因式分解-提取公因式法精选试题

合集下载

数学提公因式练习题

数学提公因式练习题

数学提公因式练习题一、选择题1. 下列多项式中,哪一个不能通过提公因式法进行因式分解?A. x^2 - 4x + 4B. x^2 + 5x + 6C. x^3 - 1D. x^2 - 92. 对于多项式 2x^2 - 6x,提公因式后得到的结果是:A. 2x(x - 3)B. 2x(x + 3)C. 2(x^2 - 3x)D. 2x(x - 1)3. 多项式 3a^2 - 6a 可以提取的公因式是:A. 3aB. 6aC. aD. 3二、填空题4. 将多项式 4x^2 - 4x + 1 提取公因式后,结果为 _________ 。

5. 多项式 6x^3 - 18x^2 可以提取的公因式是 _________ ,提取后的结果为 _________ 。

6. 如果多项式 5a^3b - 15a^2b^2 可以提取公因式 5a^2b,那么原多项式可以表示为 _________ 。

三、简答题7. 请写出多项式 3x^2 - 6x + 9 通过提公因式法进行因式分解的步骤。

8. 给定多项式 ax^2 + bx + c,如果 a, b, c 均为正整数,且 a 不等于 1,说明为什么这个多项式不能通过提公因式法进行因式分解。

四、计算题9. 计算并简化以下表达式:(2x + 3)(x - 2)。

10. 给定多项式 4x^3 - 8x^2 - 12x,通过提公因式法进行因式分解,并写出结果。

五、应用题11. 在一个数学竞赛中,有一道题目要求学生将多项式 5x^3 - 10x^2 + 15x 提取公因式。

如果学生正确提取了公因式,那么他们将得到多少分?12. 一个数学老师在课堂上提出了一个多项式 6a^2 - 3ab + 2b^2,并要求学生通过提公因式法进行因式分解。

如果学生正确分解了这个多项式,他们将获得额外的积分。

请写出分解后的结果。

六、综合题13. 给定多项式 12x^4 - 36x^3 + 24x^2,通过提公因式法进行因式分解,并解释每一步的分解过程。

数学提取公因式练习题

数学提取公因式练习题

数学提取公因式练习题数学提取公因式是高中数学中常见的一种技巧,它可以帮助我们简化复杂的代数式,解决一些实际问题。

通过提取公因式,我们可以将一个复杂的式子简化为一个更加简单的形式,从而更好地理解问题的本质。

为了帮助大家更好地掌握提取公因式的方法,我将给大家举几个练习题。

题目一:将下列代数式提取公因式。

1) 3x^2 + 6x2) 4a^3 - 16a3) 5xy + 10x解题思路:在这些题目中,我们可以看到每个式子中都有一个公共因子。

我们可以找出它们的最大公因子,并将其提取出来。

对于第一个题目,最大公因子为3x,所以我们可以提取出3x,得到简化后的式子为3x(x+2)。

对于后面两个题目,同样可以找出它们的公共因子并进行提取。

题目二:解决实际问题。

小明去买水果,他买了3个苹果,6个梨和9个桔子。

如果将苹果、梨和桔子的个数都提取公因式,问他一共买了多少个水果?解题思路:我们知道,苹果、梨和桔子的个数分别为3、6和9,它们的最大公因子是3。

所以我们可以将这三个数都除以3,得到1个苹果,2个梨和3个桔子。

因此,小明一共买了6个水果。

通过这些练习题,我们可以发现提取公因式的方法并不难。

关键是要找出式子中的公共因子,并将其提取出来。

这样可以帮助我们简化代数式,解决实际问题。

总结一下,数学提取公因式是一种常用的解决复杂代数式的技巧。

通过提取公因式,我们可以简化式子,更好地理解问题的本质。

希望大家通过这些练习题,对提取公因式有更加深入的理解和掌握。

加油!。

提公因式法分解因式典型例题

提公因式法分解因式典型例题

因式分解( 1)一知识点讲解知识点一:因式分解概念:把一个多项式化为几个整式的积的形式,叫做因式分解,也叫做把这个多项式分解因式。

1.因式分解特征:因式分解的结果是几个整式的乘积。

2.因式分解与整式乘法关系:因式分解与整式的乘法是相反方向的变形(a b)2a22ab b2a22ab b2(a b)2整因式(a b)2a22ab b2式a 2 2ab b2(a b)2乘分法解(a b)(a b) a 2b2a2b2(a b)(a b)(x 3 y)( x 3y) x29y2x29 y2(x 3y)( x 3 y)知识点二:寻找公因式1、小学阶段我们学过求一组数字的最大公因(约)数方法:(短除法)例如:求 20,36,80 的最大公(约)数?最大公倍数?12、寻找公因式的方法:3a 2y 3ay 6 y , 4 xy 3 8 x 3y 2 ,927a( x y)3b( x y)2( x y)3 ,- 27a 2b 336a 3b 29a 2b1. 确定公因式的系数 当多项式中各项系数是整数时,公因式的系数是多项式中各项系数的最大公因数;当多项式中各项系数是分数时,则公因式的系数为分数,而且分母取各项系数中分母的最小公倍数,分子取各项系数中分子的最大公因数。

2. 确定相同字母 公因式的字母是各项都含有的字母3. 看次数 相同字母的指数取最低次数4. 看整体 如果多项式中含有相同的多项式,应将其看成整体不要拆开。

5. 看符号若多项式的首项是 “-”,则公因式的符号一般为负。

知识点三:因式分解的方法(重点)(一)因式分解的第一种方法(提公因式法)(重点):1. 提取公因式法: 如果多项式的各项含有公因式,那么就可以把这个公因式提到括号外面,把多项式转化成公因式与另一个多项式的积的形,这种因式分解的方法叫做提公因式法。

2. 符号语言: ma mb mc m(a b c)3. 提公因式的步骤:(1)确定公因式( 2)提出公因式并确定另一个因式(依据多项式除以单项式)原多项式 另一个因式公因式4. 注意事项: 因式分解一定要彻底 二、例题讲解模块 1:考察因式分解的概念1. ( 2017 春峄城区期末)下列各式从左到右的变形,是因式分解的是( )A 、 x 29 6x ( x 3)( x 3) 6x B 、 ( x 5)( x 2) x 23x 10 C 、 x 28x 16 ( x 4)2D、 6ab 2a 3b22 .( 2017 秋抚宁县期末)下列各式从左到右的变形,是因式分解的是()A、 x22x 3 ( x 1)2 2 B 、 ( xy)(x y) x2y2C、 x2xy y2( x y)2 D、 2x 2 y 2( xy)3 .( 2017 秋姑苏区期末)下列从左到右的运算是因式分解的是()A、2a2 2a1 2 (a1) 1B、( xy)(x y) x2y2aC、9x26x 1 (3x 1)2 D 、 x2y2(x y) 22xy4 .( 2017 秋华德县校级期末)下列各式从左到右的变形,是因式分解的是()A、 3x 2 y 1 5x 1 B 、 (3a 2b)(3a 2b) 9a24b2 C、 x2x x2 (1 1 ) D 、 2x28 y22(x2y)(x 2 y)x5 .( 2017 春新城区校级期中)下列各式从左到右的变形是因式分解的是()A、 a( ab) a2ab B 、 a22a 1 a(a 2) 1C、 x2x x( x 1)D、 xy2x2 yx( y2xy )6 .( 2016 秋濮阳期末)下列式子中,从左到右的变形是因式分解的是()A、 ( x 1)( x 2) x2 3x 2 C、x2 4x 4 x( x 4) 4B 、 x23x 2 ( x 1)( x2)D 、 x 2y2( x y)( xy)模块 2:考察公因式1 .( 2017 春抚宁县期末)多项式15m3n25m2n 20m2n3的公因式是()A、 5mn B 、 5m2 n2 C 、 5m2n D 、 5mn22 . ( 2017春东平县期中)把多项式8a2b3 c 16a 2b2c224 a3bc3分解因式,应提的公因式是()A、 8a2bc B 、 2a2 b2 c3 C 、4abc D 、 24a3b3c33 . ( 2017秋凉州区末)多项式a29 与 a23a 的公因式是()A、 a 3 C 、 a 3 B 、 a 1 D 、 a 14 . ( 2017春邵阳县期中)多项式8x m y n 112x3m y n的公因式是()A、 x m y n B 、 x m y n 1 C 、 4x m y n D 、 4x m y n 15 . ( 2016春深圳校级期中)多项式5mx325mx2 10mx 各项的公因式是()3A、5mx2 B 、5mx3 C 、 mx D 、 5mx 6. 下列各组代数式中没有公因式的是()A、 5m(a b) 与 b a B 、 (a b)2与 a bC、 mx y 与 x y D 、 a2ab 与 a2b ab27. 观察下列各组式子:①2a b 和 a b ;② 5m(a b)和 a b ;③ 3(a b) 和ab ;④ x2y2和 x2y 2。

提取公因式法因式分解(原卷版)

提取公因式法因式分解(原卷版)

提取公因式法因式分解【知识梳理】一.因式分解的意义1、分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.2、因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.例如:3、因式分解是恒等变形,因此可以用整式乘法来检验.二.公因式1、定义:多项式ma+mb+mc中,各项都含有一个公共的因式m,因式m叫做这个多项式各项的公因式.2、确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.三.因式分解-提公因式法1、提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.2、具体方法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.(2)如果多项式的第一项是负的,一般要提出“﹣”号,使括号内的第一项的系数成为正数.提出“﹣”号时,多项式的各项都要变号.3、口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.4、提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同.【考点剖析】一.因式分解的意义(共4小题)1.(2022秋•黄浦区期中)下列等式中,从左到右的变形是多项式的因式分解的是()A.(a+b)2=a2+2ab+b2B.x2﹣2x+5=x(x﹣2)+5C.a2﹣2ab+b2=(a﹣b)2D.x2+1=x(x+)2.(2022秋•静安区校级期中)在下列等式中,从左到右的变形是因式分解的是()A.2a2﹣3a+1=a(2a﹣3)+1B.C.(a+1)(a﹣1)=a2﹣1D.﹣4﹣x2y2+4xy=﹣(2﹣xy)23.(2022秋•闵行区校级期末)下列各式从左到右的变形是因式分解的是()A.a(a+b)=a2+ab B.a2+2a+1=a(a+2)+1C.(a+b)(a﹣b)=a2﹣b2D.2a2﹣6ab=2a(a﹣3b)4.(2022秋•浦东新区校级期末)下列等式从左到右是因式分解,且结果正确的是()A.a2+8a+16=(a+4)2B.(a+4)2=a2+8a+16C.a2+8a+16=a(a+8)+16D.a2+8(a+2)=a2+8a+16二.公因式(共7小题)5.(2022秋•青浦区校级期中)单项式3a3b与单项式9a2b3的公因式是()A.3a2b B.3a3b3C.a2b D.a3b36.(2020秋•浦东新区期末)多项式3x﹣9,x2﹣9与x2﹣6x+9的公因式为()A.x+3B.(x+3)2 C.x﹣3D.x2+97.(2022秋•嘉定区期中)多项式6x3y2﹣3x2y2+12x2y3的公因式是.8.(2019秋•黄浦区校级期中)多项式4a(x﹣y)﹣6a2(x﹣y)中各项的公因式是.9.(2018秋•嘉定区期末)写出多项式x2﹣y2与多项式x2+xy的一个公因式.10.(2019秋•浦东新区期末)8x3y2和12x4y的公因式是.11.(2019秋•松江区期中)多项式:4x(x﹣y)﹣3(x﹣y)的公因式是.三.因式分解-提公因式法(共14小题)12.(2022秋•徐汇区期末)分解因式:(x﹣5)(3x﹣2)﹣3(x﹣5)=.13.(2022秋•嘉定区期中)分解因式:3x3﹣9x2﹣3x=.14.(2022秋•宝山区校级期末)分解因式:4x2y﹣12xy=.15.(2021秋•金山区期末)因式分解:6a2﹣8a3=.16.(2021秋•奉贤区期末)分解因式:2m2n﹣mn2=.17.(2022秋•嘉定区校级期中)因式分解:﹣15a﹣10ab+5abc=.18.(2022秋•嘉定区期中)当a=3,b=时,代数式﹣a2+4ab的值为.19.(2022秋•嘉定区期中)因式分解:6(x+y)2﹣2(x+y)(x﹣y)20.(2022秋•杨浦区期中)分解因式:a2(a+2b)﹣ab(﹣4b﹣2a).21.(2022秋•浦东新区校级期中)因式分解:(y﹣x)2+2(x﹣y)=.22.(2022秋•青浦区校级期中)因式分解:15a2b﹣3ab=.23.(2022秋•虹口区校级期中)分解因式:3x2y﹣12xy2=.24.(2022秋•宝山区校级期中)分解因式:a(a﹣b)+b(b﹣a)=.25.(2022秋•浦东新区校级期中)2m(a﹣c)﹣5(a﹣c).【过关检测】一、单选题1.(2023·上海·七年级假期作业)下列各式从左到右的变形是因式分解的是( ) A .()2222x y x y xy +=−+B .()422211(1x x x x x x ++=++−+)C .()230130x x x x −−=−−D .()22121a a a −=−+2.(2022秋·上海宝山·七年级校考期中)分解因式()()222b x b x −+−正确的结果是( )A .()()22x b b −+B .()()21b x b −+C .()()22x b b −−D .()()21b x b −−3.(2022秋·上海松江·七年级校考期中)已知多项式2ax bx c ++分解因式得()()32x x −+,则a ,b ,c 的值分别为( )A .1,1−,6B .1,1,6−C .1,1−,6−D .1,1,64.(2023秋·上海浦东新·七年级校考期末)下列等式从左到右是因式分解,且结果正确的是( )5.(2020秋·七年级校考课时练习)把多项式-4a 3+4a 2-16a 分解因式( )二、填空题 7.(2023·上海·七年级假期作业)若5x y −=,6xy =则22x y xy −=________,2222x y +=________.8.(2022秋·上海·七年级上海市西延安中学校考期中)分解因式:22615x z yz −+=__________.9.(2022秋·上海浦东新·七年级校考期中)分解因式:223714ab a b −=______.10.(2022秋·上海·七年级上海市建平中学西校校考期中)因式分解:2()2()y x x y −+−=___________.11.(2022秋·上海松江·七年级校考期中)因式分解:2368xy y −=___________.12.(2023秋·上海浦东新·七年级校考期中)分解因式:25x y xy +=__________.13.(2023秋·上海宝山·七年级校考期末)分解因式:2412x y xy −=______.14.(2022秋·上海松江·七年级校考期中)因式分解:()()()2222a b b a a b −−−+=___________.15.(2023·上海·七年级假期作业)因式分解:15105a ab abc −−+=___________.16.(2023·上海·七年级假期作业)已知:()()2111x x x x x +++++=[](1)1(1)x x x x +⋅+++=()()()()31111x x x x ⎡⎤+⋅+⋅+=+⎣⎦,因式分解()()()220221111x x x x x x x ++++++⋅⋅⋅++,结果为_______________. 17.(2022秋·上海普陀·七年级统考期中)如果210x x ++=,那么23991x x x x ++++⋅⋅⋅+的值是______.18.(2023·上海·七年级假期作业)分解因式:(5)(32)3(5)x x x −−−−=___________三、解答题19.(2022秋·上海·七年级上海市建平中学西校校考期中)因式分解:2()5()m a c a c −−−20.(2022秋·上海·七年级专题练习)因式分解:()13(1)22n n n a a a a +−−−21.(2022秋·上海·七年级专题练习)因式分解:()()42a x y b y x −−−.22.(2022秋·上海黄浦·七年级上海市民办立达中学校考期中)因式分解:()22a b a b −−+(1x x +++。

因式分解精选例题(附答案)

因式分解精选例题(附答案)

因式分解 例题解说及练习【例题优选】:(1) 5x 2 y 15x 3 y 2 20x 2 y 3评析:先查各项系数(其余字母临时不看) ,确立 5,15,20 的最大公因数是 5,确立系数是 5 ,再查各项能否都有字母 X ,各项都有时,再确立 X 的最低次幂是几,至此确认提取 X 2,同法确立提 Y ,最后确立提公因式 5X 2Y 。

提取公因式后,再算出括号内各项。

解: 5x 2 y15x 3 y 2 20x 2 y 3=5x 2y(1 3xy4y 2 )(2)3x 2 y 12x 2 yz 9x 3 y 2评析:多项式的第一项系数为负数,应先提出负号,各项系数的最大公因数为 3,且同样字母最低次的项是 X 2Y解:3x 2 y 12 x 2 yz 9x 3 y 2= (9x 3 y 212x = 3(3x 3 y 2 4x22yz 3x 2 y)yz x 2 y)=3x 2 y(3xy 42 1)( 3)(y-x)(c-b-a)-(x-y)(2a+b-c)-(x-y)(b-2a)评析:在本题中, y-x 和 x-y 都能够做为公因式,但应防止负号过多的状况出现,所以应提取 y-x解:原式 =(y-x)(c-b-a)+(y-x)(2a+b-c)+(y-x)(b-2a)=(y-x)(c-b-a+2a+b-c+b-2a)=(y-x)(b-a)(4)(4) 把32x 3 y 4 2x 3分解因式评析:这个多项式有公因式 2x 3,应先提取公因式,节余的多项式16y 4-1 具备平方差公式的形式解: 32x 3y42x3=2x 3 (16y 4 1)=2x 3 (4 y 2 1)(4 y 2 1) =2 x3 (2y 1)( 2y 1)( 4y 21)(5)(5) 把 x 7 y 2xy 8 分解因式评析:第一提取公因式xy 2,剩下的多项式x 6-y6能够看作( x 3 ) 2( y 3 ) 2 用平方差公式分解,最后再运用立方和立方差公式分解。

初三提公因式试题及答案

初三提公因式试题及答案

初三提公因式试题及答案
一、选择题
1. 下列哪个选项不是公因式的提法?
A. 从多项式中提取最大公约数
B. 从多项式中提取相同字母的最高次幂
C. 从多项式中提取相同字母的最低次幂
D. 从多项式中提取相同字母的系数
答案:C
2. 对于多项式 \(2x^2y + 4xy\),正确的公因式提取方法是:
A. \(2xy\)
B. \(2x^2y\)
C. \(2xy^2\)
D. \(4xy\)
答案:A
二、填空题
3. 多项式 \(3x^2 - 9x\) 的公因式是 ________。

答案:\(3x\)
4. 多项式 \(4a^3b - 8a^2b^2\) 的公因式是 ________。

答案:\(4a^2b\)
三、解答题
5. 从多项式 \(6x^2y - 12xy^2\) 中提取公因式,并简化表达式。

答案:\(6xy(x - 2y)\)
6. 从多项式 \(5a^3b - 15a^2b^2\) 中提取公因式,并简化表达式。

答案:\(5a^2b(a - 3b)\)
四、综合题
7. 已知多项式 \(7x^3 - 14x^2 + 21x\),求出它的公因式,并简化表达式。

答案:\(7x(x^2 - 2x + 3)\)
8. 已知多项式 \(4m^3n - 8m^2n^2 + 12mn^3\),求出它的公因式,并简化表达式。

答案:\(4mn(m^2 - 2mn + 3n^2)\)。

《提公因式法》因式分解提高习题

《提公因式法》因式分解提高习题

《提公因式法》因式分解提高习题一、填空题1.单项式-12x 12y 3与8x 10y 6的公因式是________.2.-xy 2(x+y)3+x(x+y)2的公因式是________.3.把4ab 2-2ab+8a 分解因式得________.4.5(m -n)4-(n-m)5可以写成________与________的乘积.5.当n 为_____时,(a-b )n =(b-a )n ;当n 为______时,(a-b )n =-(b-a )n 。

(其中n 为正整数)6.多项式-ab (a-b )2+a (b-a )2-ac (a-b )2分解因式时,所提取的公因式应是_____.7.(a-b )2(x-y )-(b-a )(y-x )2=(a-b )(x-y )×________. 8.多项式18x n+1-24x n 的公因式是_______.二、选择题1.多项式8x m y n-1-12x 3m y n 的公因式是( )A .x m y nB .x m y n-1C .4x m y nD .4x m y n-1 2.把多项式-4a 3+4a 2-16a 分解因式( )A .-a(4a 2-4a+16)B .a(-4a 2+4a -16)C .-4(a 3-a 2+4a)D .-4a(a 2-a+4) 3.如果多项式-51abc+51ab 2-a 2bc 的一个因式是-51ab,那么另一个因式是( )A .c-b+5acB .c+b-5acC .c-b+51ac D .c+b-51ac4.用提取公因式法分解因式正确的是( ) A .12abc-9a 2b 2=3abc(4-3ab) B .3x 2y-3xy+6y=3y(x 2-x+2y) C .-a 2+ab-ac=-a(a-b+c) D .x 2y+5xy-y=y(x 2+5x)5.下列各式公因式是a 的是( )A. ax+ay+5 B .3ma-6ma 2 C .4a 2+10ab D .a 2-2a+ma6.-6xyz+3xy2+9x2y的公因式是()A.-3x B.3xz C.3yz D.-3xy7.把多项式(3a-4b)(7a-8b)+(11a-12b)(8b-7a)分解因式的结果是()A.8(7a-8b)(a-b);B.2(7a-8b)2 ;C.8(7a-8b)(b-a);D.-2(7a-8b)8.把(x-y)2-(y-x)分解因式为()A.(x-y)(x-y-1)B.(y-x)(x-y-1)C.(y-x)(y-x-1)D.(y-x)(y-x+1)9.下列各个分解因式中正确的是()A.10ab2c+ac2+ac=2ac(5b2+c)B.(a-b)3-(b-a)2=(a-b)2(a-b+1)C.x(b+c-a)-y(a-b-c)-a+b-c=(b+c-a)(x+y-1)D.(a-2b)(3a+b)-5(2b-a)2=(a-2b)(11b-2a)10观察下列各式: ①2a+b和a+b,②5m(a-b)和-a+b,③3(a+b)和-a-b,④x2-y2和x2+y2.其中有公因式的是()A.①② B.②③C.③④D.①④三、解答题1.请把下列各式分解因式(1)x(x-y)-y(y-x) (2)-12x3+12x2y-3xy2(3)(x+y)2+mx+my (4)a(x-a)(x+y)2-b(x-a)2(x+y)(5)15×(a-b)2-3y(b-a)(6)(a-3)2-(2a-6)(7)(m+n)(p-q)-(m+n)(q+p)2.满足下列等式的x的值.①5x2-15x=0 ②5x(x-2)-4(2-x)=03.a=-5,a+b+c=-5.2,求代数式a2(-b-c)-3.2a(c+b)的值.4.a+b=-4,ab=2,求多项式4a2b+4ab2-4a-4b的值.参考答案一、填空题1.答案:4x10y3;解析:【解答】系数的最大公约数是4,相同字母的最低指数次幂是x10y3,∴公因式为4x10y3.【分析】运用公因式的概念,找出各项的公因式即可知答案.2. 答案:x(x+y)2;解析:【解答】)-xy2(x+y)3+x(x+y)2的公因式是x(x+y)2;【分析】运用公因式的概念,找出各项的公因式即可知答案.3. 答案:2a(2b2-b+4) ;解析:【解答】4ab²- 2ab + 8a= 2a( 2b² - b + 4 ),【分析】把多项式4ab²- 2ab + 8a运用提取公因式法因式分解即可知答案.4. 答案:(m-n)4,(5+m-n)解析:【解答】5(m-n)4-(n-m)5=(m-n)4(5+m-n)【分析】把多项式5(m-n)4-(n-m)5运用提取公因式法因式分解即可知答案.5. 答案:偶数奇数解析:【解答】当n为偶数时,(a-b)n=(b-a)n;当n为奇数时,(a-b)n=-(b-a)n.(其中n为正整数)故答案为:偶数,奇数.【分析】运用乘方的性质即可知答案.6. 答案:-a(a-b)2解析:【解答】-ab(a-b)2+a(a-b)2-ac(a-b)2=-a(a-b)2(b+1-c),故答案为:-a(a-b)2.【分析】运用公因式的概念,找出各项的公因式即可知答案.7. 答案:(a-b+x-y)解析:【解答】(a-b)2(x-y)-(b-a)(y-x)2=(a-b)(x-y)×(a-b+x-y).故答案(a-b+x-y ).【分析】把多项式(a-b )2(x-y )-(b-a )(y-x )2运用提取公因式法因式分解即可. 8. 答案:6x n解析:【解答】系数的最大公约数是6,相同字母的最低指数次幂是x n , ∴公因式为6x n .故答案为6x n【分析】运用公因式的概念,找出各项的公因式即可知答案. 二、选择题 1. 答案:D解析:【解答】多项式8x m y n-1-12x 3m y n 的公因式是4x m y n-1.故选D . 【分析】运用公因式的概念,找出各项的公因式即可知答案. 2. 答案:D解析:【解答】-4a 3+4a 2-16a=-4a (a 2-a+4).故选D .【分析】把多项式-4a 3+4a 2-16a 运用提取公因式法因式分解即可. 3. 答案:A 解析:【解答】-51abc+51ab 2-a 2bc=-51ab (c-b+5ac ),故选A.【分析】运用提取公因式法把多项式-51abc+51ab 2-a 2bc 因式分解即可知道答案.4. 答案:C解析:【解答】A .12abc-9a 2b 2=3ab (4c-3ab ),故本选项错误; B .3x 2y-3xy+6y=3y (x 2-x+2),故本选项错误;C .-a 2+ab-ac=-a (a-b+c ),本选项正确; D .x 2y+5xy-y=y (x 2+5x-1),故本选项错误;故选C.【分析】根据公因式的定义,先找出系数的最大公约数,相同字母的最低指数次幂,确定公因式,再提取公因式即可. 5. 答案:D ;解析:【解答】A.ax+ay+5没有公因式,所以本选项错误;B.3ma-6ma 2的公因式为:3ma ,所以本选项错误;C.4a 2+10ab 的公因式为:2a ,所以本选项错误;D.a 2-2a+ma 的公因式为:a ,所以本选项正确.故选:D.【分析】把各选项运用提取公因式法因式分解即可知答案.6. 答案:D;解析:【解答】-6xyz+3xy2-9x2y各项的公因式是-3xy.故选D.【分析】运用公因式的概念,找出即可各项的公因式可知答案.7. 答案:C;【解答】(3a-4b)(7a-8b)-(11a-12b)(7a-8b)=(7a-8b)(3a-4b-11a+12b)=(7a-8b)(-8a+8b) 解析:=8(7a-8b)(b-a).故选C【分析】把(3a-4b)(7a-8b)-(11a-12b)(7a-8b)运用提取公因式法因式分解即可知答案.8. 答案:C;解析:【解答】(x-y)2-(y-x)=(y-x)2-(y-x)=(y-x)(y-x-1),故答案为:C. 【分析】把(x-y)2-(y-x)运用提取公因式法因式分解即可知答案.9. 答案:D;解析:【解答】10ab2c+6ac2+2ac=2ac(5b2+3c+1),故此选项错误;(a-b)3-(b-a)2=(a-b)2(a-b-1)故此选项错误;x(b+c-a)-y(a-b-c)-a+b-c=x(b+c-a)+y(b+c-a)+(b-c-a)没有公因式,故此选项错误;(a-2b)(3a+b)-5(2b-a)2=(a-2b)(3a+b-5a+10b)=(a-2b)(11b-2a),故此选项正确;故选:D.【分析】把各选项运用提取公因式法因式分解即可知答案.10. 答案:B.解析:【解答】①2a+b和a+b没有公因式;②5m(a-b)和-a+b=-(a-b)的公因式为(a-b);③3(a+b)和-a-b=-(a+b)的公因式为(a+b);④x 2 -y 2和x 2 +y 2没有公因式.故选B.【分析】运用公因式的概念,加以判断即可知答案.三、解答题1.答案:(1)(x-y)(x+y);(2)-3x(2x-y)2;(3)(x+y)(x+y+m);(4)(x-a)(x+y)(ax+ay-bx+ab);(5)3(a-b)(5ax-5bx+y);(6)(a-3)(a-5);(7)-2q(m+n). 解析:【解答】(1)x(x-y)-y(y-x)=(x-y)(x+y)(2)-12x3+12x2y-3xy2=-3x(4x2-4xy+y2)=-3x(2x-y)2(3)(x+y)2+mx+my=(x+y)2+m(x+y)=(x+y)(x+y+m)(4)a(x-a)(x+y)2-b(x-a)2(x+y)=(x-a)(x+y)[a(x+y)-b(x-a)]=(x-a)(x+y)(ax+ay-bx+ab) (5)15x(a-b)2-3y(b-a)=15x(a-b)2+3y(a-b)=3(a-b)(5ax-5bx+y);(6)(a-3)2-(2a-6)=(a-3)2-2(a-3)=(a-3)(a-5);(7)(m+n)(p-q)-(m+n)(q+p)=(m+n)(p-q-q-p)=-2q(m+n)【分析】运用提取公因式法因式分解即可.42.答案:(1)x=0或x=3;(2)x=2或x=-5解析:【解答】(1)5x2-15x=5x(x-3)=0,则5x=0或x-3=0,∴x=0或x=34(2)(x-2)(5x+4)=0,则x-2=0或5x+4=0,∴x=2或x=-5【分析】把多项式利用提取公因式法因式分解,然后再求x的值.3.答案:1.8解析:【解答】∵a=-5,a+b+c=-5.2,∴b+c=-0.2∴a2(-b-c)-3.2a(c+b)=-a2(b+c)-3.2a·(b+c)=(b+c)(-a2-3.2a)=-a(b+c)(a+3.2)=5×(-0.2)×(-1.8)=1.8【分析】把a2(-b-c)-3.2a(c+b)利用提取公因式法因式分解,再把已知的值代入即可知答案.4. 答案:-16解析:【解答】4a2b+4ab2-4a-4b=4(a+b)(ab-1),∵a+b=-4,ab=2,∴4a2b+4ab2-4a-4b=4(a+b)(ab-1)=-16.【分析】把4a2b+4ab2-4a-4b利用提取公因式法因式分解,再把已知的值代入即可知答案.。

因式分解全章练习题

因式分解全章练习题

因式分解练习题一、提取公因式专项训练一:确定下列各多项式的公因式。

1、ay ax +2、36mx my -3、2410a ab +4、2155a a +5、22x y xy -6、22129xyz x y -7、()()m x y n x y -+-8、()()2x m n y m n +++9、3()()abc m n ab m n --- 10、2312()9()x a b m b a --- 专项训练二:利用乘法分配律的逆运算填空。

1、22____()R r R r ππ+=+2、222(______)R r πππ+=3、2222121211___()22gt gt t t +=+ 4、2215255(_______)a ab a +=专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成立。

1、__()x y x y +=+ 2、__()b a a b -=- 3、__()z y y z -+=- 4、()22___()y x x y -=- 5、33()__()y x x y -=- 6、44()__()x y y x --=- 7、22()___()()n n a b b a n -=-为自然数 8、2121()___()()n n a b b a n ++-=-为自然数9、()1(2)___(1)(2)x y x y --=-- 10、()1(2)___(1)(2)x y x y --=-- 11、23()()___()a b b a a b --=- 12、246()()___()a b b a a b --=- 专项训练四、把下列各式分解因式。

(单项式因式分解)1、23222515x y x y - 6、22129xyz x y - 7、2336a y ay y -+8、259a b ab b -+ 9、2x xy xz -+- 10、223241228x y xy y --+11、323612ma ma ma -+- 12、32222561421x yz x y z xy z +-13、3222315520x y x y x y +- 14、432163256x x x --+专项训练五:把下列各式分解因式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档