )的图象关于直线x =0对称D .函数f (x )是奇函数答案:D5.若函数y =f (x )同时满足下列三个性质:①最小正周期为π;②图象关于直线x =π3对称;③在区间⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.则y =f (x )的解析式可以是( ) A .y =sin ⎝⎛⎭⎪⎫2x -π6 B .y =sin ⎝ ⎛⎭⎪⎫x 2+π6 C .y =cos ⎝⎛⎭⎪⎫2x -π6 D .y =cos ⎝ ⎛⎭⎪⎫2x +π3 答案:A二、填空题6.设x ∈(0,π),则f (x )=cos 2x +sin x 的最大值是________.答案:547.函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π4的图象的对称轴是________. 答案:x =k π+3π4,k ∈Z 8.函数y =-cos ⎝ ⎛⎭⎪⎫x 2-π3的单调递增区间是________. 答案:⎣⎢⎡⎦⎥⎤2π3+4k π,8π3+4k π,k ∈Z 三、解答题9.已知ω是正数,函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上是增函数,求ω的取值范围. 解:由2k π-π2≤ωx ≤2k π+π2(k ∈Z)得 -π2ω+2k πω≤x ≤π2ω+2k πω(k ∈Z). ∴f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π2ω+2k πω,π2ω+2k πω (k ∈Z). 据题意:⎣⎢⎡⎦⎥⎤-π3,π4⊆⎣⎢⎡⎦⎥⎤-π2ω+2k πω,π2ω+2k πω(k ∈Z). 从而有⎩⎪⎨⎪⎧ -π2ω≤-π3,π2ω≥π4,ω>0,解得0<ω≤32. 故ω的取值范围是⎝ ⎛⎦⎥⎤0,32 10.求函数y =3-4cos ⎝ ⎛⎭⎪⎫2x +π3,x ∈⎣⎢⎡⎦⎥⎤-π3,π6的最大值、最小值及相应的x 值. 解:∵x ∈⎣⎢⎡⎦⎥⎤-π3,π6,∴2x +π3∈⎣⎢⎡⎦⎥⎤-π3,2π3, 从而-12≤cos ⎝⎛⎭⎪⎫2x +π3≤1. ∴当cos ⎝ ⎛⎭⎪⎫2x +π3=1,即2x +π3=0, 即x =-π6时,y min =3-4=-1. 当cos ⎝ ⎛⎭⎪⎫2x +π3=-12,即2x +π3=2π3,即x =π6时,y max =3-4×⎝ ⎛⎭⎪⎫-12=5.11.已知f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,x ∈⎣⎢⎡⎦⎥⎤π4,3π4,是否存在常数a ,b ∈Q ,使得f (x )的值域为{y |-3≤y ≤3-1}?若存在,求出a ,b 的值;若不存在,请说明理由.解:∵π4≤x ≤3π4, ∴2π3≤2x +π6≤5π3, ∴-1≤sin ⎝ ⎛⎭⎪⎫2x +π6≤32. 假设存在这样的有理数a ,b ,则当a >0时,⎩⎨⎧ -3a +2a +b =-3,2a +2a +b =3-1,解得⎩⎨⎧a =1,b =3-5(不合题意,舍去); 当a <0时,⎩⎨⎧ 2a +2a +b =-3,-3a +2a +b =3-1, 解得⎩⎪⎨⎪⎧a =-1,b =1. 故a ,b 存在,且a =-1,b =1.。
人教版高中数学A版必修4学案 1.4.2 正弦函数、余弦函数的性质(二)

1.4.2正弦函数、余弦函数的性质(二)明目标、知重点 1.掌握y=sin x,y=cos x的最大值与最小值,并会求简单三角函数的值域和最值.2.掌握y=sin x,y=cos x的单调性,并能利用单调性比较大小.3.会求函数y=A sin(ωx+φ)及y=A cos(ωx+φ)的单调区间.正弦函数、余弦函数的性质函数y=sin x y=cos x图象定义域R R值域[-1,1][-1,1]对称性对称轴:x=kπ+π2(k∈Z);对称中心:(kπ,0)(k∈Z)对称轴:x=kπ(k∈Z);对称中心:⎝⎛⎭⎫kπ+π2,0(k∈Z)奇偶性奇函数偶函数周期性最小正周期:2π最小正周期:2π单调性在[-π2+2kπ,π2+2kπ](k∈Z)上单调递增;在[π2+2kπ,3π2+2kπ] (k∈Z)上单调递减在[-π+2kπ,2kπ] (k∈Z)上单调递增;在[2kπ,π+2kπ](k∈Z)上单调递减最值在x=π2+2kπ (k∈Z)时,y max=1;在x=-π2+2kπ (k∈Z)时,y min=-1在x=2kπ (k∈Z)时,y max=1;在x=π+2kπ (k∈Z)时,y min=-1[情境导学]周期性、奇偶性是正弦、余弦函数所具有的基本性质,此外,正弦、余弦函数还具有哪些基本性质呢?我们将对此作进一步探究.探究点一正弦、余弦函数的定义域、值域导引正弦曲线:余弦曲线:由正弦、余弦曲线很容易看出正弦函数、余弦函数的定义域都是实数集R .思考1 观察正弦曲线和余弦曲线,正弦、余弦函数是否存在最大值和最小值?若存在,其最大值和最小值分别为多少?答 正弦、余弦函数存在最大值和最小值,分别是1和-1.思考2 当自变量x 分别取何值时,正弦函数y =sin x 取得最大值1和最小值-1? 答 对于正弦函数y =sin x ,x ∈R 有: 当且仅当x =π2+2k π,k ∈Z 时,取得最大值1;当且仅当x =-π2+2k π,k ∈Z 时,取得最小值-1.思考3 当自变量x 分别取何值时,余弦函数y =cos x 取得最大值1和最小值-1? 答 对于余弦函数y =cos x ,x ∈R 有: 当且仅当x =2k π,k ∈Z 时,取得最大值1; 当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-1. 探究点二 正弦、余弦函数的单调性思考1 观察正弦曲线,正弦函数在哪些区间上是增函数?在哪些区间上是减函数?如何将这些单调区间进行整合?答 正弦函数和余弦函数都是周期函数,且周期都是2π,首先研究它们在一个周期区间上函数值的变化情况,再推广到整个定义域. (1)函数y =sin x ,x ∈⎣⎡⎦⎤-π2,3π2的图象如图所示:观察图象可知:当x ∈⎣⎡⎦⎤-π2,π2时,曲线逐渐上升,是增函数,sin x 的值由-1增大到1;当x ∈⎣⎡⎦⎤π2,3π2时,曲线逐渐下降,是减函数,sin x 的值由1减小到-1. 推广到整个定义域可得:当x ∈⎣⎡⎦⎤-π2+2k π,π2+2k π,(k ∈Z )时,正弦函数y =sin x 是增函数,函数值由-1增大到1; 当x ∈⎣⎡⎦⎤π2+2k π,3π2+2k π,(k ∈Z )时,正弦函数y =sin x 是减函数,函数值由1减小到-1. 思考2 观察余弦曲线,余弦函数在哪些区间上是增函数?在哪些区间上是减函数?如何将这些单调区间进行整合?答 函数y =cos x ,x ∈[-π,π]的图象如图所示:观察图象可知:当x ∈[-π,0]时,曲线逐渐上升,是增函数,cos x 的值由-1增大到1; 当x ∈[0,π]时,曲线逐渐下降,是减函数,cos x 的值由1减小到-1. 推广到整个定义域可得:当x ∈[2k π-π,2k π],k ∈Z 时,余弦函数y =cos x 是增函数,函数值由-1增大到1; 当x ∈[2k π,(2k +1)π],k ∈Z 时,余弦函数y =cos x 是减函数,函数值由1减小到-1. 探究点三 函数y =A sin(ωx +φ)(或y =A cos(ωx +φ))(A >0)的单调性 思考1 怎样确定函数y =A sin(ωx +φ)(A >0)的单调性?答 当ω>0时,把ωx +φ看成一个整体,视为X .若把ωx +φ代入到y =sin X 的单调增区间,则得到2k π-π2≤ωx +φ≤2k π+π2(k ∈Z ),从中解出x 的取值区间就是函数y =A sin(ωx +φ)的增区间.若把ωx +φ代入到y =sin X 的单调减区间,则得到2k π+π2≤ωx +φ≤2k π+32π(k ∈Z ),从中解出x 的取值区间就是函数y =A sin(ωx +φ)的减区间.当ω<0时,先利用诱导公式把x 的系数转化为正数后,再根据复合函数确定单调区间的原则(即同则增,异则减)求解.余弦函数y =A cos(ωx +φ)的单调区间类似可求.思考2 请同学们根据上面介绍的方法,写出函数y =sin ⎝⎛⎭⎫-12x +π3单调递增区间. 答 y =sin ⎝⎛⎭⎫-12x +π3=-sin ⎝⎛⎭⎫12x -π3. 令2k π+π2≤12x -π3≤2k π+32π,k ∈Z .∴4k π+53π≤x ≤4k π+113π,k ∈Z .∴函数y =sin ⎝⎛⎭⎫12x -π3的单调递减区间是⎣⎡⎦⎤4k π+53π,4k π+113π,k ∈Z ,即函数y =sin ⎝⎛⎭⎫-12x +π3的单调递增区间是 ⎣⎡⎦⎤4k π+53π,4k π+113π,k ∈Z .例1 利用三角函数的单调性,比较下列各组数的大小. (1)sin ⎝⎛⎭⎫-π18与sin ⎝⎛⎭⎫-π10; (2)sin 196°与cos 156°; (3)cos ⎝⎛⎭⎫-235π与cos ⎝⎛⎭⎫-174π. 解 (1)∵-π2<-π10<-π18<π2,∴sin ⎝⎛⎭⎫-π18>sin ⎝⎛⎭⎫-π10. (2)sin 196°=sin(180°+16°)=-sin 16°,cos 156°=cos(180°-24°)=-cos 24°=-sin 66°, ∵0°<16°<66°<90°, ∴sin 16°<sin 66°;从而-sin 16°>-sin 66°,即sin 196°>cos 156°. (3)cos ⎝⎛⎭⎫-235π=cos 235π=cos(4π+35π)=cos 35π, cos ⎝⎛⎭⎫-174π=cos 174π=cos ⎝⎛⎭⎫4π+π4=cos π4. ∵0<π4<35π<π,且y =cos x 在[0,π]上是减函数,∴cos 35π<cos π4,即cos ⎝⎛⎭⎫-235π<cos ⎝⎛⎭⎫-174π. 反思与感悟 用正弦函数或余弦函数的单调性比较大小时,应先将异名化同名,把不在同一单调区间内的角用诱导公式转化到同一单调区间,再利用单调性来比较大小. 跟踪训练1 比较下列各组数的大小.(1)sin ⎝⎛⎭⎫-376π与sin 493π; (2)cos 870°与sin 980°.解 (1)sin ⎝⎛⎭⎫-376π=sin ⎝⎛⎭⎫-6π-π6=sin ⎝⎛⎭⎫-π6, sin 493π=sin ⎝⎛⎭⎫16π+π3=sin π3, ∵y =sin x 在⎣⎡⎦⎤-π2,π2上是增函数, ∴sin ⎝⎛⎭⎫-π6<sin π3,即sin ⎝⎛⎭⎫-376π<sin 493π. (2)cos 870°=cos(720°+150°)=cos 150°,sin 980°=sin(720°+260°)=sin 260°=sin(90°+170°)=cos 170°,∵0°<150°<170°<180°,∴cos 150°>cos 170°,即cos 870°>sin 980°.例2 求函数y =1+sin ⎝⎛⎭⎫-12x +π4,x ∈[-4π,4π]的单调减区间. 解 y =1+sin ⎝⎛⎭⎫-12x +π4=-sin ⎝⎛⎭⎫12x -π4+1. 由2k π-π2≤12x -π4≤2k π+π2(k ∈Z ).解得4k π-π2≤x ≤4k π+32π(k ∈Z ).令k =0时,-π2 ≤x ≤32π;令k =-1时,-4π-π2≤x ≤-52π;令k =1时,72π≤x ≤4π+32π.∵-4π≤x ≤4π,∴函数y =1+sin ⎝⎛⎭⎫-12x +π4的单调减区间为[-4π,-52π],[-π2,32π],[72π,4π].反思与感悟 确定函数y =A sin(ωx +φ)或y =A cos(ωx +φ)单调区间的基本思想是整体换元思想,即将ωx +φ视为一个整体.若x 的系数ω为负,通常利用诱导公式化为正数再求解,有时还应兼顾函数的定义域.跟踪训练2 求函数y =log 12(cos 2x )的单调递增区间.解 由题意得cos 2x >0且y =cos 2x 递减. ∴x 只需满足:2k π<2x <2k π+π2,k ∈Z .∴k π<x <k π+π4,k ∈Z .∴y =log 12(cos 2x )的单调递增区间为⎝⎛⎭⎫k π,k π+π4,k ∈Z . 例3 求函数y =sin 2x -sin x +1,x ∈R 的值域. 解 设t =sin x ,t ∈[-1,1],f (t )=t 2-t +1. ∵f (t )=t 2-t +1=⎝⎛⎭⎫t -122+34. ∵-1≤t ≤1,∴当t =-1,即sin x =-1时,y max =f (t )max =3; 当t =12,即sin x =12时,y min =f (t )min =34.∴函数y =sin 2x -sin x +1,x ∈R 的值域为⎣⎡⎦⎤34,3.反思与感悟 形如f (x )=a sin 2x +b sin x +c (a ≠0)的函数值域问题,可以通过换元转化为二次函数g (t )=at 2+bt +c 在闭区间[-1,1]上的最值问题.要注意,正弦、余弦函数值域的有界性,即当x ∈R 时,-1≤sin x ≤1,-1≤cos x ≤1对值域的影响.跟踪训练3 求函数y =cos 2x +4sin x 的最值及取到最大值和最小值时的x 的集合. 解 y =cos 2x +4sin x =1-sin 2x +4sin x =-sin 2x +4sin x +1=-(sin x -2)2+5.∴当sin x =1,即x =2k π+π2,k ∈Z 时,y max =4;当sin x =-1,即x =2k π-π2,k ∈Z 时,y min =-4.所以y max =4,此时x 的取值集合是{x |x =2k π+π2,k ∈Z };y min =-4,此时x 的取值集合是{x |x =2k π-π2,k ∈Z }.1.函数f (x )=sin ⎝⎛⎭⎫x +π6的一个递减区间是( ) A.⎣⎡⎦⎤-π2,π2 B .[-π,0] C.⎣⎡⎦⎤-23π,23π D.⎣⎡⎦⎤π2,23π 答案 D解析 由π2≤x +π6≤32π,解得π3≤x ≤43π.故选D.2.下列不等式中成立的是( ) A .sin ⎝⎛⎭⎫-π8>sin ⎝⎛⎭⎫-π10 B .sin 3>sin 2 C .sin 75π>sin ⎝⎛⎭⎫-25π D .sin 2>cos 1 答案 D解析 ∵sin 2=cos ⎝⎛⎭⎫π2-2=cos ⎝⎛⎭⎫2-π2, 且0<2-π2<1<π,∴cos ⎝⎛⎭⎫2-π2>cos 1, 即sin 2>cos 1.故选D.3.函数y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2的值域是( ) A.⎣⎡⎦⎤-32,12 B.⎣⎡⎦⎤-12,32 C.⎣⎡⎦⎤32,1 D.⎣⎡⎦⎤12,1 答案 B解析 ∵0≤x ≤π2,∴π6≤x +π6≤23π.∴cos 23π≤cos ⎝⎛⎭⎫x +π6≤cos π6, ∴-12≤y ≤32.故选B.4.求函数y =f (x )=sin 2x -4sin x +5的值域.解 设t =sin x ,则|t |≤1, f (x )=g (t )=t 2-4t +5(-1≤t ≤1), ∴g (t )=t 2-4t +5的对称轴为t =2,∴开口向上,对称轴t =2不在研究区间(-1,1)内, ∴g (t )在(-1,1)上是单调递减的,∴g (t )max =g (-1)=(-1)2-4×(-1)+5=10, g (t )min =g (1)=12-4×1+5=2, 即g (t )∈[2,10].所以y =f (x )的值域为[2,10]. [呈重点、现规律]1.求函数y =A sin(ωx +φ)(A >0,ω>0)单调区间的方法把ωx +φ看成一个整体,由2k π-π2≤ωx +φ≤2k π+π2 (k ∈Z )解出x 的范围,所得区间即为增区间,由2k π+π2≤ωx +φ≤2k π+32π (k ∈Z )解出x 的范围,所得区间即为减区间.若ω<0,先利用诱导公式把ω转化为正数后,再利用上述整体思想求出相应的单调区间.2.比较三角函数值的大小,先利用诱导公式把问题转化为同一单调区间上的同名三角函数值的大小比较,再利用单调性作出判断.3.求三角函数值域或最值的常用求法:将y 表示成以sin x (或cos x )为元的一次或二次等复合函数,再利用换元或配方或利用函数的单调性等来确定y 的范围.一、基础过关1.若y =sin x 是减函数,y =cos x 是增函数,那么角x 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案 C2.若α,β都是第一象限的角,且α<β,那么( ) A .sin α>sin β B .sin β>sin αC .sin α≥sin βD .sin α与sin β的大小不定答案 D3.函数y =2sin 2x +2cos x -3的最大值是( ) A .-1 B .1 C .-12 D .-5答案 C解析 由题意,得y =2sin 2x +2cos x -3=2(1-cos 2x )+2cos x -3=-2⎝⎛⎭⎫cos x -122-12.∵-1≤cos x ≤1,∴当cos x =12时,函数有最大值-12.4.设a =sin 33°,b =cos 55°,c =tan 35°,则( ) A .a >b >c B .b >c >a C .c >b >a D .c >a >b 答案 C解析 ∵a =sin 33°,b =cos 55°=sin 35°,c =tan 35°=sin 35°cos 35°,又0<cos 35°<1,∴c >b >a .5.下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( ) A .y =sin(2x +π2) B .y =cos(2x +π2)C .y =sin(x +π2)D .y =cos(x +π2)答案 A解析 因为函数周期为π,所以排除C 、D.又因为y =cos(2x +π2)=-sin 2x 在⎣⎡⎦⎤π4,π2上为增函数,故B 不符合.故选A.6.若f (x )=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值是2,则ω=________. 答案 34解析 ∵x ∈⎣⎡⎦⎤0,π3,即0≤x ≤π3,且0<ω<1, ∴0≤ωx ≤ωπ3<π3.∵f (x )max =2sin ωπ3=2, ∴sinωπ3=22,ωπ3=π4,即ω=34. 7.求下列函数的单调增区间.(1)y =1-sin x2;(2)y =log 12cos ⎝⎛⎭⎫π3-x 2. 解 (1)由2k π+π2≤x 2≤2k π+32π,k ∈Z ,得4k π+π≤x ≤4k π+3π,k ∈Z .∴y =1-sin x2的增区间为[4k π+π,4k π+3π] (k ∈Z ).(2)y =log 12cos ⎝⎛⎭⎫π3-x 2=log 12cos ⎝⎛⎭⎫x 2-π3. 要求原函数的增区间,即求函数y =cos ⎝⎛⎭⎫x 2-π3的减区间,且cos ⎝⎛⎭⎫x 2-π3>0. ∴2k π≤x 2-π3<2k π+π2(k ∈Z ).整理得4k π+23π≤x <4k π+53π(k ∈Z ).所以函数y =log 12cos ⎝⎛⎭⎫π3-x 2的单调递增区间是⎣⎡⎭⎫4k π+23π,4k π+53π(k ∈Z ). 二、能力提升8.函数y =2sin x 的单调增区间是( ) A .[2k π-π2,2k π+π2](k ∈Z )B .[2k π+π2,2k π+3π2](k ∈Z )C .[2k π-π,2k π](k ∈Z )D .[2k π,2k π+π](k ∈Z ) 答案 A解析 函数y =2x 为增函数,因此求函数y =2sin x 的单调增区间即求函数y =sin x 的单调增区间.9.sin 1,sin 2,sin 3按从小到大排列的顺序为__________. 答案 sin 3<sin 1<sin 2 解析 ∵1<π2<2<3<π,sin(π-2)=sin 2,sin(π-3)=sin 3.y =sin x 在⎝⎛⎭⎫0,π2上递增,且0<π-3<1<π-2<π2,∴sin(π-3)<sin 1<sin(π-2),即sin 3<sin 1<sin 2.10.设|x |≤π4,求函数f (x )=cos 2x +sin x 的最小值. 解 f (x )=cos 2x +sin x =1-sin 2x +sin x=-⎝⎛⎭⎫sin x -122+54. ∵|x |≤π4,∴-22≤sin x ≤22. ∴当sin x =-22时,f (x )min =1-22. 11.已知ω是正数,函数f (x )=2sin ωx 在区间[-π3,π4]上是增函数,求ω的取值范围. 解 由-π2+2k π≤ωx ≤π2+2k π(k ∈Z ),得 -π2ω+2k πω≤x ≤π2ω+2k πω. ∴f (x )的单调递增区间是[-π2ω+2k πω,π2ω+2k πω],k ∈Z . 根据题意,得[-π3,π4]⊆[-π2ω+2k πω,π2ω+2k πω]. 从而有⎩⎨⎧-π2ω≤-π3,π2ω≥π4,ω>0,解得0<ω≤32. 故ω的取值范围是(0,32]. 12.已知函数f (x )=sin(2x +φ),其中φ为实数且|φ|<π;若f (x )≤|f (π6)|对x ∈R 恒成立,且f (π2)>f (π),求f (x )的单调递增区间.解 由f (x )≤|f (π6)|对x ∈R 恒成立知, 2·π6+φ=2k π±π2(k ∈Z ). ∴φ=2k π+π6或φ=2k π-56π(k ∈Z ) ∵|φ|<π,得φ=π6或φ=-56π,又∵f (π2)>f (π),∴φ=-56π, 由2k π-π2≤2x -56π≤2k π+π2(k ∈Z ). 得f (x )的单调递增区间是[k π+π6,k π+23π](k ∈Z ). 三、探究与拓展13.设函数y =-2cos ⎝⎛⎭⎫12x +π3,x ∈⎣⎡⎦⎤28π5,a ,若该函数是单调函数,求实数a 的最大值. 解 由2k π≤12x +π3≤2k π+π(k ∈Z )得 4k π-23π≤x ≤4k π+43π(k ∈Z ). ∴函数的单调递增区间是⎣⎡⎦⎤4k π-23π,4k π+43π(k ∈Z ), 同理,函数的单调递减区间是⎣⎡⎦⎤4k π+43π,4k π+103π(k ∈Z ). 令285π∈⎣⎡⎦⎤4k π-23π,4k π+43π,即1615≤k ≤4730, 又k ∈Z ,∴k 不存在.令285π∈⎣⎡⎦⎤4k π+43π,4k π+103π,得k =1. ∴285π∈⎣⎡⎦⎤4k π+43π,4k π+103π, 这表明y =-2cos ⎝⎛⎭⎫12x +π3在⎣⎡⎦⎤28π5,22π3上是减函数,∴a 的最大值是22π3.。
高中数学人教A版必修4课时达标检测(十) 正弦函数、余弦函数的性质(二) Word版含解析

课时达标检测(十) 正弦函数、余弦函数的性质(二)一、选择题1.函数y =sin ⎝⎛⎭⎫2x +5π2的一个对称中心是( ) A.⎝⎛⎭⎫π8,0B.⎝⎛⎭⎫π4,0C.⎝⎛⎭⎫-π3,0 D.⎝⎛⎭⎫3π8,0答案:B2.下列关系式中正确的是( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11°答案:C3.函数y =|sin x |+sin x 的值域为( )A .[-1,1]B .[-2,2]C .[-2,0]D .[0,2] 答案:D4.已知函数f (x )=sin ⎝⎛⎭⎫x -π2(x ∈R),下面结论错误的是( ) A .函数f (x )的最小正周期为2πB .函数f (x )在区间⎣⎡⎦⎤0,π2上是增函数 C .函数f (x )的图象关于直线x =0对称D .函数f (x )是奇函数答案:D5.若函数y =f (x )同时满足下列三个性质:①最小正周期为π;②图象关于直线x =π3对称;③在区间⎣⎡⎦⎤-π6,π3上是增函数.则y =f (x )的解析式可以是( ) A .y =sin ⎝⎛⎭⎫2x -π6 B .y =sin ⎝⎛⎭⎫x 2+π6 C .y =cos ⎝⎛⎭⎫2x -π6 D .y =cos ⎝⎛⎭⎫2x +π3 答案:A二、填空题6.设x ∈(0,π),则f (x )=cos 2x +sin x 的最大值是________.答案:547.函数f (x )=sin ⎝⎛⎭⎫x -π4的图象的对称轴是________. 答案:x =k π+3π4,k ∈Z 8.函数y =-cos ⎝⎛⎭⎫x 2-π3的单调递增区间是________.答案:⎣⎡⎦⎤2π3+4k π,8π3+4k π,k ∈Z 三、解答题9.已知ω是正数,函数f (x )=2sin ωx 在区间⎣⎡⎦⎤-π3,π4上是增函数,求ω的取值范围. 解:由2k π-π2≤ωx ≤2k π+π2(k ∈Z)得 -π2ω+2k πω≤x ≤π2ω+2k πω(k ∈Z). ∴f (x )的单调递增区间是⎣⎡⎦⎤-π2ω+2k πω,π2ω+2k πω(k ∈Z).据题意:⎣⎡⎦⎤-π3,π4⊆⎣⎡⎦⎤-π2ω+2k πω,π2ω+2k πω(k ∈Z). 从而有⎩⎪⎨⎪⎧ -π2ω≤-π3,π2ω≥π4,ω>0,解得0<ω≤32. 故ω的取值范围是⎝⎛⎦⎤0,32 10.求函数y =3-4cos ⎝⎛⎭⎫2x +π3,x ∈⎣⎡⎦⎤-π3,π6的最大值、最小值及相应的x 值. 解:∵x ∈⎣⎡⎦⎤-π3,π6,∴2x +π3∈⎣⎡⎦⎤-π3,2π3, 从而-12≤cos ⎝⎛⎭⎫2x +π3≤1. ∴当cos ⎝⎛⎭⎫2x +π3=1,即2x +π3=0, 即x =-π6时,y min =3-4=-1. 当cos ⎝⎛⎭⎫2x +π3=-12,即2x +π3=2π3,即x =π6时,y max =3-4×⎝⎛⎭⎫-12=5.11.已知f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,x ∈⎣⎡⎦⎤π4,3π4,是否存在常数a ,b ∈Q ,使得f (x )的值域为{y |-3≤y ≤3-1}?若存在,求出a ,b 的值;若不存在,请说明理由.解:∵π4≤x ≤3π4, ∴2π3≤2x +π6≤5π3, ∴-1≤sin ⎝⎛⎭⎫2x +π6≤32. 假设存在这样的有理数a ,b ,则当a >0时,⎩⎨⎧ -3a +2a +b =-3,2a +2a +b =3-1,解得⎩⎨⎧ a =1,b =3-5(不合题意,舍去); 当a <0时,⎩⎨⎧ 2a +2a +b =-3,-3a +2a +b =3-1,解得⎩⎪⎨⎪⎧a =-1,b =1. 故a ,b 存在,且a =-1,b =1.高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时达标检测(十) 正弦函数、余弦函数的性质(二)
一、选择题
1.函数y =sin ⎝
⎛⎭⎪⎫2x +5π2的一个对称中心是( ) A.⎝ ⎛⎭
⎪⎫π8,0 B.⎝ ⎛⎭⎪⎫π4,0 C.⎝ ⎛⎭
⎪⎫-π3,0 D.⎝ ⎛⎭
⎪⎫3π8,0 答案:B
2.下列关系式中正确的是( ) A .sin 11°<cos 10°<sin 168°
B .sin 168°<sin 11°<cos 10°
C .sin 11°<sin 168°<cos 10°
D .sin 168°<cos 10°<sin 11°
答案:C
3.函数y =|sin x |+sin x 的值域为( )
A .[-1,1]
B .[-2,2]
C .[-2,0]
D .[0,2]
答案:D 4.已知函数f (x )=sin ⎝
⎛⎭⎪⎫x -π2(x ∈R),下面结论错误的是( ) A .函数f (x )的最小正周期为2π
B .函数f (x )在区间⎣
⎢⎡⎦⎥⎤0,π2上是增函数 C .函数f (x )的图象关于直线x =0对称
D .函数f (x )是奇函数
答案:D
5.若函数y =f (x )同时满足下列三个性质:①最小正周期为π;②图象关于直线x =π3
对称;③在区间⎣⎢⎡⎦
⎥⎤-π6,π3上是增函数.则y =f (x )的解析式可以是( ) A .y =sin ⎝
⎛⎭⎪⎫2x -π6 B .y =sin ⎝ ⎛⎭⎪⎫x 2+π6 C .y =cos ⎝
⎛⎭⎪⎫2x -π6 D .y =cos ⎝
⎛⎭⎪⎫2x +π3 答案:A
二、填空题
6.设x ∈(0,π),则f (x )=cos 2
x +sin x 的最大值是________.
答案:54 7.函数f (x )=sin ⎝
⎛⎭⎪⎫x -π4的图象的对称轴是________. 答案:x =k π+3π4
,k ∈Z 8.函数y =-cos ⎝ ⎛⎭
⎪⎫x 2-π3的单调递增区间是________. 答案:⎣⎢⎡⎦
⎥⎤2π3+4k π,8π3+4k π,k ∈Z 三、解答题
9.已知ω是正数,函数f (x )=2sin ωx 在区间⎣⎢⎡⎦
⎥⎤-π3,π4上是增函数,求ω的取值范围.
解:由2k π-π2≤ωx ≤2k π+π2
(k ∈Z)得 -π2ω+2k πω≤x ≤π2ω+2k πω
(k ∈Z). ∴f (x )的单调递增区间是⎣⎢⎡⎦
⎥⎤-
π2ω+2k πω,π2ω+2k πω (k ∈Z). 据题意:⎣⎢⎡⎦⎥⎤-π3,π4⊆⎣⎢⎡⎦
⎥⎤-π2ω+2k πω,π2ω+2k πω(k ∈Z). 从而有⎩⎪⎨⎪⎧ -π2ω≤-π3,π2ω≥π4,ω>0,解得0<ω≤32
. 故ω的取值范围是⎝ ⎛⎦
⎥⎤0,32 10.求函数y =3-4cos ⎝ ⎛⎭⎪⎫2x +π3,x ∈⎣⎢⎡⎦
⎥⎤-π3,π6的最大值、最小值及相应的x 值. 解:∵x ∈⎣⎢⎡⎦
⎥⎤-π3,π6,∴2x +π3∈⎣⎢⎡⎦⎥⎤-π3,2π3, 从而-12≤cos ⎝
⎛⎭⎪⎫2x +π3≤1.
∴当cos ⎝
⎛⎭⎪⎫2x +π3=1,即2x +π3=0, 即x =-π6
时,y min =3-4=-1. 当cos ⎝
⎛⎭⎪⎫2x +π3=-12,即2x +π3=2π3, 即x =π6时,y max =3-4×⎝ ⎛⎭
⎪⎫-12=5.
11.已知f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,x ∈⎣⎢⎡⎦⎥⎤π4
,3π4,是否存在常数a ,b ∈Q ,使得f (x )的值域为{y |-3≤y ≤3-1}?若存在,求出a ,b 的值;若不存在,请说明理由.
解:∵π4≤x ≤3π4
, ∴2π3≤2x +π6≤5π3
, ∴-1≤sin ⎝
⎛⎭⎪⎫2x +π6≤32. 假设存在这样的有理数a ,b ,则
当a >0时,⎩⎨⎧ -3a +2a +b =-3,2a +2a +b =3-1,
解得⎩⎨⎧
a =1,
b =3-5(不合题意,舍去); 当a <0时,⎩⎨⎧ 2a +2a +b =-3,-3a +2a +b =3-1, 解得⎩⎪⎨⎪⎧
a =-1,
b =1. 故a ,b 存在,且a =-1,b =1.。