八皇后问题算法分析
八皇后问题(经典算法-回溯法)

⼋皇后问题(经典算法-回溯法)问题描述:⼋皇后问题(eight queens problem)是⼗九世纪著名的数学家⾼斯于1850年提出的。
问题是:在8×8的棋盘上摆放⼋个皇后,使其不能互相攻击。
即任意两个皇后都不能处于同⼀⾏、同⼀列或同⼀斜线上。
可以把⼋皇后问题扩展到n皇后问题,即在n×n的棋盘上摆放n个皇后,使任意两个皇后都不能互相攻击。
思路:使⽤回溯法依次假设皇后的位置,当第⼀个皇后确定后,寻找下⼀⾏的皇后位置,当满⾜左上、右上和正上⽅向⽆皇后,即矩阵中对应位置都为0,则可以确定皇后位置,依次判断下⼀⾏的皇后位置。
当到达第8⾏时,说明⼋个皇后安置完毕。
代码如下:#include<iostream>using namespace std;#define N 8int a[N][N];int count=0;//判断是否可放bool search(int r,int c){int i,j;//左上+正上for(i=r,j=c; i>=0 && j>=0; i--,j--){if(a[i][j] || a[i][c]){return false;}}//右上for(i=r,j=c; i>=0 && j<N; i--,j++){if(a[i][j]){return false;}}return true;}//输出void print(){for(int i=0;i<N;i++){for(int j=0;j<N;j++){cout<<a[i][j]<<" ";}cout<<endl;}}//回溯法查找适合的放法void queen(int r){if(r == 8){count++;cout<<"第"<<count<<"种放法\n";print();cout<<endl;return;}int i;for(i=0; i<N; i++){if(search(r,i)){a[r][i] = 1;queen(r+1);a[r][i] = 0;}}}//⼊⼝int main(){queen(0);cout<<"⼀共有"<<count<<"放法\n"; return 0;}。
八皇后问题详细的解法

若无法放下皇后则回到上一行, 即回溯
当n行的皇后都已确定后,我们 就找到了一种方案
check2 (int a[ ],int n)
queen21(例) 1 b加约束的枚举算法{//i多nt次i; 被调用,只是一重循环
{int a[9]; for (a[1]=1;a[1]<=8;a[1]++) for (a[2]=1;a[2]<=8;a[2]++)
八皇后问题
1
1八皇后问题背景 2盲目的枚举算法 3加约束的枚举算法 4回溯法及基本思想 5 回溯法应用 6八皇后问题的递归回溯算法 7八皇后问题的非递归回溯算法
2
【背景】 八皇后问题是一个以国际象棋为背
景的问题: 如何能够在 8×8 的国际象棋棋盘上
放置八个皇后,使得任何一个皇后都 无法直接吃掉其他的皇后?为了达到 此目的,任两个皇后都不能处于同一 条横行、纵行或斜线上。
for(a[8]=1;a[8]<=8;a[8]++) 此算法可读性很好,
{if (check(a,8)==0)continue; 体现了“回溯”。但
else for(i=1;i<=8;i+nt(a[i]); }
题,而不能解决任意
}}}}}}}
的n皇后问题。
18
2 回溯法应用-算法说明
按什么顺序去搜? 目标是没有漏网之鱼,尽量速度快。
5
2 【问题设计】盲目的枚举算法
a 盲目的枚举算法
通过8重循环模拟搜索空间中的88个状态;
按枚举思想,以DFS的方式,从第1个皇后在第1列开 始搜索,枚举出所有的“解状态”:
从中找出满足约束条件的“答案状态”。
八皇后实验报告

八皇后实验报告八皇后实验报告引言:八皇后问题是一个经典的数学问题,它要求在一个8x8的国际象棋棋盘上放置8个皇后,使得任意两个皇后都不会互相攻击。
这个问题看似简单,但实际上却充满了挑战。
在本次实验中,我们将探索八皇后问题的解法,并通过编写算法来解决这个问题。
一、问题背景:八皇后问题最早由数学家马克斯·贝瑟尔于1848年提出,它是一道经典的递归问题。
在国际象棋中,皇后可以在同一行、同一列或同一对角线上进行攻击,因此我们需要找到一种方法,使得8个皇后彼此之间不会相互攻击。
二、解决方法:为了解决八皇后问题,我们可以使用回溯法。
回溯法是一种穷举搜索的方法,它通过逐步尝试所有可能的解决方案,直到找到符合要求的解。
具体步骤如下:1. 初始化一个8x8的棋盘,并将所有格子标记为无皇后。
2. 从第一行开始,依次尝试在每一列放置一个皇后。
3. 在每一列中,检查当前位置是否符合要求,即与已放置的皇后不在同一行、同一列或同一对角线上。
4. 如果当前位置符合要求,将皇后放置在该位置,并进入下一行。
5. 如果当前位置不符合要求,尝试在下一列放置皇后。
6. 重复步骤3-5,直到找到一个解或者所有可能的位置都已尝试过。
7. 如果找到一个解,将其输出;否则,回溯到上一行,继续尝试下一列的位置。
三、编写算法:基于上述步骤,我们可以编写一个递归函数来解决八皇后问题。
伪代码如下所示:```function solveQueens(board, row):if row == 8:print(board) # 打印解returnfor col in range(8):if isSafe(board, row, col):board[row][col] = 1solveQueens(board, row + 1)board[row][col] = 0function isSafe(board, row, col):for i in range(row):if board[i][col] == 1:return Falseif col - (row - i) >= 0 and board[i][col - (row - i)] == 1:return Falseif col + (row - i) < 8 and board[i][col + (row - i)] == 1:return Falsereturn Trueboard = [[0]*8 for _ in range(8)]solveQueens(board, 0)```四、实验结果:通过运行上述算法,我们得到了八皇后问题的所有解。
随机法 8皇后问题

回溯法与随机法比较: 回溯法与随机法比较:
N皇后问题一般是采用回溯法求解,但当N值 皇后问题一般是采用回溯法求解,但当 值 皇后问题一般是采用回溯法求解 较大时,回溯算法效率较低。 较大时,回溯算法效率较低。 引入随机算法, 引入随机算法,能保证每次找出的解是正确 但可能在一次求解过程中找不出可行解, 的,但可能在一次求解过程中找不出可行解,这 一点在程序运行过程中能得到体现。 一点在程序运行过程中能得到体现。 所以解决N皇后问题时, 所以解决 皇后问题时,我们可以先用随机 皇后问题时 函数产生一部分的解(这一部分可以占全部的三 函数产生一部分的解( 分之一),再用回溯法将其余的结果计算出来。 ),再用回溯法将其余的结果计算出来 分之一),再用回溯法将其余的结果计算出来。
2.回溯法与随机法结合,也就是,前k个皇后用随 2.回溯法与随机法结合,也就是, 回溯法与随机法结合 机法,后面的回溯。 机法,后面的回溯。 这样效率会提高很多。 这样效率会提高很多。 但是随机产生的k个皇后,回溯继续求解时不一定 但是随机产生的k个皇后, 能得到可行解。此时,需要重新运行算法。 能得到可行解。此时,需要重新运行算法。
姓名: 姓名:刘瑾 学号: 学号:31109016
一、8皇后问题算法描述 皇后问题算法描述
1.每个皇后放置的位置均随机 每个皇后放置的位置均随机 直接从每行的8个位置随机选择 直接从每行的 个位置随机选择 随机法 从每行的可行解中随机选择
不管用哪种随机法,都是算法一旦失败, 不管用哪种随机法,都是算法一旦失败, 就得重新运行。 就得重新运行。 算法成功,只找到一个解。 算法成功,只找到一个解。 多次成功找到的解不一定是同一个解。 多次成功找到的解不一定是同一个解。
运行结果: 运行结果:
八皇后问题有多少解

八皇后问题有多少解八皇后问题有92解。
皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。
如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,‘即a=b1b2…b8,其中bi为相应摆法中第i行皇后所处的列数。
已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。
串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。
//输入数据//第1行是测试数据的组数n,后面跟着n行输入。
每组测试数据占1行,包括一个正整数b(1 <= b <= 92)//输出要求//n行,每行输出对应一个输入。
输出应是一个正整数,是对应于b 的皇后串//输入样例//2//1//92//输出样例//15863724//84136275解题思路一因为要求出92种不同摆放方法中的任意一种,所以我们不妨把92种不同的摆放方法一次性求出来,存放在一个数组里。
为求解这道题我们需要有一个矩阵仿真棋盘,每次试放一个棋子时只能放在尚未被控制的格子上,一旦放置了一个新棋子,就在它所能控制的所有位置上设置标记,如此下去把八个棋子放好。
当完成一种摆放时,就要尝试下一种。
若要按照字典序将可行的摆放方法记录下来,就要按照一定的顺序进行尝试。
也就是将第一个棋子按照从小到大的顺序尝试;对于第一个棋子的每一个位置,将第二个棋子从可行的位置从小到大的顺序尝试;在第一第二个棋子固定的情况下,将第三个棋子从可行的位置从小到大的顺序尝试;依次类推。
首先,我们有一个8*8的矩阵仿真棋盘标识当前已经摆放好的棋子所控制的区域。
用一个有92行每行8个元素的二维数组记录可行的摆放方法。
用一个递归程序来实现尝试摆放的过程。
基本思想是假设我们将第一个棋子摆好,并设置了它所控制的区域,则这个问题变成了一个7皇后问题,用与8皇后同样的方法可以获得问题的解。
八皇后算法分析

八皇后问题是一个古老而著名的问题,是回溯算法的典型例题。
该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
高斯认为有76种方案。
1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。
现代教学中,把八皇后问题当成一个经典递归算法例题。
——引用自百度百科首先,可归纳问题的条件为,8皇后之间需满足:1.不在同一行上2.不在同一列上3.不在同一斜线上4.不在同一反斜线上这为我们提供一种遍历的思路,我们可以逐行或者逐列来进行可行摆放方案的遍历,每一行(或列)遍历出一个符合条件的位置,接着就到下一行或列遍历下一个棋子的合适位置,这种遍历思路可以保证我们遍历过程中有一个条件是绝对符合的——就是下一个棋子的摆放位置与前面的棋子不在同一行(或列)。
接下来,我们只要判断当前位置是否还符合其他条件,如果符合,就遍历下一行(或列)所有位置,看看是否继续有符合条件的位置,以此类推,如果某一个行(或列)的所有位置都不合适,就返回上一行(或列)继续该行(或列)的其他位置遍历,当我们顺利遍历到最后一行(或列),且有符合条件的位置时,就是一个可行的8皇后摆放方案,累加一次八皇后可行方案的个数,然后继续遍历该行其他位置是否有合适的,如果没有,则返回上一行,遍历该行其他位置,依此下去。
这样一个过程下来,我们就可以得出所有符合条件的8皇后摆放方案了。
这是一个深度优先遍历的过程,同时也是经典的递归思路。
接下来,我们以逐列遍历,具体到代码,进一步说明。
首先,从第一列开始找第一颗棋子的合适位置,我们知道,此时第一列的任何一个位置都是合适的,当棋子找到第一个合适的位置后,就开始到下一列考虑下一个合适的位置,此时,第二列的第一行及第二行显然就不能放第二颗棋子了,因为其与第一个棋子一个同在一行,一个同在一条斜线上。
八皇后问题实验报告

实验报告——八皇后问题求解(递归和非递归)学号:专业年级:姓名:一、需求分析(要实现的功能描述)1.问题描述八皇后问题是一个以国际象棋为背景的问题:如何能够在8×8的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行、纵行或斜线上。
八皇后问题可以推广为更一般的n皇后摆放问题:这时棋盘的大小变为n×n,而皇后个数也变成n。
当且仅当n=1或n≥4时问题有解。
八皇后问题最早是由国际国际象棋棋手马克斯·贝瑟尔于1848年提出。
诺克也是首先将问题推广到更一般的n皇后摆放问题的人之一。
2.实现功能八皇后问题实现了在棋盘上摆放八个皇后的功能,这八个皇后任意两个皇后都不能处于同一条横行、纵行或斜线上。
3.测试数据测试数据可以通过手工寻找三组满足需要的值,测试数组(M,N),其中M代表皇后所在的行,N代表皇后所在的列。
例如,第一组测试数据:(1,4)、(2,7)、(3,3)、(4、8)、(5,2)、(6,5)、(7,1)、(8,6);第二组测试数据(1,4)、(2,2)、(3,7)、(4,3)、(5,6)、(6,8)、(7,5)、(8,1)。
最后与编程求得的结果进行比较。
如果这三组数据在最后编程求得的结果中,说明程序的编写基本没有什么问题。
二、概要设计在进行概要设计的过程中,要清楚整个程序包含的功能模块及模块间的调用关系。
对于八皇后问题,整个程序中应该包括主函数模块,摆放皇后的函数模块,以及判断皇后的位置是否摆放正确的判断模块。
对于模块间的关系,在运行主函数的过程中会调用摆放皇后的函数模块,在摆放皇后的函数模块中,又会调用判断皇后位置是否摆放正确的判断模块。
三、详细设计抽象数据类型中定义的各种操作算法实现(用N-S图描述)对于求解八皇后问题的非递归算法,N-S图如下:对于八皇后问题求解的递归算法,N-S图如下:四、调试分析1.程序在调式过程中出现的问题及解决方法由于对于C语言编程问题掌握的并非十分熟练,因而在程序的调试过程中出现了一些问题。
八皇后问题的最佳解决方案

② 算法描述
3.2 递归回溯法解决八皇后问题
int a[20],b[20],c[40],d[40]; int n,t,i,j,k; //t记录解的个数,i掌握行,j掌握列
main( )
{ int i, input(n); //输入皇后的个数
for(i=1;i<=n;i++) { b[i]=0;//记录棋盘n个列 c[i+1]=0; c[n+i]=0;//记录棋盘负对角线 d[i]=0; d[n+i-1]=0;//记录棋盘主对角线
2 算法设计与分析
报告3 算法设计与分析试验报告
八皇后问题的最正确解决方 案
内容提要
1 回溯法概述 2 八皇后问题 3 解决八皇后问题常用算法 4 算法分析与总结
1 回溯法概述
一 回溯法
回溯法实际是一个类似枚举的搜寻尝试方 法,它的主题思想是在搜寻尝试中找问题的 解,当不满足求解条件就”回溯”(返回),尝 试别的路径。回溯算法是尝试搜寻算法中最 为根本的一种算法,其承受了一种“走不通就 掉头”的思想,作为其掌握构造。本文主要 描述递归回溯与非递归回溯,并用这两个算 法解决经典的“八皇后”问题,找出该问题的 最正确解决方案。
3.2 非递归回溯法解决八皇后问题
t a[20],n;
Main2
{ input(n); bckdate〔n〕;} //初始化,输入皇后数目
backdate (int n) //该函数是用来查找满足约束的全部解
{ int k;
a[1]=0; k=1; //k用来表示第k个皇后
while( k>0 ) {a[k]=a[k]+1; while ((a[k]<=n) and (check(k)=0)) //搜
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流程图
八皇后问题算法分析
在这个问题中首先定义的是一个用于构造界面的二位数组a【i】【j】和一个用于判断的表头数组number【】。
在开始进行八皇后棋子排列的时候,首先对行进行递增循环,即i初始值为0,每次i++,i最大值为8的循环。
在每次循环中产生一个小于8的随机数q,然后判断表头数组number【】中number【q】位置的值是否为1,如果不是,则在二维数组a【i】【q】位置上打印表示棋子的“K”;如果为1,则返回产生随机数的步骤继续产生随机数。
在循环到i>8时,跳出循环,这时候一个完整的八皇后排列也就出来了。
源代码:
package queen;
import java.awt.*;
import java.awt.event.*;
class equeen extends Frame implements ActionListener{
//构造界面和定义数组
Button enter;
Button clean;
Button exit;
int number[] = new int[8];
int i,j,q;
Label a[][] = new Label[8][8];
equeen(String s){
GridLayout grid;
grid = new GridLayout(9,8);
setLayout(grid);
enter = new Button("begin");
clean = new Button("clean");
exit = new Button("esit");
for(int i = 0;i<8;i++){
for(int j = 0;j<8;j++){
a[i][j] = new Label();
if((i+j)%2==0)a[i][j].setBackground(Color.yellow);
else a[i][j].setBackground(Color.gray);
add(a[i][j]);
}
}
for(int i = 0;i<8;i++){
number[i] = 0;//初始化判断数组
}
add(enter);
add(clean);
add(exit);
enter.addActionListener(this);
clean.addActionListener(this);
exit.addActionListener(this);
setBounds(100,100,300,300);
setVisible(true);
validate();
}
public void actionPerformed(ActionEvent e){
if(e.getSource()==enter){
for(int i =0;i<8;i++){
for(int j=0;j<8;j++){
a[i][j].setText("");
}
}
for(int i =0;i<8;i++){
while(true){
q = (int)(Math.random()*8);
if(number[q]==0){
a[i][q].setText("K");
number[q] = 1;
break;
}
else if(number[q]!=0) continue;
}
}
for(int i = 0;i<8;i++){
number[i] = 0;
}
}
if(e.getSource()==clean){
for(int i = 0;i<8;i++){
for(int j = 0;j<8;j++){
a[i][j].setText("");
}
}
}
if(e.getSource()==exit){
System.exit(0);
}
}
}
public class queen {
public static void main(String[] args){ new equeen("八皇后问题");
}
}。