江西省宜市奉新一中高考数学模拟试卷 文(含解析)
江西省宜春市2023届高三高考模拟文科数学试题(含解析)

江西省宜春市2023届高三高考模拟文科数学试题一、单选题1.(2023·江西宜春·统考模拟预测)设全集U =R ,{1A x x =<-或}2x ≥,{}2,1,0,1,2B =--,则()U B A ⋂=ð( )A .{}0,1B .{}1,0-C .{}0,1,2D .{}1,0,1-2.(2023·江西宜春·统考模拟预测)已知复数z 满足()1i 2z +=-,则z 等于( )A .1i--B .1i-C .1i+D .1i-+3.(2023·江西宜春·统考模拟预测)非零向量a r ,b r ,c r 满足()a cb ⊥-r r r ,a r 与b r 的夹角为π3,2b =r ,则c r 在a r 上的投影为( )A .-1B.C .1D4.(2023·江西宜春·统考模拟预测)已知实数,x y 满足约束条件0,30,1,x y x y y -≥⎧⎪+-≤⎨⎪≥⎩则23x yz -+=的最大值是( )A .3B .13CD .1275.(2023·江西宜春·统考模拟预测)从棱长为2的正方体内随机取一点,则取到的点到中心的距离不小于1的概率为( )A .π6B .π4C .π16-D .π14-6.(2023·江西宜春·统考模拟预测)若30.04,ln1.04,log 1.04a b c ===则( )A .c b a <<B .b a c <<C .c a b<<D .b<c<a7.(2023·江西宜春·统考模拟预测)在数学和许多分支中都能见到很多以瑞士数学家欧拉命名的常数,公式和定理,若正整数,m n 只有1为公约数,则称,m n 互质,对于正整数(),n n ϕ是小于或等于n 的正整数中与n 互质的数的个数,函数()n ϕ以其首名研究者欧拉命名,称为欧拉函数,例如:()()32,76ϕϕ==,()96ϕ=.记n S 为数列(){}3nϕ的前n 项和,则10S =( )A .9312-B .931-C .10312-D .1031-8.(2023·江西宜春·统考模拟预测)函数()πsin 6f x x ω⎛⎫=+ ⎪⎝⎭的图象(04)ω<<关于直线π6x =对称,将()f x 的图象向左平移π4个单位长度后与函数()y g x =图象重合,下列说法正确的是( )A .函数()g x 图象关于直线π6x =对称B .函数()g x 图象关于点π,06⎛⎫- ⎪⎝⎭对称C .函数()g x 在π0,3⎛⎫⎪⎝⎭单调递减D .函数()g x 最小正周期为π29.(2023·江西宜春·统考模拟预测)在Rt ABC V 中,1,2CA CB ==.以斜边AB 为旋转轴旋转一周得到一个几何体,则该几何体的内切球的体积为( )ABC .32π81D .4π8110.(2023·江西宜春·统考模拟预测)如图,设1F ,2F 是双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点,点A ,B 分别在两条渐近线上,且满足22133OA OF OB =+u u u r u u u u r u u u r ,20OA BF ⋅=u u u r u u u u r,则双曲线C 的离心率为( )A .B .2CD11.(2023·江西宜春·统考模拟预测)已知数列{}n a 满足1321223n n a a a a n+++++=L ,若数列()21n n n a ⎧⎫+⎪⎪⎨⎬+⎪⎪⎩⎭的前n 项和n S ,对任意*N n ∈不等式n S λ<恒成立,则实数λ的取值范围是( )A .1λ>B .1λ≥C .58λ≥D .58λ>12.(2023·江西宜春·统考模拟预测)已知函数()()()ln 1,ln (0)1m xf x xg x x m x m =+-=+>+,且()()120f x g x ==,则()2111em xx -+的最大值为( )A .1B .eC .2eD .1e二、填空题13.(2023·江西宜春·统考模拟预测)已知)114d πa x x -=+⎰,则到点(),0M a 的距离为2的点的坐标可以是___________.(写出一个满足条件的点就可以)14.(2023·江西宜春·统考模拟预测)已知点()()1,1,1,1A B ---,若圆22()(24)1x a y a -+-+=上存在点M 满足3MA MB ⋅=u u u r u u u r,则实数a 的取值的范围是___________.15.(2023·江西宜春·统考模拟预测)已知某线路公交车从6:30首发,每5分钟一班,甲、乙两同学都从起点站坐车去学校,若甲每天到起点站的时间是在6:30--7:00任意时刻随机到达,乙每天到起点站的时间是在6:45-7:15任意时刻随机到达,那么甲、乙两人搭乘同一辆公交车的概率是___________________16.(2023·江西宜春·统考模拟预测)如图,多面体ABCDEF 中,面ABCD 为正方形,DE ⊥平面,ABCD CF DE ∥,且2,1,AB DE CF G ===为棱BC 的中点,H 为棱DE 上的动点,有下列结论:①当H 为DE 的中点时,GH P 平面ABE ;②存在点H ,使得GH AC ⊥;③直线GH 与BE ④三棱锥A BCF -的外接球的表面积为9π.其中正确的结论序号为___________.(填写所有正确结论的序号)三、解答题17.(2023·江西宜春·统考模拟预测)在ABC V 中,角,,A B C 所对的边分别为,,a b c ,且2cos a b c B +=.(1)求证:2C B =;(2)求3cos a bb B+的最小值.18.(2023·江西宜春·统考模拟预测)如图1,在直角梯形ABCD 中,//,90,224AB CD DAB CD AB AD ∠====o ,点E ,F 分别是边,BC CD 的中点,现将CEF △沿EF 边折起,使点C 到达点P 的位置(如图2所示),且2BP =.(1)求证:平面APE ⊥平面ABD ;(2)求点B 到平面ADP 的距离.19.(2023·江西宜春·统考模拟预测)为了缓解日益拥堵的交通状况,不少城市实施车牌竞价策略,以控制车辆数量.某地车牌竞价的基本规则是:①“盲拍”,即所有参与竞拍的人都是网络报价,每个人不知晓其他人的报价,也不知道参与当期竞拍的总人数;②竞价时间截止后,系统根据当期车牌配额,按照竞拍人的出价从高到低分配名额.某人拟参加2023年5月份的车牌竞拍,他为了预测最低成交价,根据竞拍网站的公告,统计了最近5个月参与竞拍的人数(见表):月份2022.122023.12023.22023.32023.4月份编号t12345竞拍人数y (万人)1.72.12.52.83.4(1)由收集数据的散点图发现可用线性回归模型拟合竞拍人数y (万人)与月份编号t 之间的相关关系.请用最小二乘法求y 关于t 的线性回归方程:ˆˆˆy bt a =+,并预测2023年5月份参与竞拍的人数.(2)某市场调研机构对200位拟参加2023年5月份车牌竞拍人员的报价进行抽样调查,得到如下一份频数表:报价区间(万元)[)1,2[)2,3[)3,4[)4,5[)5,6[]6,7频数206060302010(i )求这200位竞拍人员报价X 的平均数x 和样本方差2s (同一区间的报价可用该价格区间的中点值代替);(ii )假设所有参与竞价人员的报价X 可视为服从正态分布()2,N μσ,且μ与2σ可分别由(i )中所求的样本平均数x 及方差2s 估值.若2023年5月份实际发放车牌数是5000,请你合理预测(需说明理由)竞拍的最低成交价.附:()()()121ˆ 1.3niii nii x x y y bx x ==--=≈-∑∑,若()0,1Y N :,则( 1.11)0.8660<=P Y ,( 1.12)0.8686P Y <=.20.(2023·江西宜春·统考模拟预测)已知函数()ln 2f x x x =--.(1)求函数的最小值;(2)若方程()f x a =有两个不同的实数根1x ,2x 且12x x <,证明:1223x x +>.21.(2023·江西宜春·统考模拟预测)在平面直角坐标系xoy 中,已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,左、右焦点分别是12,F F ,以1F 为圆心,6为半径的圆与以2F 为圆心,2为半径的圆相交,且交点在椭圆C 上.(1)求椭圆C 的方程;(2)设过椭圆C 的右焦点2F 的直线12,l l 的斜率分别为12,k k ,且122k k =-,直线1l 交椭圆C 于,M N 两点,直线2l 交椭圆C 于,G H 两点,线段,MN GH 的中点分别为,R S ,直线RS 与椭圆C 交于,P Q 两点,,A B 是椭圆C 的左、右顶点,记PQA △与PQB △的面积分别为12,S S ,证明:12S S 为定值.22.(2023·江西宜春·统考模拟预测)在平面直角坐标系xoy 中,曲线C 的参数方程11222122t t t t x y ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎪=-⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程cos 2sin 10m ρθρθ+-=.(1)求曲线C 的普通方程;(2)若直线l 与曲线C 有两个不同公共点,求m 的取值范围.23.(2023·江西宜春·统考模拟预测)已知函数()244f x x x =++-.(1)求不等式24410x x ++-≥的解集;(2)若()f x 的最小值为m ,正实数a ,b ,c 满足a b c m ++=,求证:11192a b b c c a m++≥+++.参考答案:1.D【分析】先计算得到U A ð,进而求出交集.【详解】{}12U A x x =-≤<ð,故(){}1,0,1U B A =-I ð故选:D 2.A【分析】利用复数的除法运算和共轭复数的定义求解.【详解】由题可得2(1i)1i 1iz -==--=-++,所以1i z =--,故选:A.3.C【分析】根据投影公式计算出正确答案.【详解】由于()a c b ⊥-r r r,所以()0,a c a b a c a a b b c ⋅-=⋅-⋅=⋅=⋅r r r r r r r r r r r ,由于a r 与b r 的夹角为π3,所以πcos 3a c a b a b a ⋅=⋅=⋅⋅=r r r r r r r,c r 在a r 上的投影为1a a c a a⋅==rr r r r .故选:C 4.B【分析】画出可行域,向上平移基准直线20x y -+=到可行域边界位置,由此求得23x y z -+=的最大值.【详解】画出可行域如下图所示,向上平移基准直线20x y -+=到可行域边界点()1,1B 的位置,此时z 取得最大值为1max 12111,3z z --⨯+=-==,.故选:B.5.C【分析】根据几何概型概率问题的计算公式求得正确答案.【详解】点到中心距离小于等于1的几何体是以中心为球心,1为半径的球体.所以,取到的点到中心的距离不小于1的概率为334π1π31126⨯-=-.故选:C 6.A【分析】构造函数()()ln 1f x x x =+-,利用导数判断函数单调性,再结合对数的性质即可判断大小关系.【详解】因为0.04a =,ln1.04b =,3log 1.04c =,当()0,1x ∈时,设()()ln 1f x x x =+-,则()11011xf x x x -'=-=<++,所以()f x 在()0,1上单调递减且()00f =,所以()()()0.04ln 10.040.0400f f =+-<=,即()0.04ln 10.04>+,所以a b >;又因为3e >,所以ln 3ln e 1>=,3ln1.04log 1.03ln1.04ln 3=<,即b c >,所以c b a <<.故选:A.7.D【分析】根据题意分析可得()1323nn ϕ-=⋅,结合等比数列求和公式运算求解.【详解】由题意可知:若正整数3nm ≤与3n不互质,则m 为3的倍数,共有1333n n -=个,故()1133332n n n n ϕ---=⋅=,∵()()113233233n n n n ϕϕ+-⋅==⋅,即数列(){}3n ϕ是以首项()32ϕ=,公比3q =的等比数列,故()1010102133113S -==--.故选:D.8.C【分析】由对称性求得ω,由图象平移变换求得()g x ,然后结合正弦函数的对称性,单调性,周期判断各选项.【详解】由已知ππππ662k ω+=+,62k ω=+,Z k ∈,又04ω<<,∴2ω=,ππ2π()sin[2()sin(2463g x x x =++=+,π2ππ2ππ,Z 632k k ⨯+=≠+∈,A 错;π2ππ2()π,Z 633k k ⨯-+=≠∈,B 错;π(0,3x ∈时,2π2π4ππ3π2(,)(,)33322x +∈⊆,C 正确;()g x 的最小正周期是2ππ2T ==,D 错.故选:C .9.C【分析】根据旋转体的概念得出该旋转体是两个共底面的圆锥的组合体,作出轴截面,得出内切球于心O 位于对称轴AB 上,由平行线性质求得球半径r 后可得球体积.【详解】由题意该几何体是两个共底面的圆锥的组合体,如图是其轴截面,由对称性知其内切球球心O 在AB 上,O 到,CA CB 的距离,OE OF 相等为球的半径,设其为r ,因为C 是直角,所以OECF 是正方形,即CF CE r ==,由//OF CA 得OF BF CA BC =,即212r r -=,解得23r =,球体积为3344232ππ(π33381V r ==⨯=.故选:C .10.C【分析】先求出AB 所在的直线方程,分别与两条渐近线联立方程组,求出,A B 两点的坐标,再根据22133OA OF OB =+u u u r u u u u r u u u r,求出,a c 之间的关系,从而可得双曲线的离心率【详解】由题意:OA b k a = ,20OA BF =u u u r u u u u r Q g ,2OA BF ∴⊥ ,2BF ak b ∴=-所以直线2BF 的方程为:()ay x c b=-- ①直线OA 的方程为:by x a =②直线OB 的方程为:by x a=-③联立①②可得:2a x cab y c⎧=⎪⎪⎨⎪=⎪⎩ ,即2(,)a ab A c c 联立①③可得22222a c x a babcy a b ⎧=⎪⎪-⎨-⎪=⎪-⎩,即22222(,a c abc B a b a b ---又22133OA OF OB =+u u u r u u u u r u u u r Q 22222221(,)(,0)(,)33a ab a c abcc c c a b a b-∴=+--可得222222233()3()a a c c c a b ab abcc a b ⎧=+⎪-⎪⎨-⎪=⎪-⎩ ,化简可得223a c = ,即2e 3=,e ∴= 故选:C 11.C【分析】根据1321223n n a a a a n+++++=L 求得 n a ,再因为对任意*N n ∈不等式n S λ<恒成立,()max n S λ>,求出实数λ的取值范围.【详解】1321223n n a a a a n+++++=L ①,31212231n n a a a a n -++++=-L ②,由①-②可得,当 2n ≥ 时,2n na n=,当211,2n a ==,当2n ≥,()()()122211222111n n n n n n n a n n n n +⎛⎫++==- ⎪ ⎪++⨯⨯+⨯⎝⎭,当1,n =()2318n n n a +=+,所以()()2312131111311228223221282212n n n n S n n n ++⎡⎤⎛⎫⎛⎫⎛⎫=+-++-=+-⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⨯⨯⨯+⨯⨯+⨯⎝⎭⎢⎥⎝⎭⎝⎭⎣⎦L ,对任意*N n ∈不等式n S λ<恒成立,所以 ()max n S λ>,()21332528882221181n n S n +⎛⎫=+<+=⎪ ⎪-⨯+⎝⎭⨯.所以58λ≥.故选:C.12.A【分析】根据题意表示出()()21121ln 1e ,x x x x m ++==从而推导出21e 1,xx =+将问题转化为()21111e em m x x m--+=,利用导数求得函数的最值.【详解】()()()()()ln 10,ln 10,1ln 1,11m mf x x x m x x x x =+-=+-==++++()ln0,e ,x xg x x m x m=+==由题意知,()()21121ln 1e ,x x x x m ++==即()()2221121ln 1e e ln e ,x x xx x x m ++===因为0m >,所以21e 1,11xx >+>,设()ln ,1p x x x x =>,则()1ln 0p x x '=+>,()()211e ,xp x p m +==所以211e x x +=,所以()22121111e e e e x m m m x x x m---+==,1(),0e m m t m m -=>,则11(),em mt m --'=当01m <<时,()0;t m '>当1m >时,()0;t m '<所以()t m 在()0,1时单调递增,在()1,+∞时单调递减,所以max ()(1)1,t m t ==故选:A.13.22(2)4x y -+=上的任意一点都可以【分析】根据定积分的几何意义先求出a ,再写出到点(),0M a 的距离为2的点表示一个圆.【详解】由于11d x -⎰表示以()0,0为圆心,1为半径且在第一、二象限的圆弧与坐标轴围成的面积,其面积是半径为1的圆的面积的一半,即为π2.所以)111144π4d d 202ππ2πa x x x x --==⨯+=+=⎰⎰,到点()2,0M 的距离为2的点是圆22(2)4x y -+=上的点.故答案为:22(2)4x y -+=上的任意一点.14.120,5⎡⎤⎢⎥⎣⎦【分析】设(,)M x y ,由数量积的坐标表示求得M 点轨迹是一个圆,然后由圆与圆的位置关系可得a 的范围.【详解】设(,)M x y ,则(1,1),(1,1)MA x y MB x y =----=---u u u r u u u r,2(1)(1)(1)3MA MB x x y ⋅=---+--=u u u r u u u r,即22(1)4x y ++=,M 在以(0,1)-为圆心,2为半径的圆上,由题意该圆与圆22()(24)1x a y a -+-+=有公共点,所以2121-≤≤+,解得1205a ≤≤.故答案为:12[0,]5.15.112【分析】由题意知本题是一个几何概型,设甲和乙到达的分别为6时x +分、6时y +分,则3060x ……,4575y ……,他们能搭乘同一班公交车,则4560x ……,4560y …….试验包含的所有区域是{(,)|3060x y x Ω=……,4575}y ……,他们能搭乘同一班公交车所表示的区域为A ,由此能求出结果.【详解】解:由题意知本题是一个几何概型,设甲和乙到达的分别为6时x +分、6时y +分,则3060x ……,4575y ……,则试验包含的所有区域是{(,)|3060x y x Ω=……,4575}y ……,他们能搭乘同一班公交车所表示的区域为4550{(,)|4550x A x y y ⎧=⎨⎩…………或50555055x y ⎧⎨⎩…………或5560}5560x y ⎧⎨⎩…………,则他们能搭乘同一班公交车的概率5531303012P ⨯⨯==⨯.故答案为:11216.①④【分析】根据线面平行的判定定理,以及线线垂直的判定,结合异面直线所成角,以及棱锥外接球半径的求解,对每一项进行逐一求解和分析即可.【详解】对①:当H 为DE 的中点时,取EA 中点为M ,连接,MH MB ,因为,H M 分别为,ED EA 的中点,故可得MH //AD ,12MH AD =,根据已知条件可知:BG //1,2AD BG AD =,故MH //,BG MH BG =,故四边形HMBG 为平行四边形,则H G //MB ,又MB ⊂平面,ABE HG ⊄平面ABE ,故H G //面ABE ,故①正确;对②:因为ED ⊥平面ABCD ,,⊂DA DC 平面ABCD ,故,DE DA DE DC ⊥⊥,又四边形ABCD 为矩形,故DA DC ⊥,则,,DE DA DC 两两垂直,以D 为坐标原点,建立空间直角坐标系如图所示:则()()()()()2,0,0,0,2,0,2,2,0,0,0,2,1,2,0A C B E G ,设()0,0,H m ,[]0,2m ∈,若GH AC ⊥,则()()1,2,2,2,020GH AC m ⋅=--⋅-=-≠u u u r u u u r,不满足题意,故②错误;对③:()1,2,GH m =--u u u r,()2,2,2BE =--u u u r ,()()()()1222262GH BE m m ⋅=-⨯-+-⨯-+=+u u u r u u u r,GH ==u u u r,BE =u u u r []0,2m ∈,,cos GH =u u u r u=[]0,2m ∈,令2325m y m +=+,设32t m =+,[]2,4t ∈,23t m -=,则29492453ty t t t==-⎛⎫+-+ ⎪⎝⎭,当[]2,4t ∈时,根据对勾函数的性质得4949454,42t t ⎡⎤+-∈⎢⎥⎣⎦,则236,549y ⎡⎤∈⎢⎥⎣⎦,当25y =时,cos ,GH BE u u u r u u u r有最小值,最小值为,故③错误;对④:由题可得CF ⊥平面ABCD ,又面ABCD 为正方形,∴,,AB BC CF AB BC CF C ⊥⊥⋂=,∴AB ⊥平面BCF ,则AB ,BC ,CF 两两垂直,∴AF 为三棱锥A BCF -的外接球的直径,又22222212219AF AB BC CF =++=++=,∴三棱锥A BCF -的外接球表面积为9π,故④正确.故答案为:①④.17.(1)证明见解析(2)最小值为【分析】(1)根据正弦定理边角互化和两角和差正弦化简即可证明.(2)将问题转化32cos 2cos cos a b c B b b B b B++=24cos cos B B =+,根据第一问解得π10,,cos ,132B B ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,然后结合不等式求解.【详解】(1)在ABC V 中,2cos a b c B +=,由正弦定理得sin sin 2sin cos A B C B +=,又()πA B C =-+,因为()sin sin 2sin cos B C B C B ++=⋅,所以sin cos sin cos sin C B B C B ⋅-⋅=,所以()sin sin C B B -=,又sin 0B >,所以0πC B C <-<<,且πB C B C +-=<,所以B C B =-,故2C B =.(2)由(1)2C B =得()30,πB C B +=∈,所以π10,,cos ,132B B ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,因为2cos ,2a b c B C B +==,所以32cos 2cos cos a b c B b b B b B++=2sin cos 2sin 2sin2cos 2sin sin cos sin cos C B B B B BB B B B⋅+⋅+==⋅⋅24cos cos B B=+≥当且仅当24cos cos B B =即cos B =π0,3B ⎛⎫∈ ⎪⎝⎭,即当且仅当π4B =时等号成立,所以当π4B =时,3cos a bb B +的最小值为18.(1)证明见解析【分析】(1)连接,BD BF ,由等腰三角形的性质和勾股定理,证明PE EF ⊥,PE BE ⊥,可证得PE ⊥平面ABD ,即可证得平面APE ⊥平面ABD .(2)取AD 的中点O ,连接,,OE DE PO ,由勾股定理求,,PD PA PO ,又B PAD P ABD V V --=,利用体积法求点B 到平面ADP 的距离.【详解】(1)证明:由题意,连接,BD BF ,因为224CD AB AD ===,//AB CD ,90,DAB F ∠=o 是边CD 的中点,所以2BF CF ==,则BC =又E 是边BC 的中点,则EF BC ⊥,在折起中PE EF ⊥.又222224BE PE BP +=+==,所以PE BE ⊥,又BE EF E =I ,BE ⊂平面ABD ,EF ⊂平面ABD ,故PE ⊥平面ABD ,又PE ⊂平面APE ,所以平面APE ⊥平面ABD .(2)由(1)中取AD 的中点O ,连接,,OE DE PO ,由(1)可知,PE ⊥平面ABD ,所以,,PE DE PE AE PE OE ⊥⊥⊥,而()132OE AB DC =+=,112OD AD ==,所以DE =同理AE =所以PD PA PO ======所以PAD V 是等腰三角形,所以1122PAD S AD PO =⋅=⨯=V 又B PAD P ABD V V --=,即1133PAD ABD S h S PE ⋅=⋅V V ,所以ABD PADS PE h S ⋅==VV =,即点B 到平面ADP19.(1)0.41.7ˆ12=+yt ,预测2023年5月份参与竞拍的人数为3.73万人(2)(i ) 3.5x =,2 1.7s =;(ii )预测竞拍的最低成交价为4.943万元【分析】(1)由已知公式求得线性回归方程,6t =代入回归方程可得预测值;(2)(i )由均值与方差公式计算出均值与方差;(ii )由预测值求得报价在最低成交价以上人数占总人数比例,然后由正态分布的性质求得预测竞拍的最低成交价.【详解】(1)11(12345)3,(1.7 2.1 2.5 2.8 3.4) 2.555t y =++++==++++=,55211149162555, 1.7 4.27.511.21741.6,ii i i i tt y ===++++==++++=∑∑,241.653 2.5ˆˆ0.41, 2.50.413 1.275553ba -⨯⨯∴===-⨯=-⨯,y 关于t 的线性回归方程0.41.7ˆ12=+y t 2023年5月份对应6t =,所以0.416 1.27 3.73ˆ=⨯+=y所以预测2023年5月份参与竞拍的人数为3.73万人.(2)(i )由题意可得:1.50.12.50.33.50.34.50.155.50.16.50.05 3.5x =⨯+⨯+⨯+⨯+⨯+⨯=22222(1.5 3.5)0.1(2.5 3.5)0.3(3.5 3.5)0.3(4.5 3.5)0.15s =-⨯+-⨯+-⨯+-⨯22(5.5 3.5)0.1(6.5 3.5)0.05 1.7+-⨯+-⨯=(ii )2023年5月份实际发放车牌数是5000,设预测竞拍的最低成交价为a 万元,根据竞价规则,报价在最低成交价以上人数占总人数比例为5000100%13.40%37300⨯≈根据假设报价X 可视为服从正态分布()22,, 3.5, 1.7, 1.3===≈N μσμσσ,令 3.51.3--==X X Y μσ,由于( 1.11)0.8660<=P Y ,1( 1.11)0.1340P Y ∴-<=,3.5() 1.110.86601.3a P Y a P Y -⎛⎫∴<=<== ⎪⎝⎭,所以 3.5 1.111.3a -=得 4.943=a ,所以预测竞拍的最低成交价为4.943万元.20.(1)1-(2)证明见解析【分析】(1)利用导数法求函数最值的步骤解求解;(2)根据题意构造函数()()()2F x f x f x =--,()0,1x ∈.对函数求导,利用导函数的正负判断函数的单调性,进而利用函数的最值得出()()212f x f x >-,再结合(1)中函数的单调性即可得证.【详解】(1)由题意可知:函数()ln 2f x x x =--的定义域为:()0,∞+.则()11f x x'=-,令()0f x '=,解得1x =.当()0,1x ∈,()0f x '<,函数()f x 单调递减;当()1,x ∈+∞,()0f x ¢>,函数()f x 单调递增.所以1x =为极小值点,且()()min 11f x f ==-.所以函数()f x 的最小值为1-.(2)根据题意可知:()()12f x f x =,根据(1)设101x <<,21x >,构造函数()()()2F x f x f x =--,()0,1x ∈.()()()()()221202x F x f x f x x x -'''=+-=<-,所以()F x 在()0,1上单调递减.则有()()10F x F <=,也即()()1120f x f x -->.因为()()12f x f x =,所以()()2120f x f x -->,也即()()212f x f x >-因为121x ->,21x >,由(1)可知()f x 在()1,+∞上单调递增,所以212x x >-,也即122x x +>.由已知21x >,所以1223x x +>.21.(1)2211612x y +=;(2)证明见解析.【分析】(1)根据离心率的定义和椭圆定义求得,a c ,再计算出b 后得椭圆方程;(2)设()()1122,,,M x y N x y ,直线方程代入椭圆方程,利用韦达定理求得中点,R S 的坐标,当直线PQ 斜率存在时,设直线:PQ y mx n =+,点,R S 在直线PQ 上,代入整理得12,k k 是一个一元二次方程的根,由韦达定理得12k k ,从而得出,m n 关系,得出直线PQ 过定点E ,再确定直线PQ 斜率不存在时也过这个定点E ,然后结合该定点得出三角形面积比.【详解】(1)依题意得12622c a a⎧=⎪⎨⎪+=⎩,则4,2,a c =⎧⎨=⎩则22212b a c =-=,所以椭圆C 的方程为2211612x y +=;(2)直线()11:2l y k x =-,设()()1122,,,M x y N x y ,由122(2)11612y k x x y =-⎧⎪⎨+=⎪⎩得()2222111341616480k x k x k +-+-=,所以2112211634k x x k +=+,211221164834k x x k -=+,且0∆>,则中点211221186,3434k k R k k ⎛⎫- ⎪++⎝⎭,同理可算222222286,3434k k S k k ⎛⎫- ⎪++⎝⎭①当直线斜率存在时,设直线:PQ y mx n =+,点,R S 在直线PQ 上,点,R S 坐标代入整理得()()21122284630,84630,m n k k n m n k k n ⎧+++=⎪⎨+++=⎪⎩易知12,k k 为方程()284630m n k k n +++=的两个根,则123284n k k m n==-+,所以1611n m =-,所以直线16:11PQ y mx m =-,则直线恒过点16,011E ⎛⎫⎪⎝⎭②当直线的斜率不存在时,由对称性可知12k k =-,由122k k =-,不妨设12k k ==,所以221222128816343411k k k k ==++,直线16:11PQ x =过16,011⎛⎫⎪⎝⎭,根据①②可知,直线PQ 恒过点16,011E ⎛⎫⎪⎝⎭,因为PQA △的面积11212S AE y y =⋅-,PQB △的面积21212S BE y y =⋅-,所以121641511167411AE S S BE +===-.【点睛】方法点睛:椭圆中的直线过定点问题的解决方法:斜率存在时,设出直线方程为y mx n =+,根据已知条件确定,m n 的关系后,由直线方程得出定点坐标.本题中,动直线PQ 是由点,R S 确定的,因此可由已知直线12,l l 确定,R S 的坐标,再把坐标代入所设直线方程,发现12,k k 是一个一元二次的两根,这样可由韦达定理求得,m n 的关系,得出结论.22.(1)()22441x y x -=≥(2)4m <<【分析】(1)在曲线C 的参数方程中消去参数t ,可得出曲线C 的普通方程,利用基本不等式求出x 的取值范围,即可得解;(2)求出直线l 的普通方程,分析可知直线l 与双曲线2214y x -=的右支有两个交点,将直线l 与双曲线2214y x -=方程联立,利用直线与双曲线的位置关系可得出关于m 的不等式组,即可解得实数m 的取值范围.【详解】(1)因为112122t t x ⎛⎫=+≥ ⎪⎝⎭()222222221422,2441122,2t t t t x x y x y ⎧=++⎪⎪-=≥⎨⎪=+-⎪⎩则则曲线的普通方程为()22441x y x -=≥(2)cos 2sin 10m ρθρθ+-=则210mx y +-=由得()22210,1,14mx y y x x +-=⎧⎪⎨-=≥⎪⎩得()22162170m x mx -+-=有两个不等正根()22222160,Δ468160,20,1617016m m m m m m ⎧-≠⎪=+->⎪⎪⎨->⎪-⎪⎪->-⎩则4m <<23.(1)[)10,2,3∞∞⎛⎤--⋃+ ⎥⎝⎦(2)证明见解析【分析】(1)利用零点分段法分类讨论,分别求出不等式的解集,即可得解;(2)利用绝对值三角不等式求出()f x 的最小值,即m 的值,再利用柯西不等式证明即可.【详解】(1)不等式24410x x ++-≥,所以224410x x x ≤-⎧⎨---+≥⎩,解得103x ≤-,或2424410x x x -<<⎧⎨+-+≥⎩,解得24x ≤<,或424410x x x ≥⎧⎨++-≥⎩,解得4x ≥,所以原不等式解集为[)10,2,3∞∞⎛⎤--⋃+ ⎥⎝⎦.(2)()244242f x x x x x x =++-=++-++()2406x x ≥+--+=,当且仅当2x =-时取得,即min ()6f x =,所以6a b c m ++==,因为()1112a b c a b b c a c ⎛⎫++⨯++ ⎪+++⎝⎭()111a b b c c a a b b c c a ⎛⎫=+++++++ ⎪+++⎝⎭()()()111a b b c c a a b b c c a ⎛⎫=+++++++⎡⎤ ⎪⎣⎦+++⎝⎭222222⎡⎤⎡⎤⎢⎥=++++⎢⎥⎣⎦⎢⎥⎣⎦2≥()21119=++=,当且仅当12a b c ===时取等号,所以()1119922a b b c c a a b c m ++≥=+++++成立.。
江西省宜春市奉新一中2015届高三模拟考试数学(文)试卷(Word版含答案)

奉新一中2015届高三模拟考试文科数学试卷2015.5.24注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟,务必将自己的姓名、准考证号填写在答题卡相应位置上。
2. 回答第Ⅰ卷时.选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将答题卡交回。
第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,在每一小题给出的四个选项中,只有一项是符合题目要求的。
)1、已知集合{1,0,1,2,3},{2,0}M N =-=-,则下列结论正确的是 ( )A .N M ⊆B .M N N =C .M N M =D .{}0MN =2、复数z=所对应的点位于复平面内( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限3、已知角α的终边上一点P 落在直线x y 2=上,则=α2sin ( )A . 25B .25. 45- D . 45 4、双曲线 22221(0,0)x y a b a b-=>>的渐近线方程为3y =,则双曲线的离心率为( )A . 2B . 2C . 4D .35、已知数列,29,2317,11,5⋅⋅⋅则55是它的第( )项.A.19B.20C.21D.22 6、某几何体的三视图如下图所示,则该几何体的体积为( )A.12B.24C.30D.487、若向量b a ,满足2,1==b a 且322=+b a,则向量b a ,的夹角为( )A.32πB.2πC.3πD.6π8、以下四个命题中①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样; ②对于命题p :x R ∃∈,使得210x x ++<. 则⌝p :x R ∀∈, 均有210x x ++≥; ③“1x ≠或2y ≠”是“3x y +≠”的必要不充分条件; ④两个随机变量的线性相关性越强,则相关系数就越接近于1.俯视图左视图正视图3245其中真命题的个数为 =2y x 2912、已知函数()323(12)f x ax x b a =-+<<只有两个零点,则实数log 2log 2a b +的最小值是 ( )A .B .32-. D .32+第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22~第24题为选考题,考生根据要求作答. 二、填空题:(本大题共4小题,每小题5分.)13、若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为 . 14、已知等差数列{}n a 是递增数列,n S 是{}n a 的前n 项和,若24,a a 是方程2650x x -+=的两个根,则6S 的值为15V ABC -的外接球的球心为O ,满足0OA OB OC ++=,则三棱锥外接球的体积为 . 16、对于函数()f x ,若存在区间[](){},,A m n y y f x x A A ==∈=,使得,则称函数()f x 为“同域函数”,区间A 为函数()f x 的一个“同城区间”.给出下列四个函数:①()cos2f x x π=;②()21f x x =-;③()21f x x =-;④()f x =log ()21x -.存在“同域区间”的“同域函数”的序号是_____________(请写出所有正确的序号) 三、解答题:(本大题共8小题,考生作答6小题,共70分。
奉新高考数学试卷答案解析

一、选择题解析1. 答案:C解析:本题考查了指数函数的单调性。
根据指数函数的性质,当底数大于1时,函数单调递增;当底数小于1时,函数单调递减。
因此,正确答案为C。
2. 答案:D解析:本题考查了函数的奇偶性。
由题意可知,f(x) = x^3 - 3x,定义域为实数集R。
计算f(-x) = (-x)^3 - 3(-x) = -x^3 + 3x,发现f(-x) = -f(x),即函数f(x)为奇函数。
因此,正确答案为D。
3. 答案:B解析:本题考查了数列的通项公式。
由题意可知,数列{an}是一个等差数列,且首项a1=2,公差d=3。
根据等差数列的通项公式an = a1 + (n-1)d,可得an = 2 + (n-1)×3 = 3n-1。
因此,正确答案为B。
4. 答案:A解析:本题考查了向量的数量积。
由题意可知,向量a = (1, 2),向量b = (2, 3)。
根据向量的数量积公式a·b = |a||b|cosθ,其中θ为向量a和向量b的夹角。
计算可得a·b = 1×2 + 2×3 = 8,|a| = √(1^2 + 2^2) =√5,|b| =√(2^2 + 3^2) = √13,cosθ = (a·b) / (|a||b|) = 8 / (√5×√13) ≈0.99。
因此,正确答案为A。
5. 答案:C解析:本题考查了复数的运算。
由题意可知,复数z = a + bi,其中a、b为实数,i为虚数单位。
根据复数的乘法法则,z^2 = (a + bi)^2 = a^2 + 2abi + b^2i^2 = a^2 - b^2 + 2abi。
因此,正确答案为C。
二、填空题解析1. 答案:3解析:本题考查了等差数列的求和公式。
由题意可知,数列{an}是一个等差数列,且首项a1=1,公差d=2。
根据等差数列的求和公式S_n = n(a1 + an) / 2,可得S_10 = 10(1 + 19) / 2 = 10×20 / 2 = 100。
奉新高考数学试卷答案详解

解析:由题意知,a、b、c为等差数列,所以a+c=2b。
又因为a+b+c=12,代入a+c=2b得3b=12,解得b=4。
因此,a+c=8。
故选D。
2. 【答案】C解析:由题意知,f(x)在(0,+∞)上单调递增,所以f(x)在(-∞,0)上单调递减。
因此,当x<0时,f(x)>0;当x>0时,f(x)<0。
又因为f(-2)=-2,f(2)=2,所以f(-2)×f(2)<0。
故选C。
3. 【答案】A解析:设等比数列的公比为q,由题意知q≠1。
又因为a1+a2+a3=18,a2+a3+a4=24,所以a3+a4=6。
又因为a3=a1q^2,a4=a1q^3,所以a1q^2+a1q^3=6。
化简得a1q^2(1+q)=6。
又因为a1+a2+a3+a4=42,所以a1q^2+a1q^3+a1+a2=42。
代入a1q^2(1+q)=6得a1q^2(1+q)+a1q^2=42。
化简得a1q^2=36。
因为q≠1,所以q^2=36/a1。
代入a1q^2+a1q^3=6得36/a1+a1q=6。
解得a1=3,q=2。
因此,a2=a1q=6。
故选A。
4. 【答案】B解析:设等差数列的公差为d,由题意知d>0。
又因为a1+a4=5,a2+a5=10,所以a3+a6=15。
又因为a3=a1+2d,a6=a1+5d,所以a1+7d=15。
又因为a1+a1+3d=15,所以a1+3d=15/2。
代入a1+7d=15得d=1/2。
因此,a1=11/2。
故选B。
5. 【答案】C解析:由题意知,数列{an}为等比数列,且公比为q。
又因为a1+a2+a3=27,a2+a3+a4=40,所以a3+a4=13。
又因为a3=a1q^2,a4=a1q^3,所以a1q^2+a1q^3=13。
化简得a1q^2(1+q)=13。
又因为a1+a2+a3+a4=63,所以a1q^2+a1q^3+a1+a2=63。
江西省宜春市奉新一中2021届高三数学5月模拟考试试题 文 (1)

奉新一中2021届高三5月模拟考试数学(文)试题一、选择题(本大题共10小题,每题5分,总分值50分.在每题给出的四个选项中,只有一项为哪一项符合题目要求)1. 设i 是虚数单位,假设复数z 知足32zi i =-,那么z =( ).A. 32z i =+B. 23z i =-C. 23z i =--D. 23z i =-+ 2.已知1sin cos ,3αα-=则2cos ()4πα-= ( ) A.181 B.91 C.92 D.18173. 月底,某商场想通过抽取发票的10%来估量该月的销售总额。
先将该月的全数销售发票存根进行了编号:1,2,3,…,然后拟采纳系统抽样的方式获取一个样本.假设从编号为1,2,…,10的前10张发票存根中随机抽取一张,然后再按系统抽样的方式依编号顺序逐次产生第二张、第三张、第四张、…,那么抽样中产生的第二张已编号的发票存根,其编号不可能是( ) A .19B .17C .23D .134. 在ABC ∆中,内角,,A B C 的对边别离是,,a b c ,假设22a b -=,sin C B =,则A =( ).A .30︒B .60︒C .120︒D .150︒5.已知函数()()()x x f x x f -'+=ln 22,那么()1f '= ( )A .1B .2C .3D .46. 已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中必然能推出m ⊥β的是( )A .α⊥β且α⊂mB .α⊥β且α//mC .n m //且n ⊥βD .m ⊥n 且βα//7. 已知0>a 且1≠a ,那么1>ba 是0)1(>-b a 的 ( )A.充分而没必要要条件B.必要而不充分条件C.充要条件D.既不充分也没必要要条件8. 关于实数a 和b ,概念运算b a *,运算原理如右图所示,那么式子1321()ln 4e -*的值为( )A .6B .7C .8D .99.已知等差数列{}n a 的首项为1a ,公差为d ,其前n 项和为n S ,假设直线m x a y +=121与圆()1222=+-y x 的两个交点关于直线0=-+d y x 对称,那么数列⎭⎬⎫⎩⎨⎧n S 1的前10项和=( ) A .109 B . 1110 C . 98D .210.如图,直角梯形ABCD 中,∠A =90°,∠B =45°,底边AB =5,高AD =3,点E 由B 沿折线BCD 向点D 移动,EM ⊥AB 于M ,EN ⊥AD 于N ,设BM =x ,矩形AMEN 的面积为y ,那么y 与x 的函数关系的图像大致是( )二、填空题:(本大题共5小题,每题5分,共25分) 11.已知向量()()4,,2,1-==m b a ,且a ∥b ,那么=+⋅)(b a a ________.12.已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,那么该几何体的上底面面积是13. 已知离心率为2的双曲线221x y m n+=()R n m ∈,的右核心 与抛物线x y 42=的核心重合,那么mn=____________ . 14.已知()()m x x x f ++=cos tan 为奇函数,且m 知足不等式()0192≤--m m m ,那么实数m 的值为______.15. 已知集合(){}3M=ln 23,x y x x x R =-+-∈,{}N=14,x x x a x R ---<∈若MN φ≠,那么实数a 的取值范围是____________ .三、解答题(本大题共6小题,共75分.解答题写出文字说明、证明进程或演算步骤) 16.(本小题总分值12分)在△ABC 中,角A 、B 、C 所对的边别离为a 、b 、c ,且5sincos 22CC =+。
江西省九江市奉新第一中学高二数学理模拟试卷含解析

江西省九江市奉新第一中学高二数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 在中,分别是角的对边,,则此三角形解的情况是A. 一解B. 两解C. 一解或两解D. 无解参考答案:B略2. 等差数列前项和为,若.则当取最小值时,()A 6B 7C 8D 9参考答案:A3. 抛掷3枚质地均匀的硬币,A={既有正面向上又有反面向上},B={至多有一个反面向上},则A与B关系是()A . 互斥事件 B.对立事件 C. 相互独立事件 D .不相互独立事件参考答案:C4. 入射光线沿直线x﹣2y+3=0射向直线l:y=x被直线反射后的光线所在的方程是( )A.x+2y﹣3=0 B.x+2y+3=0 C.2x﹣y﹣3=0 D.2x﹣y+3=0参考答案:C【考点】与直线关于点、直线对称的直线方程.【分析】光线关于直线对称,y=x是对称轴,直线x﹣2y+3=0在x、y轴上的截距互换,即可求解.【解答】解:∵入射光线与反射光线关于直线l:y=x对称∴反射光线的方程为y﹣2x+3=0,即2x﹣y﹣3=0故选C.【点评】光线关于直线对称,一般用到直线到直线的角的公式,和求直线的交点坐标,解答即可.本题是一种简洁解法.5. 在数学归纳法的递推性证明中由假设时成立,推导时成立时增加的项数是()A.1B.C.D.参考答案:D略6. 下列四个图中,哪个可能是函数的图象()A.B.C.D.参考答案:C【考点】3O:函数的图象.【分析】根据的图象由奇函数左移一个单位而得,结合对称性特点判断.【解答】解:∵是奇函数,向左平移一个单位得,∴图象关于(﹣1,0)中心对称,故排除A、D,当x<﹣2时,y<0恒成立,排除B.故选:C7. 函数的图像大致为( )参考答案: B8. 某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为( )A. 61.5万元B. 62.5万元C. 63.5万元D. 65.0万元参考答案:C 【分析】先求出所给数据的平均数,得到样本中心点,根据回归直线经过样本中心点,求出,得到线性回归方程,把代入即可求出答案。
江西省奉新县第一中学2025届高考仿真模拟数学试卷含解析

江西省奉新县第一中学2025届高考仿真模拟数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设一个正三棱柱ABC DEF -,每条棱长都相等,一只蚂蚁从上底面ABC 的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为10P ,则10P 为( )A .10111432⎛⎫⋅+ ⎪⎝⎭B .111132⎛⎫+ ⎪⎝⎭C .111132⎛⎫- ⎪⎝⎭D .10111232⎛⎫⋅+ ⎪⎝⎭2.已知双曲线()2222:10,0x y C a b a b-=>>的实轴长为2,离心率为2,1F 、2F 分别为双曲线C 的左、右焦点,点P在双曲线C 上运动,若12F PF △为锐角三角形,则12PF PF +的取值范围是( )A .()B .()C .()D .()3.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数N 除以正整数m 后的余数为n ,则记为(mod )N n m =,例如112(mod3)=.现将该问题以程序框图的算法给出,执行该程序框图,则输出的n 等于( ).A .21B .22C .23D .244.已知函数()()()2sin 0f x x b ωϕω=++>,88f x f x ππ+=-()(),且58f π=(),则b =( ) A .3B .3或7C .5D .5或85.已知ABC 中,2,3,60,2,AB BC ABC BD DC AE EC ==∠=︒==,则AD BE ⋅=( )A .1B .2-C .12D .12-6.已知三棱锥P ﹣ABC 的顶点都在球O 的球面上,PA 2=PB 14=,AB =4,CA =CB 10=,面PAB ⊥面ABC ,则球O 的表面积为( ) A .103πB .256πC .409πD .503π7.已知定义在R 上的函数()f x ,若函数()2y f x =+为偶函数,且()f x 对任意1x ,[)22,x ∈+∞ ()12x x ≠,都有()()21210f x f x x x -<-,若()()31f a f a ≤+,则实数a 的取值范围是( )A .13,24⎡⎤-⎢⎥⎣⎦B .[]2,1--C .1,2⎛⎤-∞- ⎥⎝⎦ D .3,4⎛⎫+∞ ⎪⎝⎭8.已知抛物线24x y =上一点A 的纵坐标为4,则点A 到抛物线焦点的距离为( ) A .2B .3C .4D .59.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F ,,过2F 作一条直线与双曲线右支交于A B ,两点,坐标原点为O ,若22215OA a b BF a =+=,,则该双曲线的离心率为( ) A .152B .102C .153D .10310.已知各项都为正的等差数列{}n a 中,23415a a a ++=,若12a +,34a +,616a +成等比数列,则10a =( ) A .19B .20C .21D .2211.在ABC ∆中,“sin sin A B >”是“tan tan A B >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件12.已知函数()21x f x x-=,则不等式121()()x x f e f e ﹣﹣>的解集是( )A .2,3⎛⎫-∞-⎪⎝⎭B .2,3⎛⎫-∞ ⎪⎝⎭C .(,0)-∞D .2,3⎛⎫+∞⎪⎝⎭二、填空题:本题共4小题,每小题5分,共20分。
江西省宜春市奉新一中高考数学模拟试卷 文(含解析)

江西省宜春市奉新一中2015届高考数学模拟试卷(文科)一、选择题:(本大题共12小题,每小题5分,在每一小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知集合M={﹣1,0,1,2,3},N={﹣2,0},则下列结论正确的是()A.N⊆M B.M∩N=N C.M∪N=M D.M∩N={0}2.(5分)复数所对应的点位于复平面内()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知角α的终边上一点P落在直线y=2x上,则sin2α=()A.B.C.D.4.(5分)若双曲线﹣=1(a>0,b>0)的渐近线方程式y=±x,则双曲线的离心率为()A.B.C.2 D.5.(5分)已知数列,则是它的第()项.A.19 B.20 C.21 D.226.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.12 B.24 C.30 D.487.(5分)若向量满足且,则向量的夹角为()A.B.C.D.8.(5分)以下四个命题中:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②对于命题p:∃x∈R,使得x2+x+1<0.则¬p:∀x∈R,均有x2+x+1≥0;③“x≠1或y≠2”是“x+y≠3”的必要不充分条件;④两个随机变量的线性相关性越强,则相关系数就越接近于1.其中真命题的个数为()A.1 B.2 C.3 D.49.(5分)阅读如下程序框图,如果输出i=4,那么空白的判断框中应填入的条件是()A.S<8?B.S<12?C.S<14?D.S<16?10.(5分)已知不等式表示的平面区域的面积为2,则的最小值为()A.B.C.2 D.411.(5分)如图过拋物线y2=2px(p>0)的焦点F的直线依次交拋物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则拋物线的方程为()A.y2=x B.y2=3x C.y2=x D.y2=9x12.(5分)已知函数f(x)=ax3﹣3x2+b(1<a<2)只有两个零点,则实数log a2+log b2的最小值是()A.B.C.2D.二、填空题:(本大题共4小题,每小题5分1,3,5.)13.(5分)若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为.14.(5分)已知等差数列{a n}是递增数列,S n是{a n}的前n项和,若a2,a4是方程x2﹣6x+5=0的两个根,则S6的值为.15.(5分)已知体积为的正三棱锥V﹣ABC的外接球的球心为O,满足,则该三棱锥外接球的体积为.16.(5分)对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f (x)为“同域函数”,区间A为函数f(x)的一个“同城区间”.给出下列四个函数:①f(x)=cos x;②f(x)=x2﹣1;③f(x)=|x2﹣1|;④f(x)=log2(x﹣1).存在“同域区间”的“同域函数”的序号是(请写出所有正确的序号)三、解答题:(本大题共5小题,考生作答6小题,共70分.解答须写出文字说明、证明过程或演算步骤.)17.(12分)在ABC中,内角A,B,C的对边分别为a,b,c,已知(Ⅰ)求的值;(Ⅱ)若,b=2,求△AB C的面积S.18.(12分)为了考查某厂2000名工人的生产技能情况,随机抽查了该厂n名工人某天的产量(单位:件),整理后得到如下的频率分布直方图(产品数量的分组区间为[10,15),[15,20),[20,25),[25,30),[30,35]),其中产量在[20,25)的工人有6名.(Ⅰ)求这一天产量不小于25的工人人数;(Ⅱ)工厂规定从产量低于20件的工人中随机的选取2名工人进行培训,求这2名工人不在同一组的概率.19.(12分)如图,已知AF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.(1)求证:AF∥平面BCE;(2)求证:AC⊥平面BCE;(3)求三棱锥E﹣BCF的体积.20.(12分)已知椭圆+=1(a>b>0)的左、右焦点分别是点F1,F2,其离心率e=,点P为椭圆上的一个动点,△PF1F2面积的最大值为4.(Ⅰ)求椭圆的方程;(Ⅱ)若A,B,C,D是椭圆上不重合的四个点,AC与BD相交于点F1,=0,求||+||的取值范围.21.(12分)设函数f(x)=x2﹣(a+b)x+ablnx(其中e为自然对数的底数,a≠e,b∈R),曲线y=f(x)在点(e,f(e))处的切线方程为y=﹣e2.(1)求b;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.【选修4-1:几何证明选讲】(共1小题,满分10分)22.(10分)如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.(Ⅰ)求证:AD∥EC;(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.【选修4-4:坐标系与参数方程】(共1小题,满分0分)23.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),直线l与曲线C:(y﹣2)2﹣x2=1交于A,B两点(1)求|AB|的长;(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.【选修4-5:不等式选讲】(共1小题,满分0分)24.选修4﹣5:不等式选讲已知函数f(x)=|x+1|﹣|x|+a.(Ⅰ)若a=0,求不等式f(x)≥0的解集;(Ⅱ)若方程f(x)=x有三个不同的解,求a的取值范围.江西省宜春市奉新一中2015届高考数学模拟试卷(文科)参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,在每一小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知集合M={﹣1,0,1,2,3},N={﹣2,0},则下列结论正确的是()A.N⊆M B.M∩N=N C.M∪N=M D.M∩N={0}考点:交集及其运算.专题:集合.分析:利用已知条件求出结合的交集,判断即可.解答:解:集合M={﹣1,0,1,2,3},N={﹣2,0},M∩N={﹣1,0,1,2,3}∩{﹣2,0}={0}.故选:D.点评:本题考查集合的交集的求法,考查计算能力.2.(5分)复数所对应的点位于复平面内()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数的代数表示法及其几何意义.专题:数系的扩充和复数.分析:把给出的等式变形后直接利用复数代数形式的乘除运算化简,得到复数对应点的坐标即可.解答:解:∵.∴复数所对应的点()在第二象限.故选B.点评:本题考查了复数代数形式的乘除运算,复数的几何意义,是基础题.3.(5分)已知角α的终边上一点P落在直线y=2x上,则sin2α=()A.B.C.D.考点:任意角的三角函数的定义.专题:计算题;三角函数的求值.分析:角的终边是射线,分两种情况讨论角的终边所在的象限,对于各种情况在终边上任取一点,利用三角函数的定义求出sinα、cosα的值,即可求出sin2α.解答:解:∵角α的终边落在直线y=2x上当角α的终边在第一象限时,在α终边上任意取一点(1,2),则该点到原点的距离为,∴sinα=,cosα=,∴sin2α=2sinαcosα=;当角α的终边在第三象限时,在α终边上任意取一点(﹣1,﹣2),则该点到原点的距离为,∴sinα=﹣,cosα=﹣,∴sin2α=2sinαcosα=.故选:D.点评:已知角的终边求三角函数的值,在终边上任意取一点利用三角函数的定义求出三角函数值,注意终边在一条直线上时要分两种情况.4.(5分)若双曲线﹣=1(a>0,b>0)的渐近线方程式y=±x,则双曲线的离心率为()A.B.C.2 D.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:由双曲线﹣=1(a>0,b>0)的渐近线方程是y=±x,可得=,利用双曲线的离心率e==,即可得出结论.解答:解:∵双曲线﹣=1(a>0,b>0)的渐近线方程是y=±x,∴=,∴双曲线的离心率e===2.故选:C.点评:本题考查双曲线的简单性质,考查学生的计算能力,确定=是关键.5.(5分)已知数列,则是它的第()项.A.19 B.20 C.21 D.22考点:数列的概念及简单表示法.专题:计算题.分析:根据数列的前几项找规律,归纳出数列的通项公式,再令a n=,解方程即可解答:解:数列,中的各项可变形为:,,,,,…,∴通项公式为a n==,令=,得,n=21故选C点评:本题考察了观察法求数列的通项公式,以及利用通项公式计算数列的项的方法.6.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.12 B.24 C.30 D.48考点:由三视图求面积、体积.专题:计算题;作图题;空间位置关系与距离.分析:由三视图可知其直观图,从而求其体积.解答:解:由三视图可知其直观图如下所示,其由三棱柱截去一个三棱锥所得,三棱柱的体积V=×4×3×5=30,三棱锥的体积V1=××4×3×3=6,故该几何体的体积为24;故选B .点评: 本题考查了学生的空间想象力与作图计算的能力,属于基础题.7.(5分)若向量满足且,则向量的夹角为()A .B .C .D .考点: 数量积表示两个向量的夹角;向量的模. 专题: 平面向量及应用. 分析: 将平方得到两个向量的数量积,利用数量积公式解答. 解答: 解:因为向量满足且,所以(22=12,展开得到4+4+4=12,解得,所以向量的夹角的余弦值为,所以向量的夹角为:;故选C .点评: 本题考查了向量的平方等于其模的平方以及利用数量积公式求向量的夹角. 8.(5分)以下四个命题中:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②对于命题p :∃x ∈R ,使得x 2+x+1<0.则¬p :∀x ∈R ,均有x 2+x+1≥0; ③“x≠1或y≠2”是“x+y≠3”的必要不充分条件;④两个随机变量的线性相关性越强,则相关系数就越接近于1. 其中真命题的个数为() A . 1 B . 2 C . 3 D . 4考点: 命题的真假判断与应用. 专题: 简易逻辑.分析: 由抽样和命题的知识以及相关系数逐个选项判断即可.解答: 解:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样不是分层抽样,而是系统抽样,故错误;②对于命题p :∃x ∈R ,使得x 2+x+1<0.则¬p :∀x ∈R ,均有x 2+x+1≥0, 由特称命题的否定规律可知正确;③“x≠1或y≠2”不能推出“x+y≠3”,“x+y≠3”能推出“x≠1或y≠2”, 故应是必要不充分条件,正确;④两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1,故错误.故选:B点评:本题考查命题真假的判定,涉及抽样和命题的知识以及相关系数,属中档题.9.(5分)阅读如下程序框图,如果输出i=4,那么空白的判断框中应填入的条件是()A.S<8?B.S<12?C.S<14?D.S<16?考点:程序框图.专题:图表型;算法和程序框图.分析:由框图给出的赋值,先执行一次运算i=i+1,然后判断得到的i的奇偶性,是奇数执行S=S+2*i,是偶数执行S=S+i,然后判断S的值是否满足判断框中的条件,满足继续从i=i+1执行,不满足跳出循环,输出i的值.解答:解:框图首先给变量S和i赋值S=0,i=1,执行i=i+1=2,判断2是奇数不成立,执行S=2;判断框内条件成立,执行i=2+1=3,判断3是奇数成立,执行S=2×3+2=8;判断框内条件成立,执行i=3+1=4,判断4是奇数不成立,执行S=8+4=12;此时在判断时判断框中的条件应该不成立,输出i=4.而此时的S的值是12,故判断框中的条件应S<12.若是S<8,输出的i值等于3,与题意不符.故选:B.点评:本题考查了程序框图,考查了循环结构,内含条件结构,整体属于当型循环,解答此题的关键是思路清晰,分清路径,属基础题.10.(5分)已知不等式表示的平面区域的面积为2,则的最小值为()A.B.C.2 D.4考点:简单线性规划.专题:不等式的解法及应用.分析:先根据面积为2求出m值,又z==1+,设k=,利用k的几何意义,结合数形结合即可得到结论.解答:解:作出不等式组对应的平面区域,其中A(0,2),B(2,0),则△OAB的面积S=,即m=0又z==1+,设k=,其中的几何意义是可行域内的点与点D(﹣1,﹣1)构成的直线的斜率问题.由图象可知DB的斜率最小,此时k==,则的最小值1+=.故选:B.点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.利用数形结合是解决本题的关键.11.(5分)如图过拋物线y2=2px(p>0)的焦点F的直线依次交拋物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则拋物线的方程为()A.y2=x B.y2=3x C.y2=x D.y2=9x考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,根据抛物线定义可知|BD|=a,进而推断出∠BCD的值,在直角三角形中求得a,进而根据BD∥FG,利用比例线段的性质可求得p,则抛物线方程可得.解答:解:如图分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,则由已知得:|BC|=2a,由定义得:|BD|=a,故∠BCD=30°,在直角三角形ACE中,∵|AF|=3,|AC|=3+3a,∴2|AE|=|AC|∴3+3a=6,从而得a=1,∵BD∥FG,∴,求得p=,因此抛物线方程为y2=3x,故选:B点评:本题主要考查了抛物线的标准方程.考查了学生对抛物线的定义和基本知识的综合把握.12.(5分)已知函数f(x)=ax3﹣3x2+b(1<a<2)只有两个零点,则实数log a2+log b2的最小值是()A.B.C.2D.考点:函数零点的判定定理.专题:计算题;函数的性质及应用;导数的综合应用.分析:由题意求导f′(x)=3ax2﹣6x=3ax(x﹣),从而可得f()=0,从而可得2log2a+log2b=2,化简log a2+log b2═1++(+);再利用基本不等式即可.解答:解:∵f(x)=ax3﹣3x2+b,∴f′(x)=3ax2﹣6x=3ax(x﹣),∴令f′(x)=3ax2﹣6x=3ax(x﹣)=0得,x=0或x=;∵f(0)=b>0,故f()=0,即a2b=4;∴2log2a+log2b=2,∴log a2+log b2=+=(+)(log2a+log2b)=1++(+)≥+;(当且仅当=,即log2a=2﹣,log2b=2﹣2时,等号成立).故选:D.点评:本题考查了导数的综合应用及基本不等式的应用,属于基础题.二、填空题:(本大题共4小题,每小题5分1,3,5.)13.(5分)若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为.考点:排列、组合及简单计数问题;古典概型及其概率计算公式.专题:计算题;概率与统计.分析:甲、乙两人相邻,可以把两个元素看做一个元素同其他元素进行排列,然后代入古典概率的求解公式即可求解解答:解:记甲、乙两人相邻而站为事件A甲、乙、丙三人随机地站成一排的所有排法有=6,则甲、乙两人相邻而站,把甲和乙当做一个整体,甲和乙的排列有种,然后把甲乙整体和丙进行排列,有种,因此共有=4种站法∴=故答案为:点评:本题考查排列组合及简单的计数问题及古典概率的求解,本题解题的关键是把相邻的问题作为一个元素同其他的元素进行排列,本题是一个基础题.14.(5分)已知等差数列{a n}是递增数列,S n是{a n}的前n项和,若a2,a4是方程x2﹣6x+5=0的两个根,则S6的值为24.考点:等差数列的性质.专题:等差数列与等比数列.分析:由一元二次方程的根与系数关系求得a2,a4,进一步求出公差和首项,则答案可求.解答:解:由a2,a4是方程x2﹣6x+5=0的两个根,得,由已知得a4>a2,∴解得a2=1,a4=5,∴d=,则a1=a2﹣d=1﹣2=﹣1,∴.故答案为:24.点评:本题考查了一元二次方程的根与系数关系,考查了等差数列的通项公式和前n项和,是基础的计算题.15.(5分)已知体积为的正三棱锥V﹣ABC的外接球的球心为O,满足,则该三棱锥外接球的体积为.考点:球内接多面体.专题:计算题.分析:由题意球的三角形ABC的位置,以及形状,利用球的体积,求出球的半径,求出棱锥的底面边长,利用棱锥的体积求出该三棱锥外接球的体积即可.解答:解:正三棱锥D﹣ABC的外接球的球心O满足,说明三角形ABC在球O的大圆上,并且为正三角形,设球的半径为:R,棱锥的底面正三角形ABC的高为:底面三角形ABC的边长为:R正三棱锥的体积为:××(R)2×R=解得R3=4,则该三棱锥外接球的体积为=.故答案为:.点评:本题考查球的内接体问题,球的体积,棱锥的体积,考查空间想象能力,转化思想,计算能力,是中档题.16.(5分)对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f (x)为“同域函数”,区间A为函数f(x)的一个“同城区间”.给出下列四个函数:①f(x)=cos x;②f(x)=x2﹣1;③f(x)=|x2﹣1|;④f(x)=log2(x﹣1).存在“同域区间”的“同域函数”的序号是①②③(请写出所有正确的序号)考点:函数的值域.专题:函数的性质及应用.分析:根据同域函数及同域区间的定义,再根据函数值域的求解即可找到①②③三个函数的一个同域区间,而通过判断f(x)和函数y=x交点的情况,容易判断函数④不存在同域区间.解答:解:①f(x)=,x∈[0,1]时,f(x)∈[0,1],所以①存在同域区间;②f(x)=x2﹣1,x∈[﹣1,0]时,f(x)∈[﹣1,0],所以②存在同域区间;③f(x)=|x2﹣1|,x∈[0,1]时,f(x)∈[0,1],所以③存在同域区间;④f(x)=log2(x﹣1),判断该函数是否有同域区间,即判断该函数和函数y=x是否有两个交点;而根据这两个函数图象可以看出不存在交点,所以该函数不存在同域区间.故答案为:①②③.点评:考查对同域函数及同域区间的理解,二次函数、余弦函数的值域的求解,知道通过判断函数f(x)和函数y=x图象交点的情况来判断函数是否存在同域区间的方法.三、解答题:(本大题共5小题,考生作答6小题,共70分.解答须写出文字说明、证明过程或演算步骤.)17.(12分)在ABC中,内角A,B,C的对边分别为a,b,c,已知(Ⅰ)求的值;(Ⅱ)若,b=2,求△ABC的面积S.考点:解三角形;三角函数中的恒等变换应用.专题:解三角形.分析:(Ⅰ)利用正弦定理把题设等式中的边转化成角的正弦,整理后可求得sinC和sinA 的关系式,则的值可得.(Ⅱ)先通过余弦定理可求得a和c的关系式,同时利用(Ⅰ)中的结论和正弦定理求得a 和c的另一关系式,最后联立求得a和c,利用三角形面积公式即可求得答案.解答:解:(Ⅰ)由正弦定理设则===整理求得sin(A+B)=2sin(B+C)又A+B+C=π∴sinC=2sinA,即=2(Ⅱ)由余弦定理可知cosB==①由(Ⅰ)可知==2②①②联立求得c=2,a=1sinB==∴S=acsinB=点评:本题主要考查了解三角形和三角函数中恒等变换的应用.考查了学生基本分析问题的能力和基本的运算能力.18.(12分)为了考查某厂2000名工人的生产技能情况,随机抽查了该厂n名工人某天的产量(单位:件),整理后得到如下的频率分布直方图(产品数量的分组区间为[10,15),[15,20),[20,25),[25,30),[30,35]),其中产量在[20,25)的工人有6名.(Ⅰ)求这一天产量不小于25的工人人数;(Ⅱ)工厂规定从产量低于20件的工人中随机的选取2名工人进行培训,求这2名工人不在同一组的概率.考点:列举法计算基本事件数及事件发生的概率;频率分布直方图.专题:概率与统计.分析:(Ⅰ)根据概率公式得出0.06×5=0.3求解得出n==20,即可得出这一天产量不小于25的工人人数为(0.05+0.03)×5×20=8(Ⅱ)设出字母列出事件:从产量低于20件的工人中选取2名工人的结果为:(A,B),(A,a),(A,b),(A,c)(A,d),(B,a),(B,b),(B,c)(B,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共有15种结果,其中2名工人不在同一组的结果为(A,a),(A,b),(A,c)(A,d),(B,a),(B,b),(B,c)(B,d),共8种.运用古典概率公式求解即可.解答:解:(Ⅰ)由题意得,产量为[20,25)的概率为0.06×5=0.3∴n==20,∴这一天产量不小于25的工人人数20.∴这一天产量不小于25的工人人数为(0.05+0.03)×5×20=8(Ⅱ)由题意得,产量为[10,15)工人人数为20×0.02×5=2,即他们分别是A,B,产量在[15,20)工人人数为20×0.04×5=4,即他们分别为是,a,b,c,d.则从产量低于20件的工人中选取2名工人的结果为:(A,B),(A,a),(A,b),(A,c)(A,d),(B,a),(B,b),(B,c)(B,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共有15种结果,其中2名工人不在同一组的结果为(A,a),(A,b),(A,c)(A,d),(B,a),(B,b),(B,c)(B,d),共8种.故这2名工人不在同一组的概率为:点评:本题考查了古典概率的求解,列举方法判断事件个数,根据公式求解即可,属于中档题.19.(12分)如图,已知AF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.(1)求证:AF∥平面BCE;(2)求证:AC⊥平面BCE;(3)求三棱锥E﹣BCF的体积.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定;直线与平面垂直的判定.专题:空间位置关系与距离.分析:(1)AF∥BE,BE⊂平面BCE,AF⊄平面BCE,运用判定定理可判断.(2)运用勾股定理可判断AC⊥BC,再根据线面的转化,AF⊥平面ABCD,AF∥BE,BE⊥平面ABCD,BE⊥AC,得出AC⊥平面BCE,(3)CM⊥平面ABEF,V E﹣BCF=V C﹣BEF得出体积即可判断.解答:解:(1)∵四边形ABEF为矩形,∴AF∥BE,BE⊂平面BCE,AF⊄平面BCE,∴AF∥平面BCE.(2)过C作CM⊥AB,垂足为M,∵AD⊥DC,∴四边形ADCM为矩形,∴AM=MB=2∵AD=2,AB=4.∴AC=2,CM=2,BC=2,∴AC2+BC2=AB2,∴AC⊥BC,∵AF⊥平面ABCD,AF∥BE,∴BE⊥平面ABCD,∴BE⊥AC,∵BE⊂平面BCE,BC⊂平面BCE,BC∩BE=B,∴AC⊥平面BCE.(3)∵AF⊥平面ABCD,AF⊥CM,∵CM⊥AB,AF⊂平面ABEF,AB⊂平面ABEF,AF∩AB=A,∴CM⊥平面ABEF,∴V E﹣BCF=V C﹣BEF==×2×4×2.点评:本题综合考查了空间直线,几何体的平行,垂直问题,求解体积,属于中档题.20.(12分)已知椭圆+=1(a>b>0)的左、右焦点分别是点F1,F2,其离心率e=,点P为椭圆上的一个动点,△PF1F2面积的最大值为4.(Ⅰ)求椭圆的方程;(Ⅱ)若A,B,C,D是椭圆上不重合的四个点,AC与BD相交于点F1,=0,求||+||的取值范围.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)容易知道当P点为椭圆的上下顶点时,△PF1F2面积最大,再根据椭圆的离心率为可得到关于a,c的方程组,解该方程组即可得到a,c,b,从而得出椭圆的方程;(Ⅱ)先容易求出AC,BD中有一条直线不存在斜率时||+||=14,当直线AC存在斜率k 且不为0时,写出直线AC的方程y=k(x+2),联立椭圆的方程消去y得到(3+4k2)x2+16k2x+16k2﹣48=0,根据韦达定理及弦长公式即可求得,把k换上即可得到.所以用k表示出,这时候设k2+1=t,t>1,从而得到,根据导数求出的范围,从而求出的取值范围.解答:解:(Ⅰ)由题意知,当P是椭圆的上下顶点时△PF1F2的面积取最大值;∴;即①;由离心率为得:②;∴联立①②解得a=4,c=2,b2=12;∴椭圆的方程为;(Ⅱ)由(Ⅰ)知F1(﹣2,0);∵,∴AC⊥BD;(1)当直线AC,BD中一条直线斜率不存在时,;(2)当直线AC斜率为k,k≠0时,其方程为y=k(x+2),将该方程带入椭圆方程并整理得:(3+4k2)x2+16k2x+16k2﹣48=0;若设A(x1,y1),B(x2,y2),则:;∴=;直线BD的方程为y=,同理可得;∴=;令k2+1=t,t>1;∴==;设f(t)=,(t>1),f′(t)=;∴t∈(1,2)时,f′(t)>0,t∈(2,+∞)时,f′(t)<0;∴t=2时,f(t)取最大值,又f(t)>0;∴;∴;∴综上得的取值范围为.点评:考查三角形的面积公式,椭圆离心率的概念,椭圆的标准方程,a,b,c三个系数的几何意义,直线的点斜式方程,以及弦长公式,根据导数求函数最值的方法.21.(12分)设函数f(x)=x2﹣(a+b)x+ablnx(其中e为自然对数的底数,a≠e,b∈R),曲线y=f(x)在点(e,f(e))处的切线方程为y=﹣e2.(1)求b;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.考点:利用导数研究曲线上某点切线方程;函数零点的判定定理.专题:计算题;函数的性质及应用;导数的概念及应用;导数的综合应用.分析:(1)求导,从而求b;(2)由(1)得,,从而①当时,要使得f(x)在上有且只有两个零点,只需=,②当时,求导确定零点个数,③当a>e时,求导确定零点个数.解答:解:(1),∵f′(e)=0,a≠e,∴b=e;(2)由(1)得,,①当时,由f′(x)>0得x>e;由f′(x)<0得.此时f(x)在上单调递减,在(e,+∞)上单调递增.∵,;∴要使得f(x)在上有且只有两个零点,则只需=,即;②当时,由f′(x)>0得或x>e;由f′(x)<0得a<x<e.此时f(x)在(a,e)上单调递减,在和(e,+∞)上单调递增.此时,∴此时f(x)在[e,+∞)至多只有一个零点,不合题意;③当a>e时,由f′(x)>0得或x>a,由f′(x)<0得e<x<a,此时f(x)在和(a,+∞)上单调递增,在(e,a)上单调递减,且,∴f(x)在至多只有一个零点,不合题意.综上所述,a的取值范围为.点评:本题考查了导数的综合应用及导数的几何意义的应用,同时考查了分类讨论的思想应用,属于中档题.【选修4-1:几何证明选讲】(共1小题,满分10分)22.(10分)如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.(Ⅰ)求证:AD∥EC;(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.考点:圆的切线的性质定理的证明;直线与圆相交的性质;直线与圆的位置关系;与圆有关的比例线段.专题:计算题;证明题.分析:(I)连接AB,根据弦切角等于所夹弧所对的圆周角得到∠BAC=∠D,又根据同弧所对的圆周角相等得到∠BAC=∠E,等量代换得到∠D=∠E,根据内错角相等得到两直线平行即可;(II)根据切割线定理得到PA2=PB•PD,求出PB的长,然后再根据相交弦定理得PA•PC=BP•PE,求出PE,再根据切割线定理得AD2=DB•DE=DB•(PB+PE),代入求出即可.解答:解:(I)证明:连接AB,∵AC是⊙O1的切线,∴∠BAC=∠D,又∵∠BAC=∠E,∴∠D=∠E,∴AD∥EC.(II)∵PA是⊙O1的切线,PD是⊙O1的割线,∴PA2=PB•PD,∴62=PB•(PB+9)∴PB=3,在⊙O2中由相交弦定理,得PA•PC=BP•PE,∴PE=4,∵AD是⊙O2的切线,DE是⊙O2的割线,∴AD2=DB•DE=9×16,∴AD=12点评:此题是一道综合题,要求学生灵活运用直线与圆相切和相交时的性质解决实际问题.本题的突破点是辅助线的连接.【选修4-4:坐标系与参数方程】(共1小题,满分0分)23.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),直线l与曲线C:(y﹣2)2﹣x2=1交于A,B两点(1)求|AB|的长;(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.考点:直线的参数方程;简单曲线的极坐标方程.专题:直线与圆.分析:(1)把直线的参数方程参数t消去得,y﹣2=(x+2),代入曲线C:(y﹣2)2﹣x2=1,根据|AB|=|x1﹣x2|,运算求得结果.(2)根据中点坐标的性质可得AB中点M对应的参数为=1,由t的几何意义可得点P到M的距离,运算求得结果.解答:解:(1)由(t为参数),参数t消去得,y﹣2=(x+2),代入曲线C:(y﹣2)2﹣x2=1,消去y整理得:2x2+12x+11=0,设A(x1,y1),B(x2,y2),则x1+x2=﹣6,x1•x2=.…(3分)所以|AB|=|x1﹣x2|=2=2.…(5分)(2)易得点P在平面直角坐标系下的坐标为(﹣2,2),根据中点坐标的性质可得AB中点M对应的参数为=1.…(8分)所以由t的几何意义可得点P到M的距离为|PM|=2.…(10分)点评:本题主要考查直线的参数方程、点到直线的距离公式,用极坐标刻画点的位置,属于基础题.【选修4-5:不等式选讲】(共1小题,满分0分)24.选修4﹣5:不等式选讲已知函数f(x)=|x+1|﹣|x|+a.(Ⅰ)若a=0,求不等式f(x)≥0的解集;(Ⅱ)若方程f(x)=x有三个不同的解,求a的取值范围.考点:绝对值不等式的解法;根的存在性及根的个数判断.专题:不等式的解法及应用.分析:(Ⅰ)若a=0,则f(x)=,分 x<﹣1时、当﹣1≤x<0时、当x≥0 时,三种情况,分别求得不等式的解集,再取并集,即得所求.(Ⅱ)设u(x)=|x+1|﹣|x|,由题意易知,把函数y=u(x)的图象向下平移1个单位以内(不包括1个单位)与y=x的图象始终有3个交点,从而求得a的范围.解答:解:(Ⅰ)若a=0,f(x)=|x+1|﹣|x|=,∴当 x<﹣1时,不等式即﹣1≥0,解得x∈∅.当﹣1≤x<0时,不等式即2x+1≥0,解得x≥﹣.综合可得﹣≤x<0.当x≥0 时,不等式即1≥0,恒成立,故不等式的解集为x≥0.综上,不等式的解集为[﹣,+∞).(5分)(Ⅱ)设u(x)=|x+1|﹣|x|,则函数u(x)的图象和 y=x的图象如右图:由题意易知,把函数y=u(x)的图象向下平移1个单位以内(不包括1个单位)与y=x的图象始终有3个交点,从而﹣1<a<0.(10分)点评:本题主要考查方程的根的存在性及个数判断,体现了数形结合以及等价转化的数学思想,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省宜春市奉新一中2015届高考数学模拟试卷(文科)一、选择题:(本大题共12小题,每小题5分,在每一小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知集合M={﹣1,0,1,2,3},N={﹣2,0},则下列结论正确的是()A.N⊆M B.M∩N=N C.M∪N=M D.M∩N={0}2.(5分)复数所对应的点位于复平面内()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知角α的终边上一点P落在直线y=2x上,则sin2α=()A.B.C.D.4.(5分)若双曲线﹣=1(a>0,b>0)的渐近线方程式y=±x,则双曲线的离心率为()A.B.C.2 D.5.(5分)已知数列,则是它的第()项.A.19 B.20 C.21 D.226.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.12 B.24 C.30 D.487.(5分)若向量满足且,则向量的夹角为()A.B.C.D.8.(5分)以下四个命题中:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②对于命题p:∃x∈R,使得x2+x+1<0.则¬p:∀x∈R,均有x2+x+1≥0;③“x≠1或y≠2”是“x+y≠3”的必要不充分条件;④两个随机变量的线性相关性越强,则相关系数就越接近于1.其中真命题的个数为()A.1 B.2 C.3 D.49.(5分)阅读如下程序框图,如果输出i=4,那么空白的判断框中应填入的条件是()A.S<8?B.S<12?C.S<14?D.S<16?10.(5分)已知不等式表示的平面区域的面积为2,则的最小值为()A.B.C.2 D.411.(5分)如图过拋物线y2=2px(p>0)的焦点F的直线依次交拋物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则拋物线的方程为()A.y2=x B.y2=3x C.y2=x D.y2=9x12.(5分)已知函数f(x)=ax3﹣3x2+b(1<a<2)只有两个零点,则实数log a2+log b2的最小值是()A.B.C.2D.二、填空题:(本大题共4小题,每小题5分1,3,5.)13.(5分)若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为.14.(5分)已知等差数列{a n}是递增数列,S n是{a n}的前n项和,若a2,a4是方程x2﹣6x+5=0的两个根,则S6的值为.15.(5分)已知体积为的正三棱锥V﹣ABC的外接球的球心为O,满足,则该三棱锥外接球的体积为.16.(5分)对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f (x)为“同域函数”,区间A为函数f(x)的一个“同城区间”.给出下列四个函数:①f(x)=cos x;②f(x)=x2﹣1;③f(x)=|x2﹣1|;④f(x)=log2(x﹣1).存在“同域区间”的“同域函数”的序号是(请写出所有正确的序号)三、解答题:(本大题共5小题,考生作答6小题,共70分.解答须写出文字说明、证明过程或演算步骤.)17.(12分)在ABC中,内角A,B,C的对边分别为a,b,c,已知(Ⅰ)求的值;(Ⅱ)若,b=2,求△ABC的面积S.18.(12分)为了考查某厂2000名工人的生产技能情况,随机抽查了该厂n名工人某天的产量(单位:件),整理后得到如下的频率分布直方图(产品数量的分组区间为[10,15),[15,20),[20,25),[25,30),[30,35]),其中产量在[20,25)的工人有6名.(Ⅰ)求这一天产量不小于25的工人人数;(Ⅱ)工厂规定从产量低于20件的工人中随机的选取2名工人进行培训,求这2名工人不在同一组的概率.19.(12分)如图,已知AF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.(1)求证:AF∥平面BC E;(2)求证:AC⊥平面BCE;(3)求三棱锥E﹣BCF的体积.20.(12分)已知椭圆+=1(a>b>0)的左、右焦点分别是点F1,F2,其离心率e=,点P为椭圆上的一个动点,△PF1F2面积的最大值为4.(Ⅰ)求椭圆的方程;(Ⅱ)若A,B,C,D是椭圆上不重合的四个点,AC与BD相交于点F1,=0,求||+||的取值范围.21.(12分)设函数f(x)=x2﹣(a+b)x+ablnx(其中e为自然对数的底数,a≠e,b∈R),曲线y=f(x)在点(e,f(e))处的切线方程为y=﹣e2.(1)求b;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.【选修4-1:几何证明选讲】(共1小题,满分10分)22.(10分)如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.(Ⅰ)求证:AD∥EC;(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.【选修4-4:坐标系与参数方程】(共1小题,满分0分)23.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),直线l与曲线C:(y﹣2)2﹣x2=1交于A,B两点(1)求|AB|的长;(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.【选修4-5:不等式选讲】(共1小题,满分0分)24.选修4﹣5:不等式选讲已知函数f(x)=|x+1|﹣|x|+a.(Ⅰ)若a=0,求不等式f(x)≥0的解集;(Ⅱ)若方程f(x)=x有三个不同的解,求a的取值范围.江西省宜春市奉新一中2015届高考数学模拟试卷(文科)参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,在每一小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知集合M={﹣1,0,1,2,3},N={﹣2,0},则下列结论正确的是()A.N⊆M B.M∩N=N C.M∪N=M D.M∩N={0}考点:交集及其运算.专题:集合.分析:利用已知条件求出结合的交集,判断即可.解答:解:集合M={﹣1,0,1,2,3},N={﹣2,0},M∩N={﹣1,0,1,2,3}∩{﹣2,0}={0}.故选:D.点评:本题考查集合的交集的求法,考查计算能力.2.(5分)复数所对应的点位于复平面内()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数的代数表示法及其几何意义.专题:数系的扩充和复数.分析:把给出的等式变形后直接利用复数代数形式的乘除运算化简,得到复数对应点的坐标即可.解答:解:∵.∴复数所对应的点()在第二象限.故选B.点评:本题考查了复数代数形式的乘除运算,复数的几何意义,是基础题.3.(5分)已知角α的终边上一点P落在直线y=2x上,则sin2α=()A.B.C.D.考点:任意角的三角函数的定义.专题:计算题;三角函数的求值.分析:角的终边是射线,分两种情况讨论角的终边所在的象限,对于各种情况在终边上任取一点,利用三角函数的定义求出sinα、cosα的值,即可求出sin2α.解答:解:∵角α的终边落在直线y=2x上当角α的终边在第一象限时,在α终边上任意取一点(1,2),则该点到原点的距离为,∴sinα=,cosα=,∴sin2α=2sinαcosα=;当角α的终边在第三象限时,在α终边上任意取一点(﹣1,﹣2),则该点到原点的距离为,∴sinα=﹣,cosα=﹣,∴sin2α=2sinαcosα=.故选:D.点评:已知角的终边求三角函数的值,在终边上任意取一点利用三角函数的定义求出三角函数值,注意终边在一条直线上时要分两种情况.4.(5分)若双曲线﹣=1(a>0,b>0)的渐近线方程式y=±x,则双曲线的离心率为()A.B.C.2 D.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:由双曲线﹣=1(a>0,b>0)的渐近线方程是y=±x,可得=,利用双曲线的离心率e==,即可得出结论.解答:解:∵双曲线﹣=1(a>0,b>0)的渐近线方程是y=±x,∴=,∴双曲线的离心率e===2.故选:C.点评:本题考查双曲线的简单性质,考查学生的计算能力,确定=是关键.5.(5分)已知数列,则是它的第()项.A.19 B.20 C.21 D.22考点:数列的概念及简单表示法.专题:计算题.分析:根据数列的前几项找规律,归纳出数列的通项公式,再令a n=,解方程即可解答:解:数列,中的各项可变形为:,,,,,…,∴通项公式为a n==,令=,得,n=21故选C点评:本题考察了观察法求数列的通项公式,以及利用通项公式计算数列的项的方法.6.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.12 B.24 C.30 D.48考点:由三视图求面积、体积.专题:计算题;作图题;空间位置关系与距离.分析:由三视图可知其直观图,从而求其体积.解答:解:由三视图可知其直观图如下所示,其由三棱柱截去一个三棱锥所得,三棱柱的体积V=×4×3×5=30,三棱锥的体积V1=××4×3×3=6,故该几何体的体积为24;故选B.点评:本题考查了学生的空间想象力与作图计算的能力,属于基础题.7.(5分)若向量满足且,则向量的夹角为()A.B.C.D.考点:数量积表示两个向量的夹角;向量的模.专题:平面向量及应用.分析:将平方得到两个向量的数量积,利用数量积公式解答.解答:解:因为向量满足且,所以(22=12,展开得到4+4+4=12,解得,所以向量的夹角的余弦值为,所以向量的夹角为:;故选C.点评:本题考查了向量的平方等于其模的平方以及利用数量积公式求向量的夹角.8.(5分)以下四个命题中:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②对于命题p:∃x∈R,使得x2+x+1<0.则¬p:∀x∈R,均有x2+x+1≥0;③“x≠1或y≠2”是“x+y≠3”的必要不充分条件;④两个随机变量的线性相关性越强,则相关系数就越接近于1.其中真命题的个数为()A.1 B.2 C.3 D.4考点:命题的真假判断与应用.专题:简易逻辑.分析:由抽样和命题的知识以及相关系数逐个选项判断即可.解答:解:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样不是分层抽样,而是系统抽样,故错误;②对于命题p:∃x∈R,使得x2+x+1<0.则¬p:∀x∈R,均有x2+x+1≥0,由特称命题的否定规律可知正确;③“x≠1或y≠2”不能推出“x+y≠3”,“x+y≠3”能推出“x≠1或y≠2”,故应是必要不充分条件,正确;④两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1,故错误.故选:B点评:本题考查命题真假的判定,涉及抽样和命题的知识以及相关系数,属中档题.9.(5分)阅读如下程序框图,如果输出i=4,那么空白的判断框中应填入的条件是()A.S<8?B.S<12?C.S<14?D.S<16?考点:程序框图.专题:图表型;算法和程序框图.分析:由框图给出的赋值,先执行一次运算i=i+1,然后判断得到的i的奇偶性,是奇数执行S=S+2*i,是偶数执行S=S+i,然后判断S的值是否满足判断框中的条件,满足继续从i=i+1执行,不满足跳出循环,输出i的值.解答:解:框图首先给变量S和i赋值S=0,i=1,执行i=i+1=2,判断2是奇数不成立,执行S=2;判断框内条件成立,执行i=2+1=3,判断3是奇数成立,执行S=2×3+2=8;判断框内条件成立,执行i=3+1=4,判断4是奇数不成立,执行S=8+4=12;此时在判断时判断框中的条件应该不成立,输出i=4.而此时的S的值是12,故判断框中的条件应S<12.若是S<8,输出的i值等于3,与题意不符.故选:B.点评:本题考查了程序框图,考查了循环结构,内含条件结构,整体属于当型循环,解答此题的关键是思路清晰,分清路径,属基础题.10.(5分)已知不等式表示的平面区域的面积为2,则的最小值为()A.B.C.2 D.4考点:简单线性规划.专题:不等式的解法及应用.分析:先根据面积为2求出m值,又z==1+,设k=,利用k的几何意义,结合数形结合即可得到结论.解答:解:作出不等式组对应的平面区域,其中A(0,2),B(2,0),则△OAB的面积S=,即m=0又z==1+,设k=,其中的几何意义是可行域内的点与点D(﹣1,﹣1)构成的直线的斜率问题.由图象可知DB的斜率最小,此时k==,则的最小值1+=.故选:B.点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.利用数形结合是解决本题的关键.11.(5分)如图过拋物线y2=2px(p>0)的焦点F的直线依次交拋物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则拋物线的方程为()A.y2=x B.y2=3x C.y2=x D.y2=9x考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,根据抛物线定义可知|BD|=a,进而推断出∠BCD的值,在直角三角形中求得a,进而根据BD∥FG,利用比例线段的性质可求得p,则抛物线方程可得.解答:解:如图分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,则由已知得:|BC|=2a,由定义得:|BD|=a,故∠BCD=30°,在直角三角形ACE中,∵|AF|=3,|AC|=3+3a,∴2|AE|=|AC|∴3+3a=6,从而得a=1,∵BD∥FG,∴,求得p=,因此抛物线方程为y2=3x,故选:B点评:本题主要考查了抛物线的标准方程.考查了学生对抛物线的定义和基本知识的综合把握.12.(5分)已知函数f(x)=ax3﹣3x2+b(1<a<2)只有两个零点,则实数log a2+log b2的最小值是()A.B.C.2D.考点:函数零点的判定定理.专题:计算题;函数的性质及应用;导数的综合应用.分析:由题意求导f′(x)=3ax2﹣6x=3ax(x﹣),从而可得f()=0,从而可得2log2a+log2b=2,化简log a2+log b2═1++(+);再利用基本不等式即可.解答:解:∵f(x)=ax3﹣3x2+b,∴f′(x)=3ax2﹣6x=3ax(x﹣),∴令f′(x)=3ax2﹣6x=3ax(x﹣)=0得,x=0或x=;∵f(0)=b>0,故f()=0,即a2b=4;∴2log2a+log2b=2,∴log a2+log b2=+=(+)(log2a+log2b)=1++(+)≥+;(当且仅当=,即log2a=2﹣,log2b=2﹣2时,等号成立).故选:D.点评:本题考查了导数的综合应用及基本不等式的应用,属于基础题.二、填空题:(本大题共4小题,每小题5分1,3,5.)13.(5分)若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为.考点:排列、组合及简单计数问题;古典概型及其概率计算公式.专题:计算题;概率与统计.分析:甲、乙两人相邻,可以把两个元素看做一个元素同其他元素进行排列,然后代入古典概率的求解公式即可求解解答:解:记甲、乙两人相邻而站为事件A甲、乙、丙三人随机地站成一排的所有排法有=6,则甲、乙两人相邻而站,把甲和乙当做一个整体,甲和乙的排列有种,然后把甲乙整体和丙进行排列,有种,因此共有=4种站法∴=故答案为:点评:本题考查排列组合及简单的计数问题及古典概率的求解,本题解题的关键是把相邻的问题作为一个元素同其他的元素进行排列,本题是一个基础题.14.(5分)已知等差数列{a n}是递增数列,S n是{a n}的前n项和,若a2,a4是方程x2﹣6x+5=0的两个根,则S6的值为24.考点:等差数列的性质.专题:等差数列与等比数列.分析:由一元二次方程的根与系数关系求得a2,a4,进一步求出公差和首项,则答案可求.解答:解:由a2,a4是方程x2﹣6x+5=0的两个根,得,由已知得a4>a2,∴解得a2=1,a4=5,∴d=,则a1=a2﹣d=1﹣2=﹣1,∴.故答案为:24.点评:本题考查了一元二次方程的根与系数关系,考查了等差数列的通项公式和前n项和,是基础的计算题.15.(5分)已知体积为的正三棱锥V﹣ABC的外接球的球心为O,满足,则该三棱锥外接球的体积为.考点:球内接多面体.专题:计算题.分析:由题意球的三角形ABC的位置,以及形状,利用球的体积,求出球的半径,求出棱锥的底面边长,利用棱锥的体积求出该三棱锥外接球的体积即可.解答:解:正三棱锥D﹣ABC的外接球的球心O满足,说明三角形ABC在球O的大圆上,并且为正三角形,设球的半径为:R,棱锥的底面正三角形ABC的高为:底面三角形ABC的边长为:R正三棱锥的体积为:××(R)2×R=解得R3=4,则该三棱锥外接球的体积为=.故答案为:.点评:本题考查球的内接体问题,球的体积,棱锥的体积,考查空间想象能力,转化思想,计算能力,是中档题.16.(5分)对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f (x)为“同域函数”,区间A为函数f(x)的一个“同城区间”.给出下列四个函数:①f(x)=cos x;②f(x)=x2﹣1;③f(x)=|x2﹣1|;④f(x)=log2(x﹣1).存在“同域区间”的“同域函数”的序号是①②③(请写出所有正确的序号)考点:函数的值域.专题:函数的性质及应用.分析:根据同域函数及同域区间的定义,再根据函数值域的求解即可找到①②③三个函数的一个同域区间,而通过判断f(x)和函数y=x交点的情况,容易判断函数④不存在同域区间.解答:解:①f(x)=,x∈[0,1]时,f(x)∈[0,1],所以①存在同域区间;②f(x)=x2﹣1,x∈[﹣1,0]时,f(x)∈[﹣1,0],所以②存在同域区间;③f(x)=|x2﹣1|,x∈[0,1]时,f(x)∈[0,1],所以③存在同域区间;④f(x)=log2(x﹣1),判断该函数是否有同域区间,即判断该函数和函数y=x是否有两个交点;而根据这两个函数图象可以看出不存在交点,所以该函数不存在同域区间.故答案为:①②③.点评:考查对同域函数及同域区间的理解,二次函数、余弦函数的值域的求解,知道通过判断函数f(x)和函数y=x图象交点的情况来判断函数是否存在同域区间的方法.三、解答题:(本大题共5小题,考生作答6小题,共70分.解答须写出文字说明、证明过程或演算步骤.)17.(12分)在ABC中,内角A,B,C的对边分别为a,b,c,已知(Ⅰ)求的值;(Ⅱ)若,b=2,求△ABC的面积S.考点:解三角形;三角函数中的恒等变换应用.专题:解三角形.分析:(Ⅰ)利用正弦定理把题设等式中的边转化成角的正弦,整理后可求得sinC和sinA 的关系式,则的值可得.(Ⅱ)先通过余弦定理可求得a和c的关系式,同时利用(Ⅰ)中的结论和正弦定理求得a 和c的另一关系式,最后联立求得a和c,利用三角形面积公式即可求得答案.解答:解:(Ⅰ)由正弦定理设则===整理求得sin(A+B)=2sin(B+C)又A+B+C=π∴sinC=2sinA,即=2(Ⅱ)由余弦定理可知cosB==①由(Ⅰ)可知==2②①②联立求得c=2,a=1sinB==∴S=acsinB=点评:本题主要考查了解三角形和三角函数中恒等变换的应用.考查了学生基本分析问题的能力和基本的运算能力.18.(12分)为了考查某厂2000名工人的生产技能情况,随机抽查了该厂n名工人某天的产量(单位:件),整理后得到如下的频率分布直方图(产品数量的分组区间为[10,15),[15,20),[20,25),[25,30),[30,35]),其中产量在[20,25)的工人有6名.(Ⅰ)求这一天产量不小于25的工人人数;(Ⅱ)工厂规定从产量低于20件的工人中随机的选取2名工人进行培训,求这2名工人不在同一组的概率.考点:列举法计算基本事件数及事件发生的概率;频率分布直方图.专题:概率与统计.分析:(Ⅰ)根据概率公式得出0.06×5=0.3求解得出n==20,即可得出这一天产量不小于25的工人人数为(0.05+0.03)×5×20=8(Ⅱ)设出字母列出事件:从产量低于20件的工人中选取2名工人的结果为:(A,B),(A,a),(A,b),(A,c)(A,d),(B,a),(B,b),(B,c)(B,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共有15种结果,其中2名工人不在同一组的结果为(A,a),(A,b),(A,c)(A,d),(B,a),(B,b),(B,c)(B,d),共8种.运用古典概率公式求解即可.解答:解:(Ⅰ)由题意得,产量为[20,25)的概率为0.06×5=0.3∴n==20,∴这一天产量不小于25的工人人数20.∴这一天产量不小于25的工人人数为(0.05+0.03)×5×20=8(Ⅱ)由题意得,产量为[10,15)工人人数为20×0.02×5=2,即他们分别是A,B,产量在[15,20)工人人数为20×0.04×5=4,即他们分别为是,a,b,c,d.则从产量低于20件的工人中选取2名工人的结果为:(A,B),(A,a),(A,b),(A,c)(A,d),(B,a),(B,b),(B,c)(B,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共有15种结果,其中2名工人不在同一组的结果为(A,a),(A,b),(A,c)(A,d),(B,a),(B,b),(B,c)(B,d),共8种.故这2名工人不在同一组的概率为:点评:本题考查了古典概率的求解,列举方法判断事件个数,根据公式求解即可,属于中档题.19.(12分)如图,已知AF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.(1)求证:AF∥平面BCE;(2)求证:AC⊥平面BCE;(3)求三棱锥E﹣BCF的体积.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定;直线与平面垂直的判定.专题:空间位置关系与距离.分析:(1)AF∥BE,BE⊂平面BCE,AF⊄平面BCE,运用判定定理可判断.(2)运用勾股定理可判断AC⊥BC,再根据线面的转化,AF⊥平面ABCD,AF∥BE,BE⊥平面ABCD,BE⊥AC,得出AC⊥平面BCE,(3)CM⊥平面ABEF,V E﹣BCF=V C﹣BEF得出体积即可判断.解答:解:(1)∵四边形ABEF为矩形,∴AF∥BE,BE⊂平面BCE,AF⊄平面BCE,∴AF∥平面BCE.(2)过C作CM⊥AB,垂足为M,∵AD⊥DC,∴四边形ADCM为矩形,∴AM=MB=2∵AD=2,AB=4.∴AC=2,CM=2,BC=2,∴AC2+BC2=AB2,∴AC⊥BC,∵AF⊥平面ABCD,AF∥BE,∴BE⊥平面ABCD,∴BE⊥AC,∵BE⊂平面BCE,BC⊂平面BCE,BC∩BE=B,∴AC⊥平面BCE.(3)∵AF⊥平面ABCD,AF⊥CM,∵CM⊥AB,AF⊂平面ABEF,AB⊂平面ABEF,AF∩AB=A,∴CM⊥平面ABEF,∴V E﹣BCF=V C﹣BEF==×2×4×2.点评:本题综合考查了空间直线,几何体的平行,垂直问题,求解体积,属于中档题.20.(12分)已知椭圆+=1(a>b>0)的左、右焦点分别是点F1,F2,其离心率e=,点P为椭圆上的一个动点,△PF1F2面积的最大值为4.(Ⅰ)求椭圆的方程;(Ⅱ)若A,B,C,D是椭圆上不重合的四个点,AC与BD相交于点F1,=0,求||+||的取值范围.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)容易知道当P点为椭圆的上下顶点时,△PF1F2面积最大,再根据椭圆的离心率为可得到关于a,c的方程组,解该方程组即可得到a,c,b,从而得出椭圆的方程;(Ⅱ)先容易求出AC,BD中有一条直线不存在斜率时||+||=14,当直线AC存在斜率k 且不为0时,写出直线AC的方程y=k(x+2),联立椭圆的方程消去y得到(3+4k2)x2+16k2x+16k2﹣48=0,根据韦达定理及弦长公式即可求得,把k换上即可得到.所以用k表示出,这时候设k2+1=t,t>1,从而得到,根据导数求出的范围,从而求出的取值范围.解答:解:(Ⅰ)由题意知,当P是椭圆的上下顶点时△PF1F2的面积取最大值;∴;即①;由离心率为得:②;∴联立①②解得a=4,c=2,b2=12;∴椭圆的方程为;(Ⅱ)由(Ⅰ)知F1(﹣2,0);∵,∴AC⊥BD;(1)当直线AC,BD中一条直线斜率不存在时,;(2)当直线AC斜率为k,k≠0时,其方程为y=k(x+2),将该方程带入椭圆方程并整理得:(3+4k2)x2+16k2x+16k2﹣48=0;若设A(x1,y1),B(x2,y2),则:;∴=;直线BD的方程为y=,同理可得;∴=;令k2+1=t,t>1;∴==;设f(t)=,(t>1),f′(t)=;∴t∈(1,2)时,f′(t)>0,t∈(2,+∞)时,f′(t)<0;∴t=2时,f(t)取最大值,又f(t)>0;∴;∴;∴综上得的取值范围为.点评:考查三角形的面积公式,椭圆离心率的概念,椭圆的标准方程,a,b,c三个系数的几何意义,直线的点斜式方程,以及弦长公式,根据导数求函数最值的方法.21.(12分)设函数f(x)=x2﹣(a+b)x+ablnx(其中e为自然对数的底数,a≠e,b∈R),曲线y=f(x)在点(e,f(e))处的切线方程为y=﹣e2.(1)求b;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.考点:利用导数研究曲线上某点切线方程;函数零点的判定定理.专题:计算题;函数的性质及应用;导数的概念及应用;导数的综合应用.分析:(1)求导,从而求b;(2)由(1)得,,从而①当时,要使得f(x)在上有且只有两个零点,只需=,②当时,求导确定零点个数,③当a>e时,求导确定零点个数.解答:解:(1),∵f′(e)=0,a≠e,∴b=e;(2)由(1)得,,①当时,由f′(x)>0得x>e;由f′(x)<0得.此时f(x)在上单调递减,在(e,+∞)上单调递增.∵,;∴要使得f(x)在上有且只有两个零点,则只需=,即;②当时,由f′(x)>0得或x>e;由f′(x)<0得a<x<e.此时f(x)在(a,e)上单调递减,在和(e,+∞)上单调递增.此时,∴此时f(x)在[e,+∞)至多只有一个零点,不合题意;③当a>e时,由f′(x)>0得或x>a,由f′(x)<0得e<x<a,此时f(x)在和(a,+∞)上单调递增,在(e,a)上单调递减,且,∴f(x)在至多只有一个零点,不合题意.综上所述,a的取值范围为.点评:本题考查了导数的综合应用及导数的几何意义的应用,同时考查了分类讨论的思想应用,属于中档题.【选修4-1:几何证明选讲】(共1小题,满分10分)22.(10分)如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.(Ⅰ)求证:AD∥EC;(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.考点:圆的切线的性质定理的证明;直线与圆相交的性质;直线与圆的位置关系;与圆有关的比例线段.专题:计算题;证明题.分析:(I)连接AB,根据弦切角等于所夹弧所对的圆周角得到∠BAC=∠D,又根据同弧所对的圆周角相等得到∠BAC=∠E,等量代换得到∠D=∠E,根据内错角相等得到两直线平行即可;(II)根据切割线定理得到PA2=PB•PD,求出PB的长,然后再根据相交弦定理得PA•PC=BP•PE,求出PE,再根据切割线定理得AD2=DB•DE=DB•(PB+PE),代入求出即可.解答:解:(I)证明:连接AB,∵AC是⊙O1的切线,∴∠BAC=∠D,又∵∠BAC=∠E,∴∠D=∠E,∴AD∥EC.(II)∵PA是⊙O1的切线,PD是⊙O1的割线,∴PA2=PB•PD,∴62=PB•(PB+9)∴PB=3,在⊙O2中由相交弦定理,得PA•PC=BP•PE,∴PE=4,∵AD是⊙O2的切线,DE是⊙O2的割线,∴AD2=DB•DE=9×16,∴AD=12点评:此题是一道综合题,要求学生灵活运用直线与圆相切和相交时的性质解决实际问题.本题的突破点是辅助线的连接.【选修4-4:坐标系与参数方程】(共1小题,满分0分)23.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),直线l与曲线C:(y﹣2)2﹣x2=1交于A,B两点(1)求|AB|的长;(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.考点:直线的参数方程;简单曲线的极坐标方程.专题:直线与圆.分析:(1)把直线的参数方程参数t消去得,y﹣2=(x+2),代入曲线C:(y﹣2)2﹣x2=1,根据|AB|=|x1﹣x2|,运算求得结果.(2)根据中点坐标的性质可得AB中点M对应的参数为=1,由t的几何意义可得点P到M的距离,运算求得结果.解答:解:(1)由(t为参数),参数t消去得,y﹣2=(x+2),代入曲线C:(y﹣2)2﹣x2=1,消去y整理得:2x2+12x+11=0,设A(x1,y1),B(x2,y2),则x1+x2=﹣6,x1•x2=.…(3分)所以|AB|=|x1﹣x2|=2=2.…(5分)(2)易得点P在平面直角坐标系下的坐标为(﹣2,2),根据中点坐标的性质可得AB中点M对应的参数为=1.…(8分)所以由t的几何意义可得点P到M的距离为|PM|=2.…(10分)点评:本题主要考查直线的参数方程、点到直线的距离公式,用极坐标刻画点的位置,属于基础题.【选修4-5:不等式选讲】(共1小题,满分0分)24.选修4﹣5:不等式选讲已知函数f(x)=|x+1|﹣|x|+a.(Ⅰ)若a=0,求不等式f(x)≥0的解集;(Ⅱ)若方程f(x)=x有三个不同的解,求a的取值范围.考点:绝对值不等式的解法;根的存在性及根的个数判断.专题:不等式的解法及应用.分析:(Ⅰ)若a=0,则f(x)=,分 x<﹣1时、当﹣1≤x<0时、当x≥0 时,三种情况,分别求得不等式的解集,再取并集,即得所求.(Ⅱ)设u(x)=|x+1|﹣|x|,由题意易知,把函数y=u(x)的图象向下平移1个单位以内(不包括1个单位)与y=x的图象始终有3个交点,从而求得a的范围.解答:解:(Ⅰ)若a=0,f(x)=|x+1|﹣|x|=,∴当 x<﹣1时,不等式即﹣1≥0,解得x∈∅.当﹣1≤x<0时,不等式即2x+1≥0,解得x≥﹣.综合可得﹣≤x<0.当x≥0 时,不等式即1≥0,恒成立,故不等式的解集为x≥0.综上,不等式的解集为[﹣,+∞).(5分)(Ⅱ)设u(x)=|x+1|﹣|x|,则函数u(x)的图象和 y=x的图象如右图:由题意易知,把函数y=u(x)的图象向下平移1个单位以内(不包括1个单位)与y=x的图象始终有3个交点,从而﹣1<a<0.(10分)点评:本题主要考查方程的根的存在性及个数判断,体现了数形结合以及等价转化的数学思想,属于中档题.。