《不等关系与不等式》教学设计,DOC
不等关系与不等式教学设计

《不等关系与不等式》教学设计一、教学目标1.知识目标:通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,会用不等式(组)表示不等关系;掌握不等式的基本性质,会利用作差法比较两数(式)大小。
2.过程与方法:根据具体问题,让学生经历从不等关系实际情境中抽象出不等式模型的过程。
感知不等关系和不等式之间的内在联系,并通过具体的操作归纳、总结已达到理解的目的。
让学生在获得数学基础知识的基础上,了解它们产生的背景、应用、使学生学会数学思考问题,解决问题。
3. 情感、态度与价值观:让学生感受数学来源于生活,初步体会数学形成过程,逐步培养学生学习数学的良好品质。
二、教学重点与难点教学重点:用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题.理解不等式(组)对于刻画不等关系的意义和价值.并会利用作差法比较两数(式)大小.教学难点: 用不等式(组)正确表示出不等关系以及作差法比较大小变形方法的掌握。
三、教授类型:新授课四、教学过程(1)创设情境在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.例如大小、长短、轻重、高矮,又如在数学上两点之间线段最短,三角形两边之和大于第三边,两边之差小于第三边等等。
设计意图:让学生感受不等关系无处不在,认识学习不等式的重要性,引入课题:不等关系与不等式(2)探究新知探究一、用不等式来表示不等关系1、不等式定义师:用来表示相等关系的式子叫做等式,那类比等式的定义,什么叫不等式呢?答:用来表示不等关系的式子叫做不等式;常用<>,或≠≤≥,,等不等号来表示不等关系.2、师生互动例1:这两个交通标志牌大家见过吗?表示什么意义?如何用不等式表示?答:分别表示速度不超过40和不低于50;不等式表示为:V ≤40,V ≥50变式训练:1.a 与b 的和是非负数;2.某公路立交桥对通过车辆的高度h “限高 4.5m ”设计意图:亲身体会不等式的实际背景,正确地用不等式表示这些不等关系 例2:某种杂志原以每本2.5元的价格销售,可以售出8万本。
不等关系与不等式(优质课)教案

不等关系与不等式(优质课)教案教学目标:教学重点: 掌握实数的大小比较方法、不等式的性质的运用 教学难点: 理解不等式性质的证明范围教学过程:1. 不等式(1) 用数学符号""""""""""≠<<≥≤ 连接两个数或代数式,以表示它们之间的不等关系。
(2) 含有不等号的式子,叫做不等式。
2. 实数的大小关系(1) 实数集与数轴上的点集一一对应;(2) 数轴上的任意两点中,右边点对应的实数比左边点对应的实数大;(3) 对于任意两个实数a 和b ,在,,a b a b a b =><三种关系中有且仅有一种关系成立; (4) 在数学中,两个实数的大小可以通过作差比较000a b a ba b a b a b a b−>⇔>−<⇔<−=⇔= 3. 不等式的性质(1) 对称性:如果a b >,那么b a <;如果 b a <,那么a b >; (2) 传递性:如果a b >且b c >,则a c >; (3) 加法法则:如果 a b >,则a c b c +>+;(4) 乘法法则:如果,0a b c >>,则ac bc >;如果,0a b c ><,则ac bc <类型一: 不等式表示不等关系及实数的大小比较 例1.用不等号表示下列关系 (1)a 与b 的和是非负数 (2)实数x 不小于3解析:(1)0a b +≥ (2)3x ≥ 答案:(1)0a b +≥ (2)3x ≥ 练习1.(1)实数m 小于5,但不小于-2(2)x 与y 的差的绝对值大于2,且小于或等于6 答案:(1)25m −≤≤ (2)26x y <−≤练习2.已知,a b 分别对应数轴上的,A B 两点,且A 在原点右侧,B 在原点左侧,则下列不等式成立的是()A.0a b −≤B.0a b +<C.a b >D.0a b −> 答案:D例2.比较22x x +与2x +的大小 解析:()()()()22212xx x x x +−+=−+当{1020x x −>+> 或{1020x x −<+< 即1x >或2x <−时,()()120x x −+>,此时222x x x +>+;当21x −<<时,()()120x x −+<,此时222x x x +<+ 答案:1x >或2x <−时,222x x x +>+;当21x −<<时,222x x x +<+ 练习3.比较a b a b 与b a a b (,a b 为不相等的正数)的大小 答案:a b b a a b a b >练习4.已知0a b >>,则2222a b a b −+ _________a ba b−+ (填,,><=)答案:>类型二: 不等式性质的证明应用 例3.已知0,0,a b c d >>>>求证a bd c< 解析:0,0c d c d <<∴−>−>又0,0,a b ac bd ac bd >>∴−>−>∴<又0,0,ac bd c d cd cd cd <<∴>∴<即a b d c< 答案:见解析练习5.已知0,c a b >>>求证a bc a c b>−− 答案:0,0,0,,0110,0,c a b c a c b a b c a c ba ba b c a c b c a c b>>>∴−>−>−<−∴<−<−∴>>>>∴>−−−− 练习6.已知0,0,a b c d >><<<答案:110,00,00,a b c d c d a b c d d c <<−>−>∴<−<−>>∴−>−>类型三: 利用不等式的性质求取值范围 例4.已知15,13a b a b ≤+≤−≤−≤(1) 求,a b 的范围; (2) 求32a b −的范围。
不等关系与不等式教案

不等关系与不等式教案教案标题:不等关系与不等式教案教案目标:1. 理解不等关系的概念,并能够正确运用不等关系符号(大于、小于、大于等于、小于等于)。
2. 掌握解不等式的方法,包括图像法和代数法。
3. 能够在实际问题中运用不等关系和不等式解决数学问题。
教学资源:1. 教材:包含不等关系和不等式的相关知识点。
2. 白板、黑板或投影仪:用于展示教学内容和解题步骤。
3. 练习题:用于巩固学生对不等关系和不等式的理解和运用能力。
教学步骤:引入(5分钟):1. 引导学生回顾等关系的概念,例如“大于”和“小于”。
2. 提出问题:“在数学中,我们还可以比较两个数的大小,但不一定是相等的关系,你知道这个叫什么吗?”引导学生理解不等关系的概念。
概念讲解(10分钟):1. 解释不等关系的符号表示,包括大于(>)、小于(<)、大于等于(≥)和小于等于(≤)。
2. 通过示例和图示,帮助学生理解不等关系符号的含义和使用方法。
解不等式的方法(15分钟):1. 图像法:通过绘制数轴和标记关键点的方式,帮助学生直观地理解不等式的解集。
演示解不等式的图像法步骤,并让学生跟随进行练习。
2. 代数法:通过运用数学运算规则和性质,将不等式转化为等价的形式,从而求解不等式。
演示解不等式的代数法步骤,并让学生进行练习。
练习与巩固(20分钟):1. 给学生分发练习题,包括不等关系的填空题和不等式的求解题。
确保题目涵盖不同难度和类型,以满足不同学生的需求。
2. 引导学生独立或合作完成练习题,并及时给予指导和反馈。
3. 随堂检查学生的练习情况,并解答他们可能遇到的问题。
拓展应用(10分钟):1. 提出一些实际问题,要求学生利用不等关系和不等式进行求解。
例如:“某超市举行促销活动,商品原价的80%作为折扣,你能计算出打折后的价格吗?”2. 鼓励学生思考如何将实际问题转化为数学不等式,并运用所学知识解决问题。
总结与反思(5分钟):1. 总结不等关系和不等式的概念和解题方法。
不等关系与不等式教学设计

《不等关系与不等式》教案【教学目标】1.掌握比较两个实数大小的方法——差值比较法,理解不等关系的传递性,能够运用比较实数大小的方法比较两实数的大小2.通过对具体问题的分析,培养学生的分析归纳能力,培养学生代数变形的能力,提高学生解决实际问题的能力3.通过问题情境,激发学生的学习动机和好奇心理,使其主动参与交流活动。
通过对问题的提出、思考、解决培养学生自信、自立的优良心理品质。
通过教师对例题的讲解培养学生良好的学习习惯及科学的学习态度【重点难点】重点:比较实数大小的方法.难点:1.比较实数大小方法中的代数变形;2.比较实数大小方法的实际应用【教学方法】体验法、合作讨论法【教学过程】(一)创设情境泰山旺季门票原价为180元,现推出两套优惠方案(两人以上集体购票时可选择以下任一种方案)优惠方案A:买全票一张,则其余票可享受八折优惠;优惠方案B:按团体购票,一概优惠30元.为了使门票花费最少,请各位同学发动你们的智慧想一想该选择哪种方案?教师:5-7人,由学生先对多种情况进行讨论。
合作交流:同桌讨论合作完成下列表格(作业纸)(学生思考演算并请学生回答结果)由此我们知道在实际的生活中经常会碰到比较大小的问题,这就是我们这节课所要学习的1.2节比较大小(板书课题同时幻灯片出示课题)继续就上述情境提问:对于人数确定的情况,两个具体的实数我们很容易比较大小,如果人数不确定呢,又该如何比较大小?若设人数为n ,记采用方案A 的费用为)(n f ,采用方案B 的费用为)(n g ,则36144)(+=n n f ,n n g 150)(=接着我们要比较就是这两个代数式子的大小,我们该怎么办呢?(学生思考)对于这两个式子来说,它们有以下的三种大小关系: 60)()()()(<⇒>-⇔>n n g n f n g n f 60)()()()(=⇒=-⇔=n n g n f n g n f 60)()()()(>⇒<-⇔<n n g n f n g n f 所以 当62<<n 时,选择方案B;当 6=n 时,选择两种方案都一样; 当 6>n 时,选择方案A. 这样我们的问题就解决了。
高三数学必修五《不等关系与不等式》教案

高三数学必修五《不等关系与不等式》教案【导语】高考竞争异常激烈,千军万马争过独木桥,秋天到了,而你正以凌厉的步伐迈进这段特别的岁月中。
这是一段青涩而又平淡的日子,每个人都隐身于高考,而平淡之中的张力却只有真正的勇士才可以破译。
为了助你一臂之力,无忧考网高中频道为你精心准备了《高三数学必修五《不等关系与不等式》教案》助你金榜题名!教案【一】整体设计教学分析本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.三维目标1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.重点难点教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.教学难点:准确比较两个代数式的大小.课时安排1课时教学过程导入新课思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.推进新课新知探究提出问题1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?3数轴上的任意两点与对应的两实数具有怎样的关系?4任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.实例1:某天的天气预报报道,气温32℃,最低气温26℃.实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.实例6:限速40km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26℃≤t≤32℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.实例6,若用v表示速度,则v≤40km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.讨论结果:(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.(4)对于任意两个实数a和b,在a=b,a>b,a0��a>b;a-b=0��a=b;a-b<0��a应用示例例1(教材本节例1和例2)活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.变式训练1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是()A.f(x)>g(x)B.f(x)=g(x)C.f(x)答案:A解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.例2比较下列各组数的大小(a≠b).(1)a+b2与21a+1b(a>0,b>0);(2)a4-b4与4a3(a-b).活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.∴a4-b4<4a3(a-b).点评:比较大小常用作差法,一般步骤是作差――变形――判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.变式训练已知x>y,且y≠0,比较xy与1的大小.活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.解:xy-1=x-yy.∵x>y,∴x-y>0.当y<0时,x-yy<0,即xy-1<0.∴xy<1;当y>0时,x-yy>0,即xy-1>0.∴xy>1.点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a由于a+mb+m-ab=m b-a b b+m>0,于是a+mb+m>ab.又ab≥10%,因此a+mb+m>ab≥10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.变式训练已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则()A.a1+a8>a4+a5B.a1+a8C.a1+a8=a4+a5D.a1+a8与a4+a5大小不确定答案:A解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).∵{an}各项都大于零,∴q>0,即1+q>0.又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.知能训练1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为()A.3B.2C.1D.02.比较2x2+5x+9与x2+5x+6的大小.答案:1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,③x2+y2-2xy=(x-y)2≥0.∴只有①恒成立.2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,所以2x2+5x+9>x2+5x+6.课堂小结1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.作业习题3―1A组3;习题3―1B组2.设计感想1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.备课资料备用习题1.比较(x-3)2与(x-2)(x-4)的大小.2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.3.已知x>0,求证:1+x2>1+x.4.若x5.设a>0,b>0,且a≠b,试比较aabb与abba的大小.参考答案:1.解:∵(x-3)2-(x-2)(x-4)=(x2-6x+9)-(x2-6x+8)=1>0,∴(x-3)2>(x-2)(x-4).2.解:(1)(m2-2m+5)-(-2m+5)=m2-2m+5+2m-5=m2.∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.∴m2-2m+5≥-2m+5.(2)(a2-4a+3)-(-4a+1)=a2-4a+3+4a-1=a2+2.∵a2≥0,∴a2+2≥2>0.∴a2-4a+3>-4a+1.3.证明:∵(1+x2)2-(1+x)2=1+x+x24-(x+1)=x24,又∵x>0,∴x24>0.∴(1+x2)2>(1+x)2.由x>0,得1+x2>1+x.4.解:(x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).∵x0,x-y<0.∴-2xy(x-y)>0.∴(x2+y2)(x-y)>(x2-y2)(x+y).5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,当a>b>0时,ab>1,a-b>0,则(ab)a-b>1,于是aabb>abba.当b>a>0时,0则(ab)a-b>1.于是aabb>abba.综上所述,对于不相等的正数a、b,都有aabb>abba. 教案【二】教学准备教学目标熟练掌握不等式的证明问题教学重难点熟练掌握不等式的证明问题教学过程不等式的�C明二【基�A��】1.若,,�t下列不等始�K正�_的是()2.�Oa,b����担�且,�t的最小值是()4.求�C:�θ魏问��x,y,z,下述三��不等式不可能同�r成立。
教学设计2:2.1 第1课时 不等关系与不等式

2.1第1课时不等关系与不等式1.不等关系不等关系常用不等式来表示.2.实数a,b的大小比较3.重要不等式一般地,∀a,b∈R,有(a-b)2≥0,当且仅当a=b时,等号成立.初试身手1.大桥桥头竖立的“限重40吨”的警示牌,是指示司机要安全通过该桥,应使车货总重量T 不超过40吨,用不等式表示为()A.T<40B.T>40C.T≤40 D.T≥40【答案】C【解析】限重就是不超过,可以直接建立不等式T≤40.2.某高速公路要求行驶的车辆的速度v的最大值为120 km/h,同一车道上的车间距d不得小于10 m,用不等式表示为()A.v≤120 km/h且d≥10 mB.v≤120 km/h或d≥10 mC.v≤120 km/hD.d≥10 m【答案】A【解析】v的最大值为120 km/h,即v≤120 km/h,车间距d不得小于10 m,即d≥10 m,故选A.3.雷电的温度大约是28 000 ℃,比太阳表面温度的4.5倍还要高.设太阳表面温度为t℃,那么t应满足的关系式是________.【答案】4.5t <28 000【解析】由题意得,太阳表面温度的4.5倍小于雷电的温度,即4.5t <28 000.4.设M =a 2,N =-a -1,则M ,N 的大小关系为________.【答案】M >N【解析】M -N =a 2+a +1=⎝⎛⎭⎫a +122+34>0,∴M >N .【例1】 ,不超过民航飞机的最低时速,可这个速度已经超过了普通客车的3倍,请你用不等式表示三种交通工具的速度关系.[解] 设复兴号列车速度为v 1,民航飞机速度为v 2,普通客车速度为v 3.v 1,v 2的关系:2v 1+100≤v 2,v 1,v 3的关系:v 1>3v 3.规律方法在用不等式(组)表示不等关系时,要进行比较的各量必须具有相同性质,没有可比性的两个(或几个)量之间不可用不等式(组)来表示.另外,在用不等式(组)表示实际问题时,一定要注意单位的统一.跟踪训练1.用一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,要求菜园的面积不小于216 m 2,靠墙的一边长为x m .试用不等式(组)表示其中的不等关系.[解] 由于矩形菜园靠墙的一边长为x m ,而墙长为18 m ,所以0<x ≤18,这时菜园的另一条边长为30-x 2=⎝⎛⎭⎫15-x 2(m). 因此菜园面积S =x ·⎝⎛⎭⎫15-x 2, 依题意有S ≥216,即x ⎝⎛⎭⎫15-x 2≥216, 故该题中的不等关系可用不等式组表示为⎩⎪⎨⎪⎧0<x ≤18,x ⎝⎛⎭⎫15-x 2≥216.【例2】 [解] 3x 3-(3x 2-x +1)=(3x 3-3x 2)+(x -1)=3x 2(x -1)+(x -1)=(3x 2+1)(x -1).∵x ≤1,∴x -1≤0,而3x 2+1>0,∴(3x 2+1)(x -1)≤0,∴3x 3≤3x 2-x +1.规律方法作差法比较两个实数大小的基本步骤跟踪训练2.比较2x 2+5x +3与x 2+4x +2的大小.[解] (2x 2+5x +3)-(x 2+4x +2)=x 2+x +1=⎝⎛⎭⎫x +122+34. ∵⎝⎛⎭⎫x +122≥0,∴⎝⎛⎭⎫x +122+34≥34>0. ∴(2x 2+5x +3)-(x 2+4x +2)>0,∴2x 2+5x +3>x 2+4x +2. 类型3 不等关系的实际应用【例3】 其余人可享受 7.5 折优惠”.乙车队说:“你们属团体票,按原价的8折优惠”.这两车队的原价、车型都是一样的,试根据单位去的人数,比较两车队的收费哪家更优惠.[解] 设该单位职工有n 人(n ∈N *),全票价为x 元,坐甲车需花y 1元,坐乙车需花y 2元,则y 1=x +34x ·(n -1)=14x +34xn ,y 2=45nx . 因为y 1-y 2=14x +34xn -45nx =14x -120nx =14x ⎝⎛⎭⎫1-n 5, 当n =5时,y 1=y 2;当n >5时,y 1<y 2;当n <5时,y 1>y 2.因此当单位去的人数为5人时,两车队收费相同;多于5人时,选甲车队更优惠;少于5人时,选乙车队更优惠.规律方法解决决策优化型应用题,首先要确定制约着决策优化的关键量是哪一个,然后再用作差法比较它们的大小即可.跟踪训练3.甲、乙两家旅行社对家庭旅游提出优惠方案.甲旅行社提出:如果户主买全票一张,其余人可享受五五折优惠;乙旅行社提出:家庭旅游算集体票,按七五折优惠.如果这两家旅行社的原价相同,那么哪家旅行社价格更优惠?[解]设该家庭除户主外,还有x人参加旅游,甲、乙两旅行社收费总额分别为y甲、y乙,一张全票价为a元,则y甲=a+0.55ax,y乙=0.75(x+1)a.y甲-y乙=(a+0.55ax)-0.75(x+1)a=0.2a(1.25-x),当x>1.25(x∈N)时,y甲<y乙;当x<1.25,即x=1时,y甲>y乙.因此两口之家,乙旅行社较优惠,三口之家或多于三口的家庭,甲旅行社较优惠.课堂小结1.比较两个实数的大小,只要求出它们的差就可以了.a-b>0⇔a>b;a-b=0⇔a=b;a-b<0⇔a<b.2.作差法比较大小的一般步骤第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“和”或“积”;第三步:定号,就是确定是大于0,等于0,还是小于0(不确定的要分情况讨论);最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.当堂检测1.思考辨析(1)不等式x≥2的含义是指x不小于2.()(2)若a<b或a=b之中有一个正确,则a≤b正确.()(3)若a>b,则ac>bc一定成立.()[提示](1)正确.不等式x≥2表示x>2或x=2,即x不小于2,故此说法是正确的.(2)正确.不等式a≤b表示a<b或a=b.故若a<b或a=b中有一个正确,则a≤b一定正确.(3)错误.ac-bc=(a-b)c,这与c的符号有关.【答案】(1)√(2)√(3)×2.下面表示“a与b的差是非负数”的不等关系的是()A.a-b>0B.a-b<0C.a-b≥0 D.a-b≤0【答案】C3.若实数a>b,则a2-ab________ba-b2.(填“>”或“<”).【答案】>【解析】因为(a2-ab)-(ba-b2)=(a-b)2,又a>b,所以(a-b)2>0.4.完成一项装修工程,请木工共需付工资每人500元,请瓦工共需付工资每人400元,现有工人工资预算20 000元,设木工x人,瓦工y人,试用不等式表示上述关系.[解]由题意知,500x+400y≤20 000,即5x+4y≤200.。
高中数学必修5《不等关系与不等式》教案

高中数学必修5《不等关系与不等式》教案一、教学内容不等关系与不等式二、教学目标1. 理解不等关系和不等式的概念;2. 掌握表示不等式的方法;3. 掌握一元一次不等式的解法;4. 掌握二元一次不等式的解法;5. 能够应用不等式解决实际问题。
三、教学重点1. 不等关系与不等式的概念;2. 一元一次不等式的解法;3. 能够应用不等式解决实际问题。
四、教学难点1. 二元一次不等式的解法;2. 能够应用不等式解决实际问题。
五、教学方法1. 讲授法;2. 举例法;3. 练习法。
六、教学过程1. 引入(10分钟)教师先用几道小学的例题,考察学生的知识储备,比如:“如果a>b,b>c,那么a>c吗?”,“a+b+b+c>c+c+a,a+b的大小关系是什么?”,建议让学生互相出题。
2. 讲授(40分钟)(1) 不等关系与不等式- 定义:如果两个数x、y之间存在大小关系,那么我们就称它们之间是一种关系,叫做不等关系。
而$x>y$、$x\geqslanty$等代数形式表示的关系就叫做不等式。
- 内容:不等关系的分类(大于、小于、大于等于、小于等于、等于),不等式的基本性质(两侧都加或减同一个有理数,符号不变;两侧都乘或除同一个正数,符号不变;两侧都乘或除同一个负数,符号不变反)(2)表示不等式的方法- 直观法:把不等式中的数相对数线上表示出来,即可得到不等式的关系。
- 求解法:对于 $a \space \Delta \space b$型的不等式,可以将它化为$a-b\space \Delta \space 0$型的不等式,即将不等式移到一个边上,然后求解。
(3)一元一次不等式的解法- 一元一次不等式:$ax+b\space \Delta \space0(ax+b\geqslant0\text{或} ax+b>0)$- 思路:先将不等式移到一个边上,然后根据系数a的正负以及$b\neq 0$的情况分类讨论解不等式。
高三数学必修五《不等关系与不等式》教案(Word版)

高三数学必修五《不等关系与不等式》教案(2021最新版)作者:______编写日期:2021年__月__日教案【一】整体设计教学分析本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.三维目标1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.重点难点教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.教学难点:准确比较两个代数式的大小.课时安排1课时教学过程导入新课思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.推进新课新知探究提出问题1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?3数轴上的任意两点与对应的两实数具有怎样的关系?4任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“b”“a教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.实例1:某天的天气预报报道,气温32℃,最低气温26℃.实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.实例6:限速40km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-71+4,2x≤6,a+2≥0,3≠4,0≤5等.教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26℃≤t≤32℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.|AB|-|BC|b,a0a>b;a-b=0a=b;a-bg(x)B.f(x)=g(x)C.f(x)答案:A解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.例2比较下列各组数的大小(a≠b).(1)a+b2与21a+1b(a>0,b>0);(2)a4-b4与4a3(a-b).活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2 ;a+b=a-b22a+b.∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]y,且y≠0,比较xy与1的大小.活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.解:xy-1=x-yy.∵x>y,∴x-y>0.当y0时,x-yy>0,即xy-1>0.∴xy>1.点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,因此a+mb+m>ab≥10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.变式训练已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则() A.a1+a8>a4+a5B.a1+a8C.a1+a8=a4+a5D.a1+a8与a4+a5大小不确定答案:A解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).∵{an}各项都大于零,∴q>0,即1+q>0.又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.知能训练1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为()A.3B.2C.1D.02.比较2x2+5x+9与x2+5x+6的大小.答案:1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,③x2+y2-2xy=(x-y)2≥0.∴只有①恒成立.2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,所以2x2+5x+9>x2+5x+6.课堂小结1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.作业习题3—1A组3;习题3—1B组2.设计感想1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.备课资料备用习题1.比较(x-3)2与(x-2)(x-4)的大小.2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.3.已知x>0,求证:1+x2>1+x.4.若x5.设a>0,b>0,且a≠b,试比较aabb与abba的大小.参考答案:1.解:∵(x-3)2-(x-2)(x-4)=(x2-6x+9)-(x2-6x+8)=1>0,∴(x-3)2>(x-2)(x-4).2.解:(1)(m2-2m+5)-(-2m+5)=m2-2m+5+2m-5=m2.∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.∴m2-2m+5≥-2m+5.(2)(a2-4a+3)-(-4a+1)=a2-4a+3+4a-1=a2+2.∵a2≥0,∴a2+2≥2>0.∴a2-4a+3>-4a+1.3.证明:∵(1+x2)2-(1+x)2=1+x+x24-(x+1)=x24,又∵x>0,∴x24>0.∴(1+x2)2>(1+x)2.由x>0,得1+x2>1+x.4.解:(x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).∵x0,x-y0.∴(x2+y2)(x-y)>(x2-y2)(x+y).5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,当a>b>0时,ab>1,a-b>0,则(ab)a-b>1,于是aabb>abba.当b>a>0时,0则(ab)a-b>1.于是aabb>abba.综上所述,对于不相等的正数a、b,都有aabb>abba.教案【二】教学准备教学目标熟练掌握不等式的证明问题教学重难点熟练掌握不等式的证明问题教学过程不等式的證明二【基礎訓練】1.若,,則下列不等始終正確的是()2.設a,b為實數,且,則的最小值是()4.求證:對任何式數x,y,z,下述三個不等式不可能同時成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学设计
课题:
教师:长沟中学柴生艳
教学目标1.通过具体情境,了解不等式(组)的实际背景,借助数轴,能从“数”和“形”两方面来认识不等式,掌握比较两个代数式(实数)的大小的基本方法--作差比较法;
2.通过较典型的问题,教师引导,学生自主探究,学生与教师进行交流,分析,抽象出数学模型,激发学生学习兴趣和积极性;
3.通过具体情景,培养学生发现问题、分析问题和解决问题的能力,进一步体会数形结合的重要方法,学生体会到学好数学对日常生活的重要作用。
教学重点比较实数(代数式)大小的基本方法:作差比较法
教学难点判断差的符号
教学方法启发引导式
教学过程
教学步骤教师行为学生行为设计意图
新课引入现实世界中存在着等量关系,也存在着大量
的不等关系,
例如:(1)天气预报说:今天最低温度为22℃,
最高温度为30℃,若用t表示今天气温,那
么怎么用数学表达式表示t?
(2)上一章学习的等比数列中公比q什么范
围?
(3)根号a中,a的取值范围是什么?
(4)提问两同学的身高问题,让全体同学比较其大小关系。
如A>B
又如:课本P61速度与手机话费问题,这些问题
即是我们今天要研究的问题(板书课题)—
—不等关系与不等式。
学生在纸上写出并回
答:
(1)22℃≤t≤30℃
(2)q≠0
(3)a≥0
(4)根据实际情况回答
通过具体情
境,了解不
等式的概
念。
小组合作探究请学生思考并回答以下问题:
问题一:不等式的定义
(强调“≥、≤”的读法中的“或”引出问
题二)
问题二:2≥2,这样写正确吗?(“≥“的含
义是什么?)
这样写是对的,因为“>”和“=”只要一个满
足就可以了,即a≥b表示a>b或a=b,同样a
≤b即为a<b或a=b。
问题三:实数与数轴上的点有怎样的对应关
系?右边的点表示的实数与左边的点表示的实
数谁大?
问题四:数轴上两点A、B有怎样的位置关系?
两实数有怎样的大小关系?
点的关系:
点A在点B右侧
点A在点B左侧
点A和点B重合
数的关系:a>b、a=b、a<b
问题五:如何比较两数大小?
强调:“如果P,则q”为正确命题,记作
q
p⇒,
如果q
p⇒,同时p
q⇒,则记为
q
p⇔。
学生思考并回答:
用不等号连接两个解
析式(以表示它们之间
的不等关系)所得的式
子,叫做不等式.
不等号的种类:
>、<、≥、≤、
≠.
学生回答
学生回答
与数轴上的点是一一
对应的,右边的点表示
的实数比左边的点表
示的实数大
学生讨论比较两实数
(代数式)大小的理论
依据。
通过具体情
境,了解不
等式(组)
的实际背
景,借助数
轴,能从
“数”和
“形”两方
面来认识不
等式,掌握
比较两个代
数式(实数)
的大小的基
本方法--作
差比较法的
理论依据;
典型例题例1.比较x2-x和x-2的大小
变式训练:比较(a+3)(a-5)与(a+2)(a-4)的大
小。
学生板演
=x2-2x+2
=(x-1)2+1
因为(x-1)2≥0,
所以(x2-x)-(x-2)
>0所以x2-x>x-2。
学生做本上,教师检查
掌握比较两
个代数式
(实数)的
大小的基本
方法--作差
比较法;
典型例题例2.当p,q都为正数且p+q=1时,试比较代数式(px+qy)2与(px2+qy2)的大小
解:(px+qy)2-(px2+qy2)
=p(p-1)x2+q(q-1)y2+2pqxy
又p+q=1,所以p-1=-q,q-1=-p
(px+qy)2-(px2+qy2)
=-pq(x-y)2
因为p,q为正数,所以
-pq(x-y)2≤0学生先做,教师引导板
演
教师引导,学生回答
进一步掌握
比较两个代
数式(实数)
的大小的基
本方法--作
差比较法;
A
a
B
b
所以2
)(qy px +≤22qy px +当且仅当x=y
时,等号成立
做差比较法的一般步骤:(教师引导,学生回答) (1)?作差; (2)变形;
常采用的手段是因式分解和配方法,因式分解是将“差“化成“积”的形式,配方是将“差”化为一个或几个完全平方的“和”,也可两种手段并用;
(3)判断差的符号,就是确定是大于0,还是等于0,或是小于0(与具体的值无关) (4)得出结论。
随堂小测 (1)下列命题正确的是 A 、若x ≥10,则x >10B 、若x 2
>25,则x >5
C 、若x >y ,则x 2>y 2
D 、若x 2>y 2,则∣x ∣>∣y ∣(2)设m=x 2+y 2-2x+2y,n=-5,则m,n 的大小关系是
A.m >n
B.m <n
C.m=n
D.与x 、y 取值有关 (3)下列不等式中,恒成立的是
A.a 2>0
B.lg(a 2+1)>0
C.
0|
|>a a
D.2a >0 (4)设a >0,b >0,且a ≠b,x=a 3+b 3,y=a 2b+ab 2试比较x,y 的大小
学生当堂完成,小组完成批改
检测学生对所学知识掌握情况 归纳小结 1.不等式的定义 2.不等关系在数轴上的几何表示 3.做差法确定两数或代数式的大小 学生总结,回答
梳理本节所学知识,形成知识网 布置作业 1.必做:
(1)书面作业:课本P63A 组第2题,B 组第1题
(2)预习作业:预习课本P64-P65,搞
清以下问题:a.不等式有哪些性质?b.如何证明?
2.选做:设a=x 2+1-2x,b=x 2+16-8x,且3<x<4,比较a 与b 的大小
课下做 巩固所学知识。