【高考数学】专题06+导数的几何意义灵活应用【理科】(教师版)

合集下载

导数的几何意义与应用

导数的几何意义与应用

导数的几何意义与应用导数是微积分中的重要概念,它具有丰富的几何意义和广泛的应用。

本文将详细阐述导数的几何意义以及在实际问题中的应用。

一、导数的几何意义导数的几何意义是切线的斜率。

考虑函数f(x)在点x=a处的导数f'(a),这个导数值代表函数曲线在该点处的斜率。

换言之,导数告诉我们曲线在特定点的变化速率。

如果导数为正,表示曲线在该点处是上升的;如果导数为负,表示曲线在该点处是下降的;如果导数为零,表示曲线在该点处有极值(最大值或最小值)。

基于这个几何意义,我们可以通过导数来研究曲线的特性。

例如,我们可以通过导数的正负来确定函数的增减性,也可以通过导数的零点来确定函数的极值点。

此外,导数还可以帮助我们理解曲线的弯曲程度。

曲线的弯曲程度与导数的变化率有关,较大的导数变化率表示曲线弯曲较陡峭,较小的导数变化率表示曲线弯曲相对平缓。

二、导数的应用1. 线性逼近导数的几何意义使得它在线性逼近问题中非常有用。

我们可以利用导数来构造一个称为切线的线性函数,用来近似曲线在该点的行为。

这种线性逼近方法在很多实际问题中被广泛应用。

例如,当我们需要确定一条曲线在某点的近似切线时,可以使用导数来计算该点处的切线斜率,并进一步确定切线方程。

2. 最优化问题导数在最优化问题中有重要的应用。

最优化问题涉及如何找到一个函数的最大值或最小值。

通过对函数求导,我们可以找到导数为零的点,即函数的极值点。

进一步分析导数的符号,可以确定函数的最大值或最小值。

这一方法在经济学、物理学和工程学等领域都有广泛的应用。

3. 运动学问题导数在运动学中也有广泛的应用。

例如,我们可以通过对位移函数求导来得到速度函数,通过对速度函数再次求导得到加速度函数。

这种将导数应用于运动学问题的方法使得我们能够研究物体的速度和加速度变化。

这在物理学和工程学中对于研究物体的运动非常有用。

4. 统计学在统计学中,导数被用于估计和分析数据。

例如,在回归分析中,我们可以通过对观测数据进行拟合来得到一个最佳的函数。

导数的几何意义及应用

导数的几何意义及应用

1
2
3
4
5
6
变式2:若曲线上一点P处的 切线恰好平行于直
线y=11x-1,则P点坐标为 ____________,
切线方程为 _____________________.
y=11x-14或 y=11x+18
变式4:若曲线C: y=x3-ax+2求在点 x=3处的切线方程为 y=11x-b ,求切点 坐标及a、b。
解:f/(x)=3x2-1, ∴所求的切线方程为: 即 y=2x 处的切线方程?
∴k= f/(1)=2
y-2=2(x-1),
同样题:已知曲线C:y=x3 -x+2,求在点x=1
变式1:求过 点A的切线方
程?
例1.曲线y=x3-x+2,求在点A(1,2) 处的切线方程?
解:设切点为P(x0,x03-x0+2), k= f/(x0)= 3 x02-1,
一.求切线方程的步骤: 1. 设切点P(x0,y0) 2. 求k=f/(x0) 3. 写出切线方程 y-y0= f/(x0)(x-x0)
求曲线上点到-1,2)且与y=x2+ 2在点M(1,3)
处的切线垂直的直线方程是__________.
在曲线y=x3+x2+x-1的切线斜率中斜率最小的
例2:已知曲线C:y=x2-x+3,直线L:x- y-4=0,在曲线C上求一点P,使P到直线L 的距离最短,并求出最短距离。
|134| 3 2 2
解:设P(x0,y0),
∵f/(x)=2x-1, ∴2 x0-1=1, 解得x0= 1, ∴ y0=3,得 P(1,3)
∴P到直线的最短距离 d=
小结
切线方程是 __________ .

专题06 导数的几何意义—三年高考(2015-2017)数学(理)真题分项版解析(解析版)

专题06 导数的几何意义—三年高考(2015-2017)数学(理)真题分项版解析(解析版)

1. 【2016高考山东理数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )(A )sin y x = (B )ln y x =(C )e x y =(D )3y x =【答案】A 【解析】试题分析:由函数的图象在两点处的切线互相垂直可知,存在两点处的切线斜率的积,即导函数值的乘积为负一.当sin y x =时,cos y x '=,有cos0cos 1π⋅=-,所以在函数sin y x =图象存在两点0,x x π==使条件成立,故A 正确;函数3ln ,,x y x y e y x ===的导数值均非负,不符合题意,故选A考点:1.导数的计算;2.导数的几何意义.2. 【2016年高考四川理数】设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( )(A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞) 【答案】A 【解析】试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为()1111ln y x x x x -=-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ⎛⎫-=-- ⎪⎝⎭.分别令0x =得()()110,1ln ,0,1ln .A x B x -++又1l 与2l 的交点为2111221121,ln 11x x P x x x ⎛⎫-+ ⎪++⎝⎭,11x >,21122112111211PABA B P x x S y y x x x ∆+∴=-⋅=<=++,01PAB S ∆∴<<.故选A . 考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围.3.【2016高考新课标3理数】已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()yf x =在点(1,3)-处的切线方程是_______________. 【答案】21y x =-- 【解析】试题分析:当0x >时,0x -<,则()ln 3f x x x -=-.又因为()f x 为偶函数,所以()()ln 3f x f x x x =-=-,所以1()3f x x'=-,则切线斜率为(1)2f '=-,所以切线方程为32(1)y x +=--,即21y x =--.考点:1、函数的奇偶性与解析式;2、导数的几何意义.【知识拓展】本题题型可归纳为“已知当0x >时,函数()y f x =,则当0x <时,求函数的解析式”.有如下结论:若函数()f x 为偶函数,则当0x <时,函数的解析式为()y f x =-;若()f x 为奇函数,则函数的解析式为()y f x =--.4.【2014广东理10】曲线25+=-x e y在点()0,3处的切线方程为 .【答案】53y x =-+或530x y +-=. 【解析】55x y e -'=-,所求切线的斜率为55y e =-=-,故所求切线的方程为35y x -=-,即53y x =-+或530x y +-=. 【考点定位】本题考查利用导数求函数图象的切线问题,属于容易题.【名师点晴】本题主要考查的是导数的几何意义和直线的方程,属于容易题.解题时一定要抓住重要字眼“在点()0,3处”,否则很容易出现错误.解导数的几何意义问题时一定要抓住切点的三重作用:①切点在曲线上;②切点在切线上;③切点处的导数值等于切线的斜率.5.【2014江苏理11】在平面直角坐标系xoy 中,若曲线2by ax x=+(,a b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b += .【答案】3-【解析】曲线2b y ax x =+过点(2,5)P -,则452b a +=-①,又2'2by ax x=-,所以7442b a -=-②,由①②解得1,2,a b =-⎧⎨=-⎩所以3a b +=-. 【考点定位】导数与切线斜率.6.【2017山东,理20】已知函数,,其中是自然对数的底数.(Ⅰ)求曲线在点()(),f ππ处的切线方程;(Ⅱ)令,讨论的单调性并判断有无极值,有极值时求出极值.【答案】(Ⅰ).(Ⅱ)综上所述:当时,在上单调递减,在上单调递增,函数有极小值,极小值是;当时,函数在和和上单调递增,在上单调递减,函数有极大值,也有极小值,极大值是极小值是;当时,函数在上单调递增,无极值;当时,函数在和上单调递增,在上单调递减,函数有极大值,也有极小值,极大值是;极小值是.【解析】试题分析:(Ⅰ)求导数得斜率,由点斜式写出直线方程.试题解析:(Ⅰ)由题意又,所以,因此 曲线在点处的切线方程为,即 .(Ⅱ)由题意得 2()(cos sin 22)(2cos )x h x e x x x a x x =-+--+,因为,令则所以在上单调递增.因为(0)0,m =所以 当时,()0,m x >当0x <时,(1)当时,当时,,单调递减,当时,,单调递增,所以 当时取得极小值,极小值是 ;(2)当时,由 得 ,①当时,,当时,,单调递增;当时,,单调递减;当时,,单调递增.所以当时取得极大值.③当时,所以当时,,单调递增;当时,,单调递减;当时,,单调递增;所以当时取得极大值,极大值是;当时取得极小值.极小值是.综上所述:当时,在上单调递减,在上单调递增,当时,函数在上单调递增,无极值;当时,函数在和上单调递增,在上单调递减,函数有极大值,也有极小值,极大值是;极小值是.【考点】1.导数的几何意义.2.应用导数研究函数的单调性、极值.3.分类讨论思想.力、基本计算能力、分类讨论思想等。

导数的几何意义课件

导数的几何意义课件

导数的几何意义课件导数是微积分中的重要概念,它在解决实际问题中起着至关重要的作用。

导数的几何意义是我们在学习导数的过程中必须理解和掌握的内容之一。

本文将从几何的角度来解释导数的意义,并探讨导数在几何中的应用。

首先,我们来回顾一下导数的定义。

在微积分中,导数表示函数在某一点的变化率。

具体来说,对于函数f(x),如果它在点x处的导数存在,那么导数可以用极限的概念来表示,即:f'(x) = lim(h->0) [f(x+h) - f(x)] / h这个定义告诉我们,导数是函数在某一点的瞬时变化率。

换句话说,导数告诉我们函数在某一点的斜率,也就是函数曲线在该点的切线的斜率。

那么,导数的几何意义是什么呢?我们可以通过一些几何图形来理解。

考虑一个函数f(x)在点x处的导数f'(x)。

我们可以将这个导数理解为函数曲线在该点处的切线的斜率。

切线是曲线上与该点非常接近的一条直线,它与曲线在该点处相切。

通过计算切线的斜率,我们可以得到曲线在该点的导数。

导数的几何意义还可以从另一个角度来理解。

我们可以将导数理解为函数曲线在某一点处的局部线性逼近。

也就是说,当我们在某一点处计算导数时,我们实际上是在用一条直线来近似曲线在该点的行为。

导数的几何意义对于理解函数的变化趋势和性质非常重要。

通过计算导数,我们可以了解函数在不同点的变化率,从而揭示函数曲线的特征。

例如,如果导数始终为正,那么函数在该区间上是递增的;如果导数始终为负,那么函数在该区间上是递减的。

而导数为零的点,则对应函数曲线的极值点。

除了以上的几何意义,导数在几何中还有一些重要的应用。

其中之一是求曲线的切线和法线。

通过计算导数,我们可以得到曲线在某一点处的切线的斜率,从而确定切线方程。

而切线的垂直线就是曲线在该点处的法线,通过计算切线斜率的倒数,我们可以得到法线的斜率。

导数还可以用来求曲线的凹凸性。

通过计算导数的导数,即二阶导数,我们可以判断曲线在某一点处的凹凸性。

灵活运用导数的几何意义

灵活运用导数的几何意义

(,) (,) 线 斜 = 三 ( x 的 值 Y , Y 连 的 率k r #2 取 范 .。Q 。2 )
受 思 维 定 势 的 消 极 影 响 , 设 出切 线 方 程 , 利 用 直 线 和 曲 先 再
・ . .
l ,( )<1 l
I ㈨
)一 ,
翘 调 籀 的 条 件 , 解 耪的 运 算 量 变 大 . 线相 切 麴 薄使 得 题 龋 霸
二 、 妙 应 用 巧
位 置 , 忽 略 切 点 既 在 曲线 上 , 在 切 线 上 这 一 关 键 条 件 , 或 也 或
( , ) 数 图 象 上 任 意 两 点 连 。1 函
线 的斜率 k . <1
’ . ’
厂( )=Y = x一1 当 0< <1时 , 2 , 一1< x一1<1 2 ,

线 的斜率 , 因此 , 如果 Y= ( 在点 。可导 , 曲线 Y= ( - ) 厂 则 _ ) 厂
在 点 (。 ‰ ) 处 的 切 线 斜 率 为 f 。 , 线 方 程 为 Y— ) ( ) 切 f
(o ( 。 ( — 0 . )= ) X )
例 1求 曲线 Y= 在 点 P( ,) 的 切 线 方 程. 11处
明: J 一 I I 。 .
我们 知道 , 函数 Y= ( 在 点 。 的导数 的几何 意义就 _ ) 厂 处
是 曲 线 Y= 八 ) 在点 P( 。f ‰ ) 处 的 切 线 的 斜 率 . 这 个 ,( ) 由 意义 出发 , 们 可 以 发 现 , 数 y=厂 ) 象 上 任 意 两 点 尸 我 函 - ( 图
2 … … ( ) 其 中 ( ) 中 ( l 为 切 线 上 点 的 坐 标 , , 3. 3式 X,, ) (

高考数学考点导数的几何意义以及应用#

高考数学考点导数的几何意义以及应用#

考点09 导数的几何意义以及应用【高考再现】热点一导数的几何意义1.<2018年高考<课标文))曲线在点(1,1>处的切线方程为________2.<2018年高考<广东理))曲线在点处的切线方程为_______________【答案】【解读】,所以切线方程为,即.热点二导数的几何意义的应用3.<2018年高考<重庆理))设其中,曲线在点处的切线垂直于轴.(Ⅰ> 求的值。

(Ⅱ> 求函数的极值.【解读】(1>因,故因为曲线在点处的切线垂直于轴,故该切线斜率为0,即4.<2018年高考<山东文))已知函数为常数,e=2.71828是自然对数的底数>,曲线在点处的切线与x轴平行.(Ⅰ>求k的值。

(Ⅱ>求的单调区间。

(Ⅲ>设,其中为的导函数.证明:对任意.5.<2018年高考<湖北文))设函数,为正整数,为常数, 曲线在处的切线方程为.(1>求的值。

(2>求函数的最大值。

(3>证明:.【点评】本题考查多项式函数的求导,导数的几何意义,导数判断函数的单调性,求解函数的最值以及证明不等式等的综合应用.考查转化与划归,分类讨论的数学思想以及运算求解的能力. 导数的几何意义一般用来求曲线的切线方程,导数的应用一般用来求解函数的极值,最值,证明不等式等. 来年需注意应用导数判断函数的极值以及求解极值,最值等。

另外,要注意含有等的函数求导的运算及其应用考查.6.<2018年高考<北京文))已知函数(>,.(1>若曲线与曲线在它们的交点(1,>处具有公共切线,求的值。

(2>当时,求函数在区间上的最大值为28,求的取值范围.当时,函数在区间上的最大值小于28.因此,的取值范围是7.<2018年高考<北京理))已知函数(>,.(1>若曲线与曲线在它们的交点(1,>处具有公共切线,求的值。

导数的几何意义课件(人教版)

导数的几何意义课件(人教版)

x0
x
x0
x
lim 2x0
x0
x (x)2 x
2x0
所以此切线方程的斜率为2x0,
又因为此切线过点(
5 2
,6)和点(x0,x02),
所以
x02 6
x0
5 2
2 x0
即x02-5x0+6=0,
解得x0=2,或x0=3,
所以切线方程为y=4x-4或 y=6x-9.
二、函数的导数:
函数在点 x0处的导数 f (x0)、导函数 f (x) 、导数 之
称为曲线在点P处的切线的斜率.
即: k切线
tan
lim
x0
y x
lim
x0
f
( x0
x) x
f
(x0 )
这个概念:①提供了求曲线上某点切线的斜率的一种方法; ②切线斜率的本质——函数平均变化率的极限.
要注意,曲线在某点处的切线: 1)与该点的位置有关; 2)要根据割线是否有极限来判断与求解.如有极限,则在此 点有切线,且切线是唯一的;如不存在,则在此点处无切线; 3)曲线的切线,并不一定与曲线只有一个交点,可以有多个, 甚至可以无穷多个.
y x
表示函数f
x
在x=x
处的瞬时变化率,
0
反映了函数在x=x
附近的变化情况。
0
其几何意义是?
观 察 如图
1 .1 2 ,当点
Pn xn , f xn n 1, 2, 3, 4
沿着曲线
f x趋近于点 Px0 , f x0
时, 割 线PPn的 变化 趋势是
什 么?
y
y fx
P1
T
P
O

导数的几何意义与应用

导数的几何意义与应用

导数的几何意义与应用导数是微积分中的重要概念,它有着广泛的几何意义和应用。

在本文中,我们将探讨导数的几何意义,并介绍一些导数在几何中和实际应用中的具体应用。

导数的几何意义可以通过对函数图像的观察得到。

对于一个函数f(x),它的导数可以表示为f'(x),代表了函数曲线在某一点处的斜率。

具体来说,导数可以解释为函数图像在某一点上的瞬时变化率。

这意味着我们可以通过导数来描述函数图像的“陡峭程度”。

如果导数的值比较大,表示函数图像在该点的变化比较快,曲线比较陡峭;相反,如果导数的值比较小,表示函数图像在该点的变化比较慢,曲线比较平缓。

举个例子来说明导数的几何意义。

考虑一个简单的函数f(x) = x^2,它的导数可以表示为f'(x) = 2x。

我们可以观察到,在函数图像上,导数f'(x)的值代表了曲线在不同点上的斜率。

当x的值较小时,导数f'(x)的值也较小,表示函数图像变化较慢,曲线较平缓;而当x的值较大时,导数f'(x)的值也较大,表示函数图像变化较快,曲线较陡峭。

导数不仅在几何中有着重要意义,而且在实际生活中也有广泛的应用。

其中一个常见的应用是在物理学中的位置-时间关系中。

根据经典物理学的定义,速度可以看作是位置关于时间的导数。

具体来说,如果我们有一个物体在某一时刻的位置函数x(t),那么它的导数dx/dt就表示了该物体在该时刻的瞬时速度。

同样地,加速度可以看作是速度关于时间的导数,即dv/dt。

这种通过导数来描述位置、速度和加速度之间的关系,能够帮助我们更好地理解物体在空间中的运动规律。

在经济学和金融学领域中,导数也有着广泛的应用。

例如,利润函数关于产量的导数可以告诉我们,当产量变化时,利润的瞬时变化率是多少。

这有助于公司和企业在制定生产策略和销售计划时进行决策。

此外,在金融学中,导数可以帮助我们理解和分析股票和债券价格的波动趋势,以及利率和汇率的变化对经济的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题06 导数的几何意义灵活应用【学习目标】1.了解导数概念的实际背景. 2.理解导数的意义及几何意义.3.能根据导数定义求函数y =C (C 为常数),y =x ,y =x 2,y =x 3,y =1x ,y =x 的导数.4.能利用基本初等函数的导数公式及导数运算法则进行某些函数的求导. 【知识要点】1.平均变化率及瞬时变化率(1)函数y =f (x )从x 1到x 2的平均变化率用________表示,且Δy Δx =f (x 2)-f (x 1)x 2-x 1.(2)函数y =f (x )在x =x 0处的瞬时变化率是: 0limx ∆→Δy Δx =0lim x ∆→ f (x 0+Δx )-f (x 0)Δx .2.导数的概念(1)函数y =f (x )在x =x 0处的导数就是函数y =f (x )在x =x 0处的瞬时变化率,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=limx ∆→f (x 0+Δx )-f (x 0)Δx.(2)函数y =f (x )在x =x 0处的导数f ′(x 0)是一个确定的数,当x 变化时,f ′(x )是x 的一个函数,称f ′(x )为f (x )的导函数(简称导数),即f ′(x )= 0limx ∆→f (x +Δx )-f (x )Δx.3.导数的几何意义和物理意义几何意义:函数y =f (x )在x =x 0处的导数就是曲线y =f (x )上_____________________的斜率k ,即k =_______;切线方程为______________________.物理意义:若物体位移随时间变化的关系为s =f (t ),则f ′(t 0)是物体运动在t =t 0时刻的___________ 4.基本初等函数的导数公式 (1)常用函数的导数①(C )′=________(C 为常数); ②(x )′=________; ③(x 2)′=________; ④⎝⎛⎭⎫1x ′=________; ⑤(x )′=________. (2)初等函数的导数公式①(x n )′=________; ②(sin x )′=__________;③(cos x )′=________; ④(e x )′=________; ⑤(a x )′=___________; ⑥(ln x )′=________; ⑦(log a x )′=__________. 5.导数的运算法则(1)[f (x )±g (x )]′=________________________; (2)[f (x )·g (x )]′=_________________________;(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=____________________________. 6.复合函数的导数(1)对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成x 的函数,那么称这两个函数(函数y =f (u )和u =g (x ))的复合函数为y =f (g (x )).(2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为___________________,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 1.变化率例1. 【河南2019名校模拟】已知:函数,、为其图像上任意两点,则直线的斜率的最小值为( )A .B .C .D .【答案】B 【解析】,而,易得,在上单调减少,在上单调增加,故,故选B.练习1.设()f x 在0x 可导,则等于( )A .()04'f xB .()0'f xC .()02'f xD .()03'f x 【答案】A【解析】由题得==4()0f x ',故选A.练习2.设定义在上的函数的导函数满足,则( )A .B .C .D .【答案】A 【解析】由,,故,即,故选:A . 2.导数的定义例2.【山西2019联考】设为可导函数,且,求的值( )A .B .C .D .【答案】B【解析】根据导数的定义得到=,即可得到答案.【详解】根据极限的运算和导数的定义得到:=故答案为:B.【点睛】这个题目考查了导数的定义,,,凑出分子是y 的变化量,分母是x 的变化量即可.练习1.设函数()f x 在1x =处可导,则( )A .()1f 'B .()112f -' C .()21f -' D .()1f -' 【答案】B【解析】∵函数()f x 在1x =处可导,∴,∴.选B .练习2.已知函数在处可导,若,则A .B .C .D . 【答案】B【点睛】本题主要考查导数的概念以及导数的计算. 3.求倾斜角例3.【福建省莆田第六中学2019第一次模拟】将函数的图象绕坐标原点逆时针方向旋转角θ((]0,θα∈),得到曲线C ,若对于每一个旋转角θ,曲线C 都仍然是一个函数的图象,则α的最大值为( ) A .π B .2π C .3π D .4π【答案】D 【解析】函数的图象绕坐标原点逆时针方向连续旋转时,当且仅当其任意切线的倾斜角小于等于90︒时,其图象都依然是一个函数图象,因为0x ≥是11y x '=+是x 的减函数,且01y <'≤,当且仅当0x =时等号成立,故在函数的图象的切线中, 0x =处的切线倾斜角最大,其值为4π,由此可知4max πα=,故选D. 练习1.设点P 在曲线上,点Q 在直线y =2x 上,则PQ 的最小值为( )A .2B .1C .D .【答案】D【解析】在曲线上求一点,使得过这点的切线与直线平行,再用两条平行线间的距离公式,可求得的最小值.【点睛】本小题主要考查利用导数求曲线和直线间的最短距离,它的主要思想方法是通过将直线平移到曲线上,使得平行直线和曲线相切,这个时候,两条平行线间的距离,就是曲线上的点和直线上的点的距离的最小值.在求切线的过程中,要把握住切点和斜率两个关键点.属于中档题.练习2.若函数,则曲线在点处的切线的倾斜角是()A.B.C.D.【答案】B【解析】根据题意,设切线的斜率为k,其倾斜角是θ,求出函数f(x)的导数,利用导数的几何意义可得k=f′(1),即tanθ,结合θ的范围,分析可得答案.【详解】根据题意,设切线的斜率为k,其倾斜角是θ,f(x)lnx﹣x,则f′(x)x21,则有k=f′(1),则tanθ,又由0≤θ<π,则θ,故选:B.【点睛】本题考查利用导数分析切线的方程,关键是掌握导数的几何意义,属于基础题.练习3..曲线在处的切线的倾斜角为,则的值为()A.B.C.D.【答案】A【解析】求出曲线在处切线斜率,从而可得进而得到.【详解】函数的定义域为,时,,即且为锐角,则故选A.4.曲线上某点处的斜率例4.【陕西省彬州市2018-2019学年上学期高2019届】已知函数,在点处的切线为,则切线的方程为()A.B.C.D.【答案】B【解析】由题意,求得,得到,得出切线为的斜率为,利用直线的点斜式方程,即可求解。

【详解】由题意,函数,则,所以,即在点处的切线为的斜率为,所以切线的方程为,即,故选B。

【点睛】本题主要考查了利用导数的几何意义求解在某点处的切线方程,其中解答中正确求解函数的导数,利用导数的几何意义,求得切线的斜率,再利用直线的点斜式求解是解答的关键,着重考查了推理与运算能力,属于基础题。

练习1.已知函数的图像在点处的切线与直线平行,则实数()A.2 B.C.D.-2【答案】A【解析】求出原函数的导函数,得到函数在x=2处的导数,由导数值等于求得实数a的值.【详解】由f(x)=,得,则.考点:导数的几何意义及但点到直线的距离公式的综合运用.【易错点晴】导数是研究和刻画函数的单调性和极值等的重要工具,也是中学数学中的重要知识点和高考命题的重要内容和考点.本题以所满足等式条件为背景,考查的是函数求导法则及导数的几何意义的灵活运用.求解时先运用求导法则求出函数的导数为xx y 12/-=,然后依据题设求出切线与直线平行时,切点P 到这条直线的距离最小,所以112=-t t ,解之得1=t ,21-=t ,求出切点坐标,从而使得问题获解. 练习1.已知,则的最小值为 ( )A .5103 B .518 C .516 D .512【答案】B .【解析】设)3,(aa P ,)3,(bb Q -,则,)3,(a a P 的轨迹为直线3x y =,)3,(b b Q -的轨迹为双曲线x y 3-=,双曲线上一点)3,(00x x -到直线03=-y x 的距离为,的最小值为518【命题意图】本题主要考查距离公式、 基本不等式等知识,考查学生转化与化归、逻辑推理能力.。

相关文档
最新文档