-学年天津市和平区八年级(上)期中数学试卷知识分享

合集下载

2021-2022学年天津市河西区八年级(上)期中数学试题及答案解析

2021-2022学年天津市河西区八年级(上)期中数学试题及答案解析

2021-2022学年天津市河西区八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1.在平面直角坐标系中,点(5,2)关于x轴对称的点的坐标为( )A. (5,−2)B. (−5,2)C. (2,5)D. (2,−5)2.如图所示冬奥会图标中,是轴对称图形的是( )A. B.C. D.3.如所示图形中具有稳定性的是( )A. B. C. D.4.如图所示四个图形中,线段BE能表示三角形ABC的高的是( )A. B.C. D.5.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是( )A. 3cm,4cm,8cmB. 8cm,7cm,15cmC. 5cm,5cm,11cmD. 13cm,12cm,20cm6.下列说法错误的是( )A. 三边分别相等的两个三角形全等B. 三角分别相等的两个三角形全等C. 两边和它们的夹角分别相等的两个三角形全等D. 斜边和一条直角边分别相等的两个直角三角形全等7.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是( )A. SSSB. SASC. ASAD. AAS8.△ABC的两条角平分线AD,BE相交于点F,下列结论一定正确的是( )A. BD=DCB. BE⊥ACC. FA=FBD. 点F到三角形三边的距离都相等9.若一个多边形的每一个内角均为120°,则下列说法错误的是( )A. 这个多边形的内角和为720°B. 这个多边形的边数为6C. 这个多边形一定是正多边形D. 这个多边形的外角和为360°10.在三角形纸片ABC中,∠A=65°,∠B=75°.将纸片的一角对折,使点C落在△ABC内,若∠1=20°,则∠2的度数为( )A. 50°B. 60°C. 70°D. 80°二、填空题(本大题共6小题,共18.0分)11.如图中的x的值为______.12.图中与标号“1”的三角形成轴对称的三角形的个数为______.13.如图,以正方形ABCD的中心O为原点建立平面直角坐标系,若点A的坐标为(−2,−2),则点C的坐标是______.14.如图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组相等的线段______.15.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D,E,AD=3,BE=1,则DE的长是___________.16.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是______.三、解答题(本大题共7小题,共52.0分。

天津市和平区2016-2017学年八年级上期中数学复习试卷含解析

天津市和平区2016-2017学年八年级上期中数学复习试卷含解析

2016-2017学年天津市和平区八年级(上)期中数学复习试卷(全等三角形)一、选择题(共11小题,每小题0分,满分0分)1.下列说法:①能够完全重合的图形叫做全等形;②全等三角形的对应边相等、对应角相等;③全等三角形的周长相等、面积相等;④所有的等边三角形都全等;⑤面积相等的三角形全等.其中正确的说法有()A.5个 B.4个 C.3个 D.2个2.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个3.如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分别是CD、AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF=()A.62°B.38°C.28°D.26°4.为了加快灾后重建的步伐,我市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处B.有四处C.有七处D.有无数处5.如图,在不等边△ABC中,PM⊥AB于点M,PN⊥AC于点N,且PM=PN,Q在AC上,PQ=QA,MP=3,△AMP的面积是6,下列结论:①AM<PQ+QN,②QP∥AM,③△BMP≌△PQC,④∠QPC+∠MPB=90°,⑤△PQN的周长是7,其中正确的有()个.A.1 B.2 C.3 D.46.如图,已知点P到BE、BD、AC的距离恰好相等,则点P的位置:①在∠B的平分线上;②在∠DAC的平分线上;③在∠EAC的平分线上;④恰是∠B,∠DAC,∠EAC三个角的平分线的交点.上述结论中,正确结论的个数有()A.1个 B.2个 C.3个 D.4个7.如图,△ABC中,∠ABC、∠EAC的角平分线PA、PB交于点P,下列结论:①PC平分∠ACF;②∠ABC+∠APC=180°;③若点M、N分别为点P在BE、BF上的正投影,则AM+CN=AC;④∠BAC=2∠BPC.其中正确的是()A.只有①②③B.只有①③④C.只有②③④D.只有①③8.如图,在△ABC中,AD平分∠BAC,过B作BE⊥AD于E,过E作EF∥AC交AB于F,则()A.AF=2BF B.AF=BF C.AF>BF D.AF<BF9.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.510.如图,在Rt直角△ABC中,∠B=45°,AB=AC,点D为BC中点,直角∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论是()A.①②④B.②③④C.①②③D.①②③④11.如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,下列结论:①GA=GP;②S△PAC :S△PAB=AC:AB;③BP垂直平分CE;④FP=FC;其中正确的判断有()A.只有①②B.只有③④C.只有①③④D.①②③④二、填空题(共15小题,每小题0分,满分0分)12.如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB=.13.已知△ABC三边长分别为3,5,7,△DEF三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为.14.如图,∠DAB=∠EAC=60°,AB=AD,AC=AE,BE和CD相交于O,AB和CD相交于P,则∠DOE的度数是°.15.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是.16.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),求点B的坐标.17.将直角三角形(∠ACB为直角)沿线段CD折叠使B落在B′处,若∠ACB′=50°,则∠ACD度数为.18.如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ 的取值范围为.19.如图,△ABC的顶点坐标分别为A(3,6),B(1,3),C(4,2).如果将△ABC绕C 点顺时针旋转90°,得到△A′B′C′,那么点A的对应点A′的坐标为.20.已知∠AOB的平分线上一点C,点C到OA的距离为1.5cm,则点C到OB的距离为.21.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出个.22.已知△ABC中,AB=7cm,AC=4cm,AD是BC边的中线,则AD的长的范围是.23.如图,在△ABC 中,∠C=90°,∠ABC的平分线BD交AC于点D,且CD:AD=2:3,AC=15cm,则点D到AB的距离等于cm.24.如图,已知BD平分∠ABC,DE⊥AB于E,S=36cm2,AB=18cm,BC=12cm,则DE的长为.25.如图,△ABE≌△ADC≌△ABC,若:∠1=150°,则∠α的度数为.26.如图,已知∠AOB=α,在射线OA、OB上分别取点OA1=OB1,连接A1B1,在B1A1、B1B 上分别取点A2、B2,使B1B2=B1A2,连接A2B2…按此规律上去,记∠A2B1B2=θ1,∠A3B2B3=θ2,…,∠A n+1B n B n+1=θn,则(1)θ1=;(2)θn=.三、解答题(共24小题,满分0分)27.如图,已知AB=AC,CE⊥AB,BF⊥AC.求证:BF=CE.28.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE、DE、DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BCD的度数.29.如图,AC平分∠BAD,CE⊥AB于点E,∠B+∠D=180°.求证:AE=AD+BE.30.如图所示,在Rt△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.求证:△DBE的周长等于AB.31.如图,已知在△ABC中,D为AC中点,连接BD.(1)若AB=10cm,BC=6cm,求中线BD的取值范围;(2)若AB=8cm,BD=6cm,求BC的取值范围.32.如图,OC是∠AOB平分线,点P为OC上一点,若∠PDO+∠PEO=180°,试判断PD和PE大小关系,并说明理由.33.如图,A,F,E,B四点共线,AC⊥CE,BD⊥DF,AE=BF,AC=BD.求证:CF∥DE.34.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.35.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=BF,连接AE,EF和CF.求证:(1)AE=CF.(2)AE⊥CF.36.如图,已知在△ABC 中,AB>BC,BD平分∠ABC,P点在BD上一点,连接PA、PC.求证:AB﹣BC>PA﹣PC.37.如图,已知在△ABC中,D、E分别为AB、AC中点,连接CD并延长至G,使CD=DG,连接AG;延长BE至F,连接AF,使BE=AF.求证:AG=AF.38.如图,在△ABC中,BE是∠ABC的角平分线,AD⊥BE,垂足为D,求证:∠2=∠1+∠C.39.在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证DE=DF.40.如图,已知四边形ABCD中,CA平分∠BCD,BC>CD,AB=AD.求证:∠B+∠D=180°.41.如图,AP,CP分别是△ABC外角∠MAC和∠NCA的平分线,它们交于点P.求证:BP 为∠MBN的平分线.42.如图,已知等边△ABC,D、E分别在BC、AC上,且BD=CE,连接BE、AD交于F点.求证:∠AFE=60°.43.已知BD、CE是△ABC的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.判断线段AP和AQ的关系,并证明.44.如图,在△ABC,AD平分∠BAC,E、F分别在BD、AD上,且DE=CD,EF=AC,求证:EF∥AB.45.如图,已知等腰Rt△ABC中,∠A=90°,BD平分∠ABC,过C作BD的垂线CE.求证:BD=2CE.46.如图,已知AC平分∠BAD,CE⊥AB于E 点,∠ADC+∠B=180°.(1)求证:BC=CD;(2)2AE=AB+AD.47.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.48.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=a,其中a为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.49.如图,已知B、C、E三点共线,分别以BC、CE为边作等边△ABC和等边△CDE,连接BD、AE分别与AC、CD 交于M、N,AE与BD的交点为F.(1)求证:BD=AE;(2)求∠AFB的度数;(3)求证:BM=AN;(4)连接MN,求证:MN∥BC.50.已知,△ABC是等腰直角三角形,BC=AB,A点在x负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(﹣3,0),点B的坐标是(0,1),求点C的坐标;(2)如图2,过点C作CD⊥y轴于D,请直接写出线段OA,OD,CD之间等量关系;(3)如图3,若x轴恰好平分∠BAC,BC与x轴交于点E,过点C作CF⊥x轴于F,问CF 与AE有怎样的数量关系?并说明理由.2016-2017学年天津市和平区八年级(上)期中数学复习试卷(全等三角形)参考答案与试题解析一、选择题(共11小题,每小题0分,满分0分)1.下列说法:①能够完全重合的图形叫做全等形;②全等三角形的对应边相等、对应角相等;③全等三角形的周长相等、面积相等;④所有的等边三角形都全等;⑤面积相等的三角形全等.其中正确的说法有()A.5个 B.4个 C.3个 D.2个【考点】全等三角形的判定与性质.【分析】理清全等形以及全等三角形的判定及性质,即可熟练求解此题.【解答】解:①中能够完全重合的图形叫做全等形,正确;②中全等三角形的对应边相等、对应角相等,正确;③全等三角形的周长相等、面积相等,也正确;④中所有的等边三角形角都是60°,但由于边不相等,所以不能说其全等,④错误;⑤中面积相等的三角形并不一定是全等三角形,⑤中说法错误;故题中①②③说法正确,④⑤说法错误,此题选C.2.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C3.如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分别是CD、AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF=()A.62°B.38°C.28°D.26°【考点】等腰直角三角形;全等三角形的判定与性质;直角三角形斜边上的中线.【分析】主要考查:等腰三角形的三线合一,直角三角形的性质.注意:根据斜边和直角边对应相等可以证明△BDF≌△ADE.【解答】解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE.∴Rt△BDF≌Rt△ADE(SAS).∴∠DBF=∠DAE=90°﹣62°=28°.故选C.4.为了加快灾后重建的步伐,我市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处B.有四处C.有七处D.有无数处【考点】角平分线的性质.【分析】利用角平分线性质定理:角的平分线上的点,到这个角的两边的距离相等.又要求砂石场建在三条公路围成的一块平地上,所以是三个内角平分线的交点一个,外角的平分线的交点三个.【解答】解:满足条件的点有一个,三角形内部:三个内角平分线交点一个.三角形外部,外角的角平分线三个(不合题意).故选A.5.如图,在不等边△ABC中,PM⊥AB于点M,PN⊥AC于点N,且PM=PN,Q在AC上,PQ=QA,MP=3,△AMP的面积是6,下列结论:①AM<PQ+QN,②QP∥AM,③△BMP≌△PQC,④∠QPC+∠MPB=90°,⑤△PQN的周长是7,其中正确的有()个.A.1 B.2 C.3 D.4【考点】全等三角形的判定与性质;角平分线的性质.【分析】易证△APM≌△APN,根据全等三角形对应边、对应角相等的性质分别对题干中5个结论进行验证,即可解题.【解答】解:①在RT△APM和RT△APN中,,∴RT△APM≌RT△APN(HL),∴AM=AN,∵PQ=AQ,AN=AQ+QN,∴AM=PQ+QN,①错误;②∵RT△APM≌RT△APN,∴∠PAM=∠PAN,∵PQ=QA,∴∠PAQ=∠APQ,∴∠APQ=∠PAM,∴QP∥AM,②正确;③无法证明;④∵∠APQ=∠PAM,∠PAM+∠APM=90°,∴∠APQ+∠APM=90°,∴∠QPC+∠MPB=90°,④正确;⑤∵MP=3,△AMP的面积是6,∴AM=4,∴PQ+QN=4,∵PN=MP=3,∴△PQN的周长是7,⑤正确;故选C.6.如图,已知点P到BE、BD、AC的距离恰好相等,则点P的位置:①在∠B的平分线上;②在∠DAC的平分线上;③在∠EAC的平分线上;④恰是∠B,∠DAC,∠EAC三个角的平分线的交点.上述结论中,正确结论的个数有()A.1个 B.2个 C.3个 D.4个【考点】角平分线的性质.【分析】利用平分线性质的逆定理分析.由已知点P到BE,BD,AC的距离恰好相等进行思考,首先到到两边距离相等,得出结论,然后另外两边再得结论,如此这样,答案可得.【解答】解:由角平分线性质的逆定理,可得①②③④都正确.故选D.7.如图,△ABC中,∠ABC、∠EAC的角平分线PA、PB交于点P,下列结论:①PC平分∠ACF;②∠ABC+∠APC=180°;③若点M、N分别为点P在BE、BF上的正投影,则AM+CN=AC;④∠BAC=2∠BPC.其中正确的是()A.只有①②③B.只有①③④C.只有②③④D.只有①③【考点】角平分线的性质;三角形内角和定理;全等三角形的判定与性质.【分析】过点P分别作AB、BC、AC的垂线段,根据角平分线上的点到角的两边的距离相等可以证明点P到AC、BC的垂线段相等,再根据到角的两边距离相等的点在角的平分线上即可证明①正确;根据四边形的内角和等于360°可以证明②错误;根据①的结论先证明三角形全等,再根据全等三角形对应边相等即可证明③正确;利用三角形的一个外角等于与它不相邻的两个内角的和利用△ABC与△PBC写出关系式整理即可得到④正确.【解答】解:如图,过点P作PM⊥AB,PN⊥BC,PD⊥AC,垂足分别为M、N、D,①∵PB平分∠ABC,PA平分∠EAC,∴PM=PN,PM=PD,∴PM=PN=PD,∴点P在∠ACF的角平分线上(到角的两边距离相等的点在角的平分线上),故本小题正确;②∵PM⊥AB,PN⊥BC,∴∠ABC+90°+∠MPN+90°=360°,∴∠ABC+∠MPN=180°,很明显∠MPN≠∠APC,∴∠ABC+∠APC=180°错误,故本小题错误;③在Rt△APM与Rt△APD中,,∴Rt△APM≌Rt△APD(HL),∴AD=AM,同理可得Rt△CPD≌Rt△CPN,∴CD=CN,∴AM+CN=AD+CD=AC,故本小题正确;④∵PB平分∠ABC,PC平分∠ACF,∴∠ACF=∠ABC+∠BAC,∠PCN=∠ACF=∠BPC+∠ABC,∴∠BAC=2∠BPC,故本小题正确.综上所述,①③④正确.故选B.8.如图,在△ABC中,AD平分∠BAC,过B作BE⊥AD于E,过E作EF∥AC交AB于F,则()A.AF=2BF B.AF=BF C.AF>BF D.AF<BF【考点】全等三角形的性质;等腰三角形的判定.【分析】根据角平分线的定义和两直线平行,内错角相等的性质得∠FAE=∠FEA,所以AF=EF,再根据BE⊥AD得∠AEB=90°,然后根据等角的余角相等得到∠ABE=∠BEF,根据等角对等边的性质BF=EF,所以AF=BF.【解答】解:∵AD平分∠BAC,EF∥AC,∴∠FAE=∠CAE=∠AEF,∴AF=EF,∵BE⊥AD,∴∠FAE+∠ABE=90°,∠AEF+∠BEF=90°,∴∠ABE=∠BEF,∴BF=EF,∴AF=BF.故选B.9.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.5【考点】角平分线的性质;全等三角形的判定与性质.【分析】作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.【解答】解:作DM=DE交AC于M,作DN⊥AC于点N,∵DE=DG,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,在Rt△DEF和Rt△DMN中,,∴Rt△DEF≌Rt△DMN(HL),∵△ADG和△AED的面积分别为50和39,=S△ADG﹣S△ADM=50﹣39=11,∴S△MDGS△DNM=S△EDF=S△MDG=×11=5.5.故选B.10.如图,在Rt直角△ABC中,∠B=45°,AB=AC,点D为BC中点,直角∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论是()A.①②④B.②③④C.①②③D.①②③④【考点】全等三角形的判定与性质;等腰直角三角形.【分析】根据等腰直角三角形的性质可得∠CAD=∠B=45°,根据同角的余角相等求出∠ADF=∠BDE,然后利用“角边角”证明△BDE和△ADF全等,判断出③正确;根据全等三角形对应边相等可得DE=DF、BE=AF,从而得到△DEF是等腰直角三角形,判断出①正确;再求出AE=CF,判断出②正确;根据BE+CF=AF+AE,利用三角形的任意两边之和大于第三边可得BE+CF>EF,判断出④错误.【解答】解:∵∠B=45°,AB=AC,∴△ABC是等腰直角三角形,∵点D为BC中点,∴AD=CD=BD,AD⊥BC,∠CAD=45°,∴∠CAD=∠B,∵∠MDN是直角,∴∠ADF+∠ADE=90°,∵∠BDE+∠ADE=∠ADB=90°,∴∠ADF=∠BDE,在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),故③正确;∴DE=DF、BE=AF,∴△DEF是等腰直角三角形,故①正确;∵AE=AB﹣BE,CF=AC﹣AF,∴AE=CF,故②正确;∵BE+CF=AF+AE∴BE+CF>EF,故④错误;综上所述,正确的结论有①②③;故选:C.11.如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,下列结论:①GA=GP;②S△PAC :S△PAB=AC:AB;③BP垂直平分CE;④FP=FC;其中正确的判断有()A.只有①②B.只有③④C.只有①③④D.①②③④【考点】角平分线的性质;线段垂直平分线的性质.【分析】利用角平分线的性质对①②③④进行一一判断,从而求解.【解答】解:①∵AP平分∠BAC∴∠CAP=∠BAP∵PG∥AD∴∠APG=∠CAP∴∠APG=∠BAP∴GA=GP②∵AP平分∠BAC∴P到AC,AB的距离相等∴S△PAC :S△PAB=AC:AB③∵BE=BC,BP平分∠CBE∴BP垂直平分CE(三线合一)④∵∠BAC与∠CBE的平分线相交于点P,可得点P也位于∠BCD的平分线上∴∠DCP=∠BCP又PG∥AD∴∠FPC=∠DCP∴FP=FC故①②③④都正确.故选D.二、填空题(共15小题,每小题0分,满分0分)12.如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB=66°.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠ACB=∠E,再求出∠ACF,然后根据三角形的内角和定理列式计算即可得解.【解答】解:∵△ABC≌△ADE,∴∠ACB=∠E=105°,∴∠ACF=180°﹣105°=75°,在△ACF和△DGF中,∠D+∠DGB=∠DAC+∠ACF,即25°+∠DGB=16°+75°,解得∠DGB=66°.故答案为:66°.13.已知△ABC三边长分别为3,5,7,△DEF三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为3.【考点】全等三角形的性质.【分析】直接利用全等三角形的性质得出3x﹣2=7,2x﹣1=5,进而得出答案.【解答】解:∵△ABC三边长分别为3,5,7,△DEF三边长分别为3,3x﹣2,2x﹣1,这两个三角形全等,∴3x﹣2=7,2x﹣1=5,解得:x=3.故答案为:3.14.如图,∠DAB=∠EAC=60°,AB=AD,AC=AE,BE和CD相交于O,AB和CD相交于P,则∠DOE的度数是120°.【考点】全等三角形的判定与性质.【分析】首先得出∠DAC=∠EAB,进而利用ASA得出△ADC≌△AEB,进而得出∠E=∠ACD,再利用三角形内角和定理得出∠EAF=∠COF=60°,即可得出答案.【解答】解:∵∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠BAC+∠EAC,∴∠DAC=∠EAB,在△ADC和△AEB中,,∴△ADC≌△AEB(SAS),∴∠E=∠ACD,又∵∠AFE=∠OFC,∴∠EAF=∠COF=60°,∴∠DOE=120°.故答案为:120.15.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).【考点】坐标与图形性质;全等三角形的性质.【分析】因为△ABD与△ABC有一条公共边AB,故本题应从点D在AB的上边、点D在AB 的下边两种情况入手进行讨论,计算即可得出答案.【解答】解:△ABD与△ABC有一条公共边AB,当点D在AB的下边时,点D有两种情况:①坐标是(4,﹣1);②坐标为(﹣1,﹣1);当点D在AB的上边时,坐标为(﹣1,3);点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).16.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),求点B的坐标.【考点】全等三角形的判定与性质;坐标与图形性质.【分析】过A和B分别作AD⊥OC于D,BE⊥OC于E,利用已知条件可证明△ADC≌△CEB,再由全等三角形的性质和已知数据即可求出B点的坐标.【解答】解:过A和B分别作AD⊥OC于D,BE⊥OC于E,∵∠ACB=90°,∴∠ACD+∠CAD=90°∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴DC=BE,AD=CE,∵点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),∴OC=2,AD=CE=3,OD=6,∴CD=OD﹣OC=4,OE=CE﹣OC=3﹣2=1,∴BE=4,∴则B点的坐标是(1,4).17.将直角三角形(∠ACB为直角)沿线段CD折叠使B落在B′处,若∠ACB′=50°,则∠ACD 度数为20°.【考点】三角形内角和定理.【分析】根据翻折的性质可知:∠BCD=∠B′CD,又∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+60°=150°,继而即可求出∠BCD的值,又∠ACD+∠BCD=∠ACB=90°,继而即可求出∠ACD的度数.【解答】解:∵△B′CD时由△BCD翻折得到的,∴∠BCD=∠B′CD,又∵∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,∴∠BCD=70°,又∵∠ACD+∠BCD=∠ACB=90°,∴∠ACD=20°.故答案为:20°18.如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ 的取值范围为PQ≥2.【考点】角平分线的性质.【分析】根据垂线段最短可得PQ⊥OB时,PQ最短,再根据角平分线上的点到角的两边距离相等可得PQ=PD.【解答】解:由垂线段最短可得PQ⊥OB时,PQ最短,∵OP平分∠AOB,PD⊥OA,∴PQ=PD=2,即线段PQ的最小值是2.∴PQ的取值范围为PQ≥2,故答案为PQ≥2.19.如图,△ABC的顶点坐标分别为A(3,6),B(1,3),C(4,2).如果将△ABC绕C 点顺时针旋转90°,得到△A′B′C′,那么点A的对应点A′的坐标为(8,3).【考点】坐标与图形变化-旋转.【分析】解题的关键是抓住旋转的三要素:旋转中心,旋转方向,旋转角度,通过画图求解.【解答】解:由图知A点的坐标为(3,6),根据旋转中心C,旋转方向顺时针,旋转角度90°,画图,从而得A′的坐标为(8,3).20.已知∠AOB的平分线上一点C,点C到OA的距离为1.5cm,则点C到OB的距离为1.5cm.【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得CE=CD.【解答】解:如图,∵OC是∠AOB的平分线,∴CE=CD,∵点C到OA的距离CD=1.5cm,∴点C到OB的距离CE=1.5cm.故答案为:1.5cm.21.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出7个.【考点】全等三角形的判定.【分析】只要满足三边对应相等就能保证作出的三角形与原三角形全等,以腰为公共边时有6个,以底为公共边时有一个,答案可得.【解答】解:以AB为公共边有三个,以CB为公共边有三个,以AC为公共边有一个,所以一共能作出7个.故答案为:7.22.已知△ABC中,AB=7cm,AC=4cm,AD是BC边的中线,则AD的长的范围是 1.5<AD <5.5.【考点】全等三角形的判定与性质;三角形三边关系.【分析】延长AD至E,使DE=AD,就可以得出△ADB≌△EDC,就可以得出CE=AB,在△ACE中,由三角形的三边关系就可以得出结论.【解答】解:如图,延长AD至E,使DE=AD,∵D是BC的中点,∴BD=CD.在△ADC和△EDB中,,∴△ADC≌△EDB(SAS)∴AC=EB.∵AC=4cm,∴EB=4cm.∴7﹣4<AE∠7+4,∴3<2AD<11,∴1.5<AD<5.5.故答案为:1.5<AD<5.5.23.如图,在△ABC 中,∠C=90°,∠ABC的平分线BD交AC于点D,且CD:AD=2:3,AC=15cm,则点D到AB的距离等于6cm.【考点】勾股定理;角平分线的性质.【分析】过点D作DE⊥AB于E,根据比例求出CD,再根据角平分线上的点到角的两边距离相等可得DE=CD.【解答】解:如图,过点D作DE⊥AB于E,∵AC=15cm,CD:AD=2:3,∴CD=15×=6cm,∵∠C=90°,BD平分∠ABC,DE⊥AB,∴DE=CD=6cm,即点D到AB的距离为6cm.故答案为:..24.如图,已知BD平分∠ABC,DE⊥AB于E,S=36cm2,AB=18cm,BC=12cm,则DE的长为.【考点】角平分线的性质.【分析】作DF⊥BC于F,根据角平分线的性质得到DE=DF,根据三角形的面积公式计算即可.【解答】解:作DF⊥BC于F,∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DE=DF,设DE=DF=x,×12x+×18x=36,解得x=,即DE=.故答案为:.25.如图,△ABE≌△ADC≌△ABC,若:∠1=150°,则∠α的度数为60°.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠BAE=∠1,∠ACB=∠E,然后根据周角等于360°求出∠2,再根据三角形的内角和定理求出∠α=∠2,从而得解.【解答】解:∵△ABE≌△ADC≌△ABC,∴∠BAE=∠1=150°,∠ACB=∠E,∴∠2=360°﹣∠1﹣∠BAE=360°﹣150°﹣150°=60°,∴∠DFE=180°﹣∠α﹣∠E,∠AFC=180°﹣∠2﹣∠ACD,∵∠DFE=∠AFC(对顶角相等),∴180°﹣∠α﹣∠E=180°﹣∠2﹣∠ACD,∴∠α=∠2=60°.故答案为:60°.26.如图,已知∠AOB=α,在射线OA、OB上分别取点OA1=OB1,连接A1B1,在B1A1、B1B 上分别取点A2、B2,使B1B2=B1A2,连接A2B2…按此规律上去,记∠A2B1B2=θ1,∠A3B2B3=θ2,…,∠A n+1B n B n+1=θn,则(1)θ1=;(2)θn=.【考点】等腰三角形的性质.【分析】设∠A1B1O=x,根据等腰三角形性质和三角形内角和定理得α+2x=180°,x=180°﹣θ1,即可求得θ1=;同理求得θ2=;即可发现其中的规律,按照此规律即可求得答案.【解答】解:(1)设∠A1B1O=x,则α+2x=180°,x=180°﹣θ1,∴θ1=;(2)设∠A2B2B1=y,则θ2+y=180°①,θ1+2y=180°②,①×2﹣②得:2θ2﹣θ1=180°,∴θ2=;…θn=.故答案为:(1);(2)θn=.三、解答题(共24小题,满分0分)27.如图,已知AB=AC,CE⊥AB,BF⊥AC.求证:BF=CE.【考点】全等三角形的判定与性质.【分析】利用“等边对等角”得到相等的角,再利用AAS证全等,利用全等三角形的性质即可解答.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵CE⊥AB,BF⊥AC,∴∠BEC=∠CFB=90°,在△BEC和△CFB中,∴△BEC≌△CFB(AAS),∴BF=CE.28.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE、DE、DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BCD的度数.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】(1)由∠ABC为直角,得到∠CBD也为直角,得到一对角相等,再由AB=CB,BE=BD,利用SAS即可得到三角形ABE与三角形CBD全等,得证;(2)由AB=BC,且∠ABC为直角,得到三角形ABC为等腰直角三角形,根据等腰直角三角形的性质得到∠BAC为45°,由∠CAB﹣∠CAE求出∠BAE的度数,根据全等三角形的对应角相等得到∠BAE=∠BCD,即可求出∠BCD的度数.【解答】(1)证明:∵∠ABC=90°,D为AB延长线上一点,∴∠ABE=∠CBD=90°,…在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);…(2)解:∵AB=CB,∠ABC=90°,∴△ABC为等腰直角三角形,∴∠CAB=45°,…又∵∠CAE=30°,∴∠BAE=∠CAB﹣∠CAE=15°.…∵△ABE≌△CBD,∴∠BCD=∠BAE=15°.…29.如图,AC平分∠BAD,CE⊥AB于点E,∠B+∠D=180°.求证:AE=AD+BE.【考点】全等三角形的判定与性质;角平分线的性质.【分析】过点C作CF⊥AD交AD的延长线于F,根据角平分线上的点到角的两边距离相等可得CE=CF,根据同角的补角相等求出∠CDF=∠B,然后利用“角角边”证明△CDF和△CBE 全等,根据全等三角形对应边相等可得DF=BE,再利用“HL”证明Rt△ACF和Rt△ACE全等,根据全等三角形对应边相等可得AE=AF,然后根据AF=AD+DF等量代换即可得证.【解答】证明:如图,过点C作CF⊥AD交AD的延长线于F,∵AC平分∠BAD,CE⊥AB,∴CE=CF,∵∠B+∠ADC=180°.∠ADC+∠CDF=180°(平角定义),∴∠CDF=∠B,在△CDF和△CBE中,,∴△CDF≌△CBE(AAS),∴DF=BE,在Rt△ACF和Rt△ACE中,,∴Rt△ACF≌Rt△ACE(HL),∴AE=AF,∵AF=AD+DF,∴AE=AD+BE.30.如图所示,在Rt△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.求证:△DBE的周长等于AB.【考点】角平分线的性质;等腰直角三角形.【分析】如图,证明DC=DE;进而证明BC=AE,即可解决问题.【解答】证明:∵∠C=90°,AD是∠BAC的平分线,DE⊥AB,∴DC=DE;∴BD+DE=BD+CD=BC;∵AC2=AD2﹣CD2,AE2=AD2﹣DE2,∴AC=AE,而AC=BC,∴BC=AE,∴BD+DE+BE=AE+BE=AB,即△DBE的周长等于AB.31.如图,已知在△ABC中,D为AC中点,连接BD.(1)若AB=10cm,BC=6cm,求中线BD的取值范围;(2)若AB=8cm,BD=6cm,求BC的取值范围.【考点】全等三角形的判定与性质;三角形三边关系.【分析】(1)作辅助线,构建全等三角形,证明△ABD≌△CED,得CE=AB=10cm,在△BCE 中,根据三边关系得:4cm<BE<16cm,则2cm<BD<8cm;(2)同理根据三角形三边关系得:12﹣8<BC<12+8,即4cm<BC<20cm.【解答】解:(1)如图,延长BD至E,使BD=DE,连接CE,∵D为AC中点,∴AD=DC,在△ABD和△CED中,∵,∴△ABD≌△CED(SAS),∴EC=AB=10,在△BCE中,CE﹣BC<BE<CE+BC,10﹣6<BE<10+6,∴4<BE<16,∴4<2BD<16,∴2<BD<8;则中线BD的取值范围:2cm<BD<8cm;(2)∵AB=8,BD=6,∴CE=AB=8,BE=2BD=12,∴BE﹣EC<BC<BE+BC,∴12﹣8<BC<12+8,即4<BC<20;则BC的取值范围:4cm<BC<20cm.32.如图,OC是∠AOB平分线,点P为OC上一点,若∠PDO+∠PEO=180°,试判断PD和PE大小关系,并说明理由.【考点】全等三角形的判定与性质.【分析】先过点P作PM⊥OA,PN⊥OE,证明△PMD≌△PNE,根据全等三角形的性质即可解决问题.【解答】解:PD=PE.理由:如图,过点P作PM⊥OA,PN⊥OE;∵OC平分∠AOB,∴PM=PN;∵∠OEP+∠ODP=180°,∠ODP+∠PDM=180°,∴∠OEP=∠PDM,在△PMD与△PNE中,,∴△PMD≌△PNE(AAS),∴PD=PE.33.如图,A,F,E,B四点共线,AC⊥CE,BD⊥DF,AE=BF,AC=BD.求证:CF∥DE.【考点】全等三角形的判定与性质.【分析】利用“HL”证明Rt△ACE和Rt△BDF全等,根据全等三角形对应角相等可得∠AEC=∠BFD,全等三角形对应边相等可得CE=DF,再利用“边角边”证明△CEF和△DFE全等,根据全等三角形对应角相等可得∠CFE=∠DEF,然后利用内错角相等,两直线平行证明即可.【解答】证明:∵AC⊥CE,BD⊥DF,∴△ACE和△BDF都是直角三角形,在Rt△ACE和Rt△BDF中,,∴Rt△ACE≌Rt△BDF(HL),∴∠AEC=∠BFD,CE=DF,在△CEF和△DFE中,,∴△CEF≌△DFE(SAS),∴∠CFE=∠DEF,∴CF∥DE.34.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】由已知条件,根据等腰三角形三线合一这一性质,CE=FE,再证明△ABD≌△ACF,证得BD=CF,从而证得BD=2CE.【解答】证明:∵BE平分∠FBC,BE⊥CF,∴BF=BC,∴CE=EF,∴CF=2CE,∵∠BAC=90°,且AB=AC,∴∠FAC=∠BAC=90°,∠ABC=∠ACB=45°,∴∠FBE=∠CBE=22.5°,∴∠F=∠ADB=67.5°,在△ABD和△ACF中,∵,∴△ABD≌△ACF(AAS),∴BD=CF,∴BD=2CE.35.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=BF,连接AE,EF和CF.求证:(1)AE=CF.(2)AE⊥CF.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据SAS证明△ABE≌△CBF即可得出AE=CF;(2)先延长AE交CF于D,根据三角形的内角和得:∠CDE=∠ABC=90°,则AE⊥CF.【解答】证明:(1)如图1,∵∠ABC=90°,∴∠ABC=∠EBF=90°,在△ABE和△CBF中,∵,∴△ABE≌△CBF(SAS),∴AE=CF;(2)如图2,延长AE交CF于D,∵△ABE≌△CBF,∴∠BAE=∠BCF,∵∠AEB=∠CED,∴∠CDE=∠ABC=90°,∴AD⊥CF,即AE⊥CF.36.如图,已知在△ABC 中,AB>BC,BD平分∠ABC,P点在BD上一点,连接PA、PC.求证:AB﹣BC>PA﹣PC.【考点】全等三角形的判定与性质;三角形三边关系.【分析】要证明AB﹣BC>PA﹣PC,由于四条线段比较分散,可考虑通过三角形全等把它们集中起来.由于AB>BC,可在AB上截取BM=BC,证明△BPN与△BPC全等,在三角形AMP 中,利用三边关系得到AM与PA、PC的关系,等量代换后得到要证明的关系.【解答】解:在线段BA上截取BM=BC,连接PM.∵BD平分∠ABC,∴∠ABD=∠CBD在△BMP与△BCP中∴△BMP≌△BCP∴PC=PM.在△AMP中,∵AM>PA﹣PM,又∵AM=AB﹣BM,BM=BC,PM=PC∴AB﹣BC>PA﹣PC.37.如图,已知在△ABC中,D、E分别为AB、AC中点,连接CD并延长至G,使CD=DG,连接AG;延长BE至F,连接AF,使BE=AF.求证:AG=AF.【考点】全等三角形的判定与性质.【分析】根据SAS证明△ADG≌△BDC和△AEF≌△CEB,可以得出结论.【解答】证明:∵D、E分别为AB、AC中点,∴AD=BD,AE=EC,在△ADG和△BDC中,∵,∴△ADG≌△BDC(SAS),∴AG=CB,同理得:△AEF≌△CEB,∴AF=BC,∴AG=BC.38.如图,在△ABC中,BE是∠ABC的角平分线,AD⊥BE,垂足为D,求证:∠2=∠1+∠C.【考点】等腰三角形的判定与性质;三角形的外角性质.【分析】根据等腰三角形的判定可得出AB=FB,根据等边对等角得∠2=∠AFB,再根据外角的性质可得出∠AFB=∠1+∠C,即可得出:∠2=∠1+∠C.【解答】证明:∵BE是∠ABC的角平分线,AD⊥BE,∴AB=FB,∴∠2=∠AFB,∵∠AFB=∠1+∠C,。

天津市和平区2020-2021学年八年级下学期期中考试数学试卷(word版 含答案)

天津市和平区2020-2021学年八年级下学期期中考试数学试卷(word版 含答案)

2020-2021学年天津市和平区八年级(下)期中数学试卷一.选择题(共12小题)1.在实数范围内有意义,则x的取值范围是()A.x≥3B.x>3C.x≤3D.x<32.计算:+=()A.8B.C.8a D.153.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,234.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是()A.∠B=∠BCF B.∠B=∠F C.AC=CF D.AD=CF5.如图,在矩形ABCD中,对角线AC、BD相交于点O,若OA=2,则BD的长为()A.4B.3C.2D.16.如图,池塘边有两点A、B,点C是与BA方向成直角的AC方向上一点,测得CB=60m,AC=20m,则A,B两点间的距离是()A.200m B.20m C.40m D.50m7.已知菱形ABCD,AC=6,面积等于24,则菱形ABCD的周长等于()A.20B.25C.20D.15308.利用勾股定理,可以作出长为无理数的线段.如图,在数轴上找到点A,使OA=5,过点A作直线l垂直于OA,在1上取点B,使AB=2,以原点O为圆心,以OB长为半径作弧,弧与数轴的交点为C,那么点C表示的无理数是()A.B.C.7D.299.下列二次根式的运算正确的是()A.=﹣5B.C.D.10.如图,△ABC中,AD⊥BC于D,AB=5,BD=4,DC=2,则AC等于()A.13B.C.D.511.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=6,则图中阴影部分的面积为()A.10B.12C.16D.1812.如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP 的最小值是()A.1.2B.1.5C.2.4D.2.5二.填空题(共6小题)13.直角三角形的两个直角边分别为3和5,这个直角三角形的斜边长为.14.计算(﹣2)×(+2)的结果是.15.依次连接矩形中点得到的四边形一定是.16.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于.17.如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是.18.如图,O为矩形ABCD对角线AC,BD的交点,AB=6,M,N是直线BC上的动点,且MN=2,则OM+ON的最小值是.三.解答题(共5小题)19.计算:(﹣)÷+.20.如图,在三角形纸片ABC中,∠ACB=90°,BC=5,AB=13,在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,点A与BC延长线上的点D重合,求CE的长.21.如图,BE是△ABC的中线,BD∥AC,且BD=AC,连接AD、DE.(1)求证:BC=DE;(2)当∠ABC=90°时,判断四边形ADBE的形状,并说明理由.22.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.23.如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO上的一点,把△BAD沿直线BD折叠,点A的对应点为A′.(Ⅰ)若点A′落在矩形的对角线OB上时,OA′的长=;(Ⅱ)若点A′落在边AB的垂直平分线上时,求点D的坐标;(Ⅲ)若点A′落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可).2020-2021学年天津市和平区八年级(下)期中数学试卷参考答案与试题解析一.选择题(共12小题)1.在实数范围内有意义,则x的取值范围是()A.x≥3B.x>3C.x≤3D.x<3【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:3﹣x≥0解得:x≤3.故选:C.2.计算:+=()A.8B.C.8a D.15【分析】先把各根式化为最简二次根式,再合并同类项即可.【解答】解:原式=3+5=8.故选:A.3.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,23【分析】根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.4.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是()A.∠B=∠BCF B.∠B=∠F C.AC=CF D.AD=CF【分析】利用三角形中位线定理得到DE∥AC,DE=AC,结合平行四边形的判定定理对各个选项进行判断即可.【解答】解:∵D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE∥AC,DE=AC,A、∵∠B=∠BCF,∴CF∥AB,即CF∥AD,∴四边形ADFC为平行四边形,故本选项符合题意;B、根据∠B=∠F不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;C、根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;D、根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项不符合题意;故选:A.5.如图,在矩形ABCD中,对角线AC、BD相交于点O,若OA=2,则BD的长为()A.4B.3C.2D.1【分析】因为矩形的对角线相等且互相平分,已知OA=2,则AC=2OA=4,又BD=AC,故可求.【解答】解:∵ABCD是矩形∴OC=OA,BD=AC又∵OA=2,∴AC=OA+OC=2OA=4∴BD=AC=4故选:A.6.如图,池塘边有两点A、B,点C是与BA方向成直角的AC方向上一点,测得CB=60m,AC=20m,则A,B两点间的距离是()A.200m B.20m C.40m D.50m【分析】在直角三角形中已知直角边和斜边的长,利用勾股定理求得另外一条直角边的长即可.【解答】解:∵CB=60m,AC=20m,AC⊥AB,∴AB==40(m).故选:C.7.已知菱形ABCD,AC=6,面积等于24,则菱形ABCD的周长等于()A.20B.25C.20D.1530【分析】先利用菱形的面积公式计算出BD=8,然后根据菱形的性质和勾股定理可计算出菱形的边长=10,从而得到菱形的周长.【解答】解:∵菱形ABCD的面积是24,即×AC×BD=24,∴BD==8,∴菱形的边长==5,∴菱形ABCD的周长=4×5=20.故选:A.8.利用勾股定理,可以作出长为无理数的线段.如图,在数轴上找到点A,使OA=5,过点A作直线l垂直于OA,在1上取点B,使AB=2,以原点O为圆心,以OB长为半径作弧,弧与数轴的交点为C,那么点C表示的无理数是()A.B.C.7D.29【分析】利用勾股定理列式求出OB判断即可.【解答】解:由勾股定理得,OB==,∴点C表示的无理数是.故选:B.9.下列二次根式的运算正确的是()A.=﹣5B.C.D.【分析】根据二次根式的性质对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的加减法对C进行判断;根据二次根式的乘法法则对D进行判断.【解答】解:A、原式=5,所以A选项错误;B、原式==,所以B选项正确;C、原式=4,所以C选项错误;D、原式=10×3=30,所以D选项错误.故选:B.10.如图,△ABC中,AD⊥BC于D,AB=5,BD=4,DC=2,则AC等于()A.13B.C.D.5【分析】在Rt△ABD中,由勾股定理可求得AD,则在Rt△ACD中,由勾股定理可求得AC.【解答】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,由勾股定理可得AD===3,在Rt△ACD中,由勾股定理可得AC===,故选:B.11.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=6,则图中阴影部分的面积为()A.10B.12C.16D.18【分析】由矩形的性质可证明S△PEB=S△PFD,即可求解.【解答】解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∵MP=AE=2∴S△DFP=S△PBE=×2×6=6,∴S阴=6+6=12,故选:B.12.如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP 的最小值是()A.1.2B.1.5C.2.4D.2.5【分析】先由勾股定理求出AB=5,再证四边形CEMF是矩形,得EF=CM,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,然后由三角形面积求出CM=2.4,即可得出答案.【解答】解:连接CM,如图所示:∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵ME⊥AC,MF⊥BC,∠ACB=90°,∴四边形CEMF是矩形,∴EF=CM,∵点P是EF的中点,∴CP=EF,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,∵△ABC的面积=AB×CM=AC×BC,∴CM===2.4,∴CP=EF=CM=1.2,故选:A.二.填空题(共6小题)13.直角三角形的两个直角边分别为3和5,这个直角三角形的斜边长为.【分析】直接利用勾股定理计算即可.【解答】解:∵直角三角形的两个直角边分别为3和5,∴这个直角三角形的斜边长为=.故答案为.14.计算(﹣2)×(+2)的结果是﹣1.【分析】利用平方差公式计算.【解答】解:原式=()2﹣22=3﹣4=﹣1.故答案为﹣1.15.依次连接矩形中点得到的四边形一定是菱形.【分析】连接矩形对角线.利用矩形对角线相等、三角形中位线定理证得四边形EFGH 是平行四边形,且EF=FH=HG=EG;然后由四条边相等的平行四边形是菱形推知四边形EFGH是菱形.【解答】解:如图E、F、G、H是矩形ABCD各边的中点.连接AC、BD.∵AC=BD(矩形的对角线相等),EF AC,HG AC,∴EF∥HG,且EF=HG=AC;同理HE∥GF,且HE=GF=BD,∴四边形EFGH是平行四边形,且EF=FH=HG=EG,∴四边形EFGH是菱形.故答案是:菱形.16.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于6cm.【分析】由菱形ABCD的周长为48cm,根据菱形的性质,可求得AD的长,AC⊥BD,又由E是AD的中点,根据直角三角形斜边的中线等于斜边的一半,即可求得线段OE 的长.【解答】解:∵菱形ABCD的周长为48cm,∴AD=12cm,AC⊥BD,∵E是AD的中点,∴OE=AD=6(cm).故答案是:6cm.17.如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是3.【分析】分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH 中点,则G的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.【解答】解:如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EP A=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=10﹣2﹣2=6,∴MN=3,即G的移动路径长为3.18.如图,O为矩形ABCD对角线AC,BD的交点,AB=6,M,N是直线BC上的动点,且MN=2,则OM+ON的最小值是2.【分析】利用轴对称变换以及平移变换,作辅助线构造平行四边形,依据平行四边形的性质以及轴对称的性质,可得当O,N,Q在同一直线上时,OM+ON的最小值等于OQ 长,利用勾股定理进行计算,即可得到OQ的长,进而得出OM+ON的最小值.【解答】解:如图所示,作点O关于BC的对称点P,连接PM,将MP沿着MN的方向平移MN长的距离,得到NQ,连接PQ,则四边形MNQP是平行四边形,∴MN=PQ=2,PM=NQ=MO,∴OM+ON=QN+ON,当O,N,Q在同一直线上时,OM+ON的最小值等于OQ长,连接PO,交BC于E,由轴对称的性质,可得BC垂直平分OP,又∵矩形ABCD中,OB=OC,∴E是BC的中点,∴OE是△ABC的中位线,∴OE=AB=3,∴OP=2×3=6,又∵PQ∥MN,∴PQ⊥OP,∴Rt△OPQ中,OQ===2,∴OM+ON的最小值是2,故答案为:2.三.解答题(共5小题)19.计算:(﹣)÷+.【分析】先根据二次根式的除法法则运算,然后化简后合并即可.【解答】解:原式=﹣+=2﹣+=.20.如图,在三角形纸片ABC中,∠ACB=90°,BC=5,AB=13,在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,点A与BC延长线上的点D重合,求CE的长.【分析】结合已知条件可知AC=4,利用三角形面积推出S△ABC=S△BCE+S△BDE,即可推出CE的长度.【解答】解:∵∠ACB=90°,BC=5,AB=13,∴AC=12,根据将其三角形纸片ABC对折后点A落在BC的延长线上,则AB=BD=13,∵S△ABC=S△BCE+S△BDE,∴×5×12=BC×EC+EC×BD,∴30=×EC(5+13),∴CE=.21.如图,BE是△ABC的中线,BD∥AC,且BD=AC,连接AD、DE.(1)求证:BC=DE;(2)当∠ABC=90°时,判断四边形ADBE的形状,并说明理由.【分析】(1)首先判定四边形DBCE是平行四边形,然后即可证得BC=DE;(2)首先证得四边形ADBE是平行四边形,然后利用对角线互相垂直的平行四边形是平行四边形判定菱形即可.【解答】解:(1)证明:∵BE是△ABC的中线,∴EC=AC,∵BD=AC,∴BD=CE,∵BD∥AC,∴四边形DBCE是平行四边形,∴BC=DE;(2)四边形ADBE是菱形,理由如下:∵BE是△ABC的中线,∴EA=AC,∵BD=AC,∴BD=AE,∵BD∥AC,∴四边形ADBE是平行四边形,∵∠ABC=90°,∴AB⊥DE,∴四边形ADBE是菱形.22.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.【分析】(1)根据同旁内角互补两直线平行求出BC∥AD,再根据两直线平行,内错角相等可得∠CBE=∠DFE,然后利用“角角边”证明△BEC和△FCD全等,根据全等三角形对应边相等可得BE=EF,然后利用对角线互相平分的四边形是平行四边形证明即可;(2)分①BC=BD时,利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得解;②BC=CD时,过点C作CG⊥AF于G,判断出四边形AGCB是矩形,再根据矩形的对边相等可得AG=BC=3,然后求出DG=2,利用勾股定理列式求出CG,然后利用平行四边形的面积列式计算即可得解;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾.【解答】(1)证明:∵∠A=∠ABC=90°,∴BC∥AD,∴∠CBE=∠DFE,在△BEC与△FED中,,∴△BEC≌△FED,∴BE=FE,又∵E是边CD的中点,∴CE=DE,∴四边形BDFC是平行四边形;(2)①BC=BD=3时,由勾股定理得,AB===2,所以,四边形BDFC的面积=3×2=6;②BC=CD=3时,过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG﹣AD=3﹣1=2,由勾股定理得,CG===,所以,四边形BDFC的面积=3×=3;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是6或3.23.如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO上的一点,把△BAD沿直线BD折叠,点A的对应点为A′.(Ⅰ)若点A′落在矩形的对角线OB上时,OA′的长=4;(Ⅱ)若点A′落在边AB的垂直平分线上时,求点D的坐标;(Ⅲ)若点A′落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可).【分析】(Ⅰ)由点B的坐标知OA=8、AB=6、OB=10,根据折叠性质可得BA=BA′=6,据此可得答案;(Ⅱ)连接AA′,利用折叠的性质和中垂线的性质证△BAA′是等边三角形,可得∠A′BD=∠ABD=30°,据此知AD=AB tan∠ABD=2,继而可得答案;(Ⅲ)分点D在OA上和点D在AO延长线上这两种情况,利用相似三角形的判定和性质分别求解可得.【解答】解:(Ⅰ)如图1,由题意知OA=8、AB=6,∴OB=10,由折叠知,BA=BA′=6,∴OA′=4,故答案为:4;(Ⅱ)如图2,连接AA′,∵点A′落在线段AB的中垂线上,∴BA=AA′,∵△BDA′是由△BDA折叠得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等边三角形,∴∠A′BA=60°,∴∠A′BD=∠ABD=30°,∴AD=AB tan∠ABD=6tan30°=2,∴OD=OA﹣AD=8﹣2,∴点D(8﹣2,0).(Ⅲ)①如图3,当点D在OA上时,由旋转知△BDA′≌△BDA,∴BA=BA′=6,∠BAD=∠BA′D=90°,∵点A′在线段OA的中垂线上,∴BM=AN=OA=4,∴A′M===2,∴A′N=MN﹣A′M=AB﹣A′M=6﹣2,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,则=,即=,解得:DN=3﹣5,则OD=ON+DN=4+3﹣5=3﹣1,∴D(3﹣1,0);②如图4,当点D在AO延长线上时,过点A′作x轴的平行线交y轴于点M,延长AB 交所作直线于点N,则BN=CM,MN=BC=OA=8,由旋转知△BDA′≌△BDA,∴BA=BA′=6,∠BAD=∠BA′D=90°,∵点A′在线段OA的中垂线上,∴A′M=A′N=MN=4,则MC=BN==2,∴MO=MC+OC=2+6,由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,则=,即=,解得:ME=,则OE=MO﹣ME=6+,∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,∴△DOE∽△A′ME,∴=,即=,解得:DO=3+1,则点D的坐标为(﹣3﹣1,0),综上,点D的坐标为(3﹣1,0)或(﹣3﹣1,0).。

天津市和平区2019-2020学年八年级上学期期中质量调查数学试题 (解析版)

天津市和平区2019-2020学年八年级上学期期中质量调查数学试题  (解析版)

2019-2020学年八年级上学期期中质量调查数学试题一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.2.下列图形中具有稳定性的是()A.B.C.D.3.如图,在△ABC和△ADC中,∠B=∠D=90°,BC=DC.有以下结论:①AB=AD;②AC平分∠BAD;③CA平分∠BCD.其中,正确结论的个数是()A.0 B.1 C.2 D.34.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD5.等腰三角形一边长等于5,一边长等于9,则它的周长是()A.14 B.23 C.19 D.19或236.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是()A.10 B.14 C.16 D.207.如图,△ABC是等边三角形,D为BA的中点,DE⊥AC,垂足为点E,EF∥AB,AE=1,下列结论错误的是()A.∠ADE=30°B.AD=2C.△ABC的周长为10 D.△EFC的周长为98.如图,在四边形ABCD中,AC,BD相交于点O,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6,下列结论错误的是()A.CO是△BCD的高B.∠5=30°C.∠ABC=100°D.DO=OB9.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=()A.30°B.45°C.60°D.90°10.如图,在△ABC中,E,D分别是边AB,AC上的点,且AE=AD,BD,CE交于点F,AF 的延长线交BC于点H,若∠EAF=∠DAF,则图中的全等三角形共有()A.4对B.5对C.6对D.7对11.点(1,2m﹣1)关于直线x=m的对称点的坐标是()A.(2m﹣1,1)B.(﹣1,2m﹣1)C.(﹣1,1﹣2m)D.(2m﹣1,2m﹣1)12.如图,过边长为2的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连接PQ交AC边于D,则DE的长为()A.B.1 C.D.不能确定二、填空题(本大题共6小题,每小题3分,共18分)13.如图,点B、E、C、F在一条直线上,AB∥DE,AB=DE,BE=CF,AC=6,则DF=.14.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是度.15.如图,AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,还需添加一个条件,这个条件可以是.16.如图,已知Rt△ABC中,∠C=90°,∠A=30°.在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有个.(在图上作出点P的位置)17.在△ABC中,已知∠CAB=60°,D、E分别是边AB、AC上的点,且∠AED=60°,ED+DB =CE,∠CDB=2∠CDE,则∠DCB等于.18.已知,在四边形ABCD中,∠F为四边形ABCD的∠ABC的平分线及外角∠DCE的平分线所在的直线构成的锐角,若∠A=α,∠D=β,(1)如图①,当α+β>180°时,∠F=(用含α,β的式子表示);(2)如图②,当α+β<180°时,请在图②中,画出∠F,且∠F=(用含α,β的式子表示);(3)当α,β满足条件时,不存在∠F.三、解答题(本大题共6小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.如图,点B,F,C,E在一条直线上,BF=CE,AB∥ED,AC∥FD.求证:△ABC≌△DEF.20.如图,在△ABC中,∠C=80°,点D在边BC上,且∠ADB=100°,∠BAD=∠DAC,BE平分∠ABC,交AD于点E.求∠BED的大小.21.如图,在3×3的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中△ABC是一个格点三角形.在每张图中画出一个与△ABC成轴对称的格点三角形,并将所画三角形涂上阴影.22.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.23.已知,在△ABC中,DE垂直平分AB,垂足为点D,交直线BC于点E.MN垂直平分AC,垂足为点M,交直线BC于点N,连接AE,AN.(1)如图①,若∠BAC=100°,求∠EAN的大小;(2)如图②,若∠BAC=70°,求∠EAN的大小;(3)若∠BAC=α(α≠90°),用含α的式子表示∠EAN的大小(直接写出结果即可).24.如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP(备注:当EF=FP,∠EFP=90°时,∠PEF=∠FPE=45°,反之当∠PEF=∠FPE=45°时,当EF=FP).(1)在图1中,请你通过观察、测量、猜想并写出AB与AP所满足的数量关系和位置关系.(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(2)中所猜想的BQ与AP的结论还成立吗?若成立,给出证明:若不成立,请说明理由.参考答案与试题解析一.选择题(共12小题)1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.2.下列图形中具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性对各选项图形分析判断即可得解.【解答】解:A、对角线两侧是四边形,不具有稳定性,故本选项错误;B、对角线两侧是三角形,具有稳定性,故本选项正确;C、对角线下方是四边形,不具有稳定性,故本选项错误;D、对角线两侧是四边形,不具有稳定性,故本选项错误.故选:B.3.如图,在△ABC和△ADC中,∠B=∠D=90°,BC=DC.有以下结论:①AB=AD;②AC平分∠BAD;③CA平分∠BCD.其中,正确结论的个数是()A.0 B.1 C.2 D.3【分析】证明Rt△ABC≌Rt△ADC(HL),得出AB=AD,∠BAC=∠DAC,∠BCA=∠DCA 【解答】解:在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴AB=AD,∠BAC=∠DAC,∠BCA=∠DCA,∴AC平分∠BAD,CA平分∠BCD.∴①正确;②正确;③正确;正确结论的个数有3个;故选:D.4.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案.【解答】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B、在△ABC与△BAD中,,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,,△ABC≌△BAD(SAS),故D正确;故选:A.5.等腰三角形一边长等于5,一边长等于9,则它的周长是()A.14 B.23 C.19 D.19或23【分析】分腰长为5和腰长为9两种情况分别讨论,再利用三角形三边关系进行判断,可求得其周长.【解答】解:当腰长为5时,则三角形的三边分别为5、5、9,满足三角形的三边关系,其周长为19;当腰长为9时,则三角形的三边分别为9、9、5,满足三角形的三边关系,其周长为23;综上可知三角形的周长为19或23,故选:D.6.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是()A.10 B.14 C.16 D.20【分析】根据等腰三角形的性质求出BC,根据三角形的周长公式计算即可.【解答】解:∵AC=AB=6,AD⊥BC,∴BC=2CD=8,∴△ABC的周长=AB+AC+BC=20,故选:D.7.如图,△ABC是等边三角形,D为BA的中点,DE⊥AC,垂足为点E,EF∥AB,AE=1,下列结论错误的是()A.∠ADE=30°B.AD=2C.△ABC的周长为10 D.△EFC的周长为9【分析】解直角三角形求出AD=2即可解决问题.【解答】解:∵△ABC是等边三角形,∴∠A=60°,AB=BC=AC,∵DE⊥AC,∴∠AED=90°,∴∠ADE=30°∵AE=1,∴AD=2AE=2,故选项A,B正确,∵AD=DB=2,∴AB=BC=AC=4,∴△ABC的周长为12,故选项C错误.∵EF∥AB,∴∠CEF=∠A=60°,∠EFC=∠B=60°,∴△EFC是等边三角形,∴△EFC的周长=3×(4﹣1)=9,故选项D正确,故选:C.8.如图,在四边形ABCD中,AC,BD相交于点O,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6,下列结论错误的是()A.CO是△BCD的高B.∠5=30°C.∠ABC=100°D.DO=OB【分析】根据等腰三角形的判定和性质,以及直角三角形的性质即可得到结论.【解答】解:在△BDC中,∵∠BCD=90°,∴∠1+∠2=90°,又∵∠2=∠3,∴∠1+∠3=90°,∴CO⊥DB,∴CO是△BCD的高;故A选项不符合题意;∵CO⊥DB,∴∠5=90°﹣∠4=90°﹣60°=30°故B选项不符合题意;∵∠1=∠2,∴CD=BC,∵OC⊥BD,∴OD=OB,故D选项不符合题意;∵∠CDA=∠1+∠4=45°+60°=105°,∵∠5=∠6=30°∴∠DAB=∠5+∠6=30°+30°=60°,∴∠ABC=105°,故C选项符合题意;故选:C.9.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=()A.30°B.45°C.60°D.90°【分析】根据等腰三角形两底角相等求出∠ABC=∠ACB,再求出∠CBD,然后根据∠ABD =∠ABC﹣∠CBD计算即可得解.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=(180°﹣∠A)=(180°﹣30°)=75°,∵以B为圆心,BC的长为半径圆弧,交AC于点D,∴BC=BD,∴∠CBD=180°﹣2∠ACB=180°﹣2×75°=30°,∴∠ABD=∠ABC﹣∠CBD=75°﹣30°=45°.故选:B.10.如图,在△ABC中,E,D分别是边AB,AC上的点,且AE=AD,BD,CE交于点F,AF 的延长线交BC于点H,若∠EAF=∠DAF,则图中的全等三角形共有()A.4对B.5对C.6对D.7对【分析】根据全等三角形的判定方法解答即可.【解答】解:在△AEF和△ADF中,∴△AEF≌△ADF(SAS),∴EF=DF,∠EFA=∠DFA,∴∠FDC=∠FEB,在△EBF和△DFC中,∴△EBF≌△DFC(ASA),∴BF=CF,∴∠HFC=∠HFB,在△HFC和△HFB中,∴△HFC≌△HFB(SAS),∴△ABF≌△ACF(SSS),同理可得△ABH≌ACH(SSS),△BEC≌BDC(SSS),故选:C.11.点(1,2m﹣1)关于直线x=m的对称点的坐标是()A.(2m﹣1,1)B.(﹣1,2m﹣1)C.(﹣1,1﹣2m)D.(2m﹣1,2m﹣1)【分析】根据关于直线x=m的对称点的横坐标的中点在直线上,纵坐标相等解答.【解答】解:点(1,2m﹣1)关于直线x=m的对称点的坐标为(2m﹣1,2m﹣1),故选:D.12.如图,过边长为2的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连接PQ交AC边于D,则DE的长为()A.B.1 C.D.不能确定【分析】过P作PF∥BC交AC于F,得出等边三角形APF,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFD≌△QCD,推出FD=CD,推出DE=AC即可.【解答】解:过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=2,∴DE=1.故选:B.二.填空题(共6小题)13.如图,点B、E、C、F在一条直线上,AB∥DE,AB=DE,BE=CF,AC=6,则DF= 6 .【分析】根据题中条件由SAS可得△ABC≌△DEF,根据全等三角形的性质可得AC=DF=6.【解答】证明:∵AB∥DE,∴∠B=∠DEF∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DF=6.故答案是:6.14.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是60 度.【分析】由∠A=80°,∠B=40°,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ACD=∠B+∠A,然后利用角平分线的定义计算即可.【解答】解:∵∠ACD=∠B+∠A,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°.∵CE平分∠ACD,∴∠ACE=60°,故答案为6015.如图,AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,还需添加一个条件,这个条件可以是AE=AC.【分析】求出∠BAC=∠DAE,根据全等三角形的判定定理SAS推出即可.【解答】解:AE=AC.理由是:∵∠BAE=∠DAC,∴∠BAE+∠EAC=DAC+∠EAC,∴∠BAC=∠DAE,在△ABC和△ADE中∴△ABC≌△ADE,故答案为:AE=AC.16.如图,已知Rt△ABC中,∠C=90°,∠A=30°.在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有 6 个.(在图上作出点P的位置)【分析】本题是开放性试题,根据题意,画出图形结合求解.【解答】解:如图,第1个点在AC上,作线段AB的垂直平分线,交AC于点P,则有PA =PB;第2个点是以A为圆心,以AB长为半径截取AP=AB,交AC延长线上于点P;第3个点是以A为圆心,以AB长为半径截取AP=AB,在上边于CA延长线上交于点P;第4个点是以B为圆心,以BA长为半径截取BP=BA,与AC的延长线交于点P;第5个点是以B为圆心,以BA长为半径截取BP=BA,与BC在左边交于点P;第6个点是以A为圆心,以AB长为半径截取AP=AB,与BC在右边交于点P;故符合条件的点P有6个点.故答案为:6.17.在△ABC中,已知∠CAB=60°,D、E分别是边AB、AC上的点,且∠AED=60°,ED+DB =CE,∠CDB=2∠CDE,则∠DCB等于20°.【分析】延长AB到F使BF=AD,连接CF,如图,先判断△ADE为等边三角形得到AD=DE=AE,∠ADE=60°,再利用∠CDB=2∠CDE得到∠CDE=40°,∠CDB=80°,接着证明AF=AC,从而可判断△AFC为等边三角形,则有CF=AC,∠F=60°,然后证明△ACD ≌△FCB得到CB=CD,最后根据等腰三角形的性质和三角形内角和计算∠DCB的度数.【解答】解:延长AB到F使BF=AD,连接CF,如图,∵∠CAD=60°,∠AED=60°,∴△ADE为等边三角形,∴AD=DE=AE,∠ADE=60°,∴∠BDE=180°﹣∠ADE=120°,∵∠CDB=2∠CDE,∴3∠CDE=120°,解得∠CDE=40°,∴∠CDB=2∠CDE=80°,∵BF=AD,∴BF=DE,∵DE+BD=CE,∴BF+BD=CE,即DF=CE,∵AF=AD+DF,AC=AE+CE,∴AF=AC,而∠BAC=60°,∴△AFC为等边三角形,∴CF=AC,∠F=60°,在△ACD和△FCB中,∴△ACD≌△FCB(SAS),∴CB=CD,∴∠CBD=∠CDB=80°,∴∠DCB=180﹣(∠CBD+∠CDB)=20°.18.已知,在四边形ABCD中,∠F为四边形ABCD的∠ABC的平分线及外角∠DCE的平分线所在的直线构成的锐角,若∠A=α,∠D=β,(1)如图①,当α+β>180°时,∠F=(α+β)﹣90°(用含α,β的式子表示);(2)如图②,当α+β<180°时,请在图②中,画出∠F,且∠F=90°﹣(α+β)(用含α,β的式子表示);(3)当α,β满足条件α+β=180°时,不存在∠F.【分析】(1)根据四边形的内角和定理表示出∠BCD,再表示出∠DCE,然后根据角平分线的定义可得∠FBC=∠ABC,∠FCE=∠DCE,三角形的一个外角等于与它不相邻的两个内角的和可得∠F+∠FBC=∠FCE,然后整理即可得解;(2)同(1)的思路求解即可;(3)根据∠F的表示,∠F为0时不存在.【解答】解:(1)由四边形内角和定理得,∠BCD=360°﹣∠A﹣∠D﹣∠ABC,∴∠DCE=180°﹣(360°﹣∠A﹣∠D﹣∠ABC)=∠A+∠D+∠ABC﹣180°,由三角形的外角性质得,∠DCE=∠A+∠D+∠ABC,∠FCE=∠F+∠FBC,∵BF、CF分别是∠ABC和∠DCE的平分线,∴∠FBC=∠ABC,∠FCE=∠DCE,∴∠F+∠FBC=(∠A+∠D+∠ABC﹣180°)=(∠A+∠D)+∠ABC﹣90°,∴∠F=(∠A+∠D)﹣90°,∵∠A=α,∠D=β,∴∠F=(α+β)﹣90°;(2)如图3,同①可求,∠F=90°﹣(α+β);(3)∠F不一定存在,当α+β=180°时,∠F=0,不存在.故答案为:(1)(α+β)﹣90°,(2)90°﹣(α+β),(3)α+β=180°.三.解答题(共6小题)19.如图,点B,F,C,E在一条直线上,BF=CE,AB∥ED,AC∥FD.求证:△ABC≌△DEF.【分析】先证明∠B=∠E,∠ACB=∠DFE,BC=EF,进而利用全等三角形的判定定理ASA 证明两个三角形全等.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,即BC=EF.∵AB∥ED,∴∠B=∠E.∵AC∥FD,∴∠ACB=∠DFE.在△ABC和△DEF中,∴△ABC≌△DEF(SAS).20.如图,在△ABC中,∠C=80°,点D在边BC上,且∠ADB=100°,∠BAD=∠DAC,BE平分∠ABC,交AD于点E.求∠BED的大小.【分析】根据∠BED=∠BAD+∠ABE,求出∠BAD,∠ABE即可解决问题.【解答】解:∵∠ADB=∠C+∠DAC,∠ADB=100°,∠C=80°,∴∠DAC=∠ADB﹣∠C=100°﹣80°=20°,∵,∴20°=10°,在△ABD中,∠ABC=180°﹣∠ADB﹣∠BAD=180°﹣100°﹣10°=70°,∵BE平分∠ABC,∴70°=35°,∴∠BED=∠BAD+∠ABE=10°+35°=45°.21.如图,在3×3的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中△ABC是一个格点三角形.在每张图中画出一个与△ABC成轴对称的格点三角形,并将所画三角形涂上阴影.【分析】直接利用轴对称图形的性质分别得出符合题意的答案.【解答】解:如图所示:22.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.【分析】连接AD,利用“边边边”证明△ABD和△ACD全等,然后根据全等三角形对应角相等可得∠BAD=∠CAD,再根据角平分线上的点到角的两边距离相等证明即可.【解答】证明:如图,连接AD,在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,又∵DE⊥AB,DF⊥AC,∴DE=DF.23.已知,在△ABC中,DE垂直平分AB,垂足为点D,交直线BC于点E.MN垂直平分AC,垂足为点M,交直线BC于点N,连接AE,AN.(1)如图①,若∠BAC=100°,求∠EAN的大小;(2)如图②,若∠BAC=70°,求∠EAN的大小;(3)若∠BAC=α(α≠90°),用含α的式子表示∠EAN的大小(直接写出结果即可).【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,再根据等边对等角可得∠BAE=∠B,同理可得,∠CAN=∠C,然后利用三角形的内角和定理求出∠B+∠C,再根据∠EAN=∠BAC﹣(∠BAE+∠CAN)代入数据进行计算即可得解;(2)同(1)的思路,最后根据∠EAN=∠BAE+∠CAN﹣∠BAC代入数据进行计算即可得解;(3)根据前两问的求解方法,分0°<α<90°与180°>α>90°两种情况解答.【解答】解:(1)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAC﹣∠BAE﹣∠CAN,=∠BAC﹣(∠B+∠C),在△ABC中,∠B+∠C=180°﹣∠BAC=80°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=100°﹣80°=20°;(2)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAE+∠CAN﹣∠BAC,=(∠B+∠C)﹣∠BAC,在△ABC中,∠B+∠C=180°﹣∠BAC=110°,∴∠EAN=∠BAE+∠CAN﹣∠BAC=110°﹣70°=40°;(3)当0°<α<90°时,∠EAN=180°﹣2α;当180°>α>90°时,∠EAN=2α﹣180°.24.如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP(备注:当EF=FP,∠EFP=90°时,∠PEF=∠FPE=45°,反之当∠PEF=∠FPE=45°时,当EF=FP).(1)在图1中,请你通过观察、测量、猜想并写出AB与AP所满足的数量关系和位置关系.(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(2)中所猜想的BQ与AP的结论还成立吗?若成立,给出证明:若不成立,请说明理由.【分析】(1)根据图形就可以猜想出结论.(2)要证BQ=AP,可以转化为证明Rt△BCQ≌Rt△ACP;要证明BQ⊥AP,可以证明∠QMA =90°,只要证出∠1=∠2,∠3=∠4,∠1+∠3=90°即可证出.(3)类比(2)的证明就可以得到,结论仍成立.【解答】解:(1)AB=AP;AB⊥AP;证明:∵AC⊥BC且AC=BC,∴△ABC为等腰直角三角形,∴∠BAC=∠ABC=(180°﹣∠ACB)=45°,又∵△ABC与△EFP全等,同理可证∠PEF=45°,∴∠BAP=45°+45°=90°,∴AB=AP且AB⊥AP;(2)BQ=AP;BQ⊥AP.证明:①由已知,得EF=FP,EF⊥FP,∴∠EPF=45°.又∵AC⊥BC,∴∠CQP=∠CPQ=45°.∴CQ=CP.∵在Rt△BCQ和Rt△ACP中,BC=AC,∠BCQ=∠ACP=90°,CQ=CP,∴△BCQ≌△ACP(SAS),∴BQ=AP.②如图,延长BQ交AP于点M.∵Rt△BCQ≌Rt△ACP,∴∠1=∠2.∵在Rt△BCQ中,∠1+∠3=90°,又∠3=∠4,∴∠2+∠4=∠1+∠3=90°.∴∠QMA=90°.∴BQ⊥AP;(3)成立.证明:①如图,∵∠EPF=45°,∴∠CPQ=45°.又∵AC⊥BC,∴∠CQP=∠CPQ=45°.∴CQ=CP.∵在Rt△BCQ和Rt△ACP中,BC=AC,CQ=CP,∠BCQ=∠ACP=90°,∴Rt△BCQ≌Rt△ACP.∴BQ=AP.②如图③,延长QB交AP于点N,则∠PBN=∠CBQ.∵Rt△BCQ≌Rt△ACP,∴∠BQC=∠APC.∵在Rt△BCQ中,∠BQC+∠CBQ=90°,又∵∠CBQ=∠PBN,∴∠APC+∠PBN=90°.∴∠PNB=90°.∴QB⊥AP.。

天津市和平区2023-2024学年九年级上学期期中数学试题(含解析)

天津市和平区2023-2024学年九年级上学期期中数学试题(含解析)

. .. ..若,是一元二次方程的两个根,则的值为(..二次函数的开口方向、对称轴和顶点坐标分别为(αβαβ+4-3-(5y x =-A .C .8.如图,是A .9.如图,是,则A .B ()(204306x --()(206304x --AB O 43DEC ABC 12DCB ∠=︒AFD ∠33︒....A .C .12.已知抛物线①图象的对称轴为直线2AB BC=ACB BOC ∠=∠2y a bx =+x15.飞机着陆后滑行的距离滑行米才能停下来.16.若方程x2-408444117.如图,在四边形18.如图,在每个小正方形的边长为AB(Ⅰ)线段的长等于;(Ⅱ)请用无刻度的直尺,在如图所示的网格中,在圆上画出点迹)三、解答题(本大题共(1)在位置①处,当时,(2)有一个计时点的计时装置出现了故障,编号可能是______;(3)利用函数图象推测当此滑雪者滑行距离为(4)求s 与t 的函数关系式,并求出滑雪者在故障位置的滑行距离.(1)求的大小;0=t BDC ∠(2)如图②,连接并延长交的延长线于点,若,求的大小.23.2023年杭州亚运会胜利闭幕.本次亚运会中国代表团共获得383枚奖牌,位居奖牌榜第一,创造了新的历史.在亚运会期间,买一件印有亚运会元素的T 恤去看比赛,成为了体育迷们的“仪式感”.某商店以每件40元的价格购进一批这样的T 恤,以每件60元的价格出售.经统计,4月份的销售量为192件,6月份的销售量为300件.(1)求该款T 恤4月份到6月份销售量的月平均增长率;(2)从7月份起,商场决定采用降价促销回馈顾客,销售利润不超过30%.经试验,发现该款T 恤在6月份销售量的基础上,每降价1元,月销售量就会增加20件.如何定价才能使利润最大?并求出最大利润是多少元?24.已知矩形,,,将矩形绕A 顺时针旋转,得到矩形,点B 的对应点是点E ,点C 的对应点是点F ,点D 的对应点是点G .(1)如图①;当时,连接,求的长;(2)如图②,当边经过点D 时,延长交于点P ,求的长;(3)连接,点M 是的中点,连接,在旋转过程中,线段的最大值______.25.已知抛物线(,,是常数,)的顶点为,与轴相交于,两点(点在点的左侧),与轴相交于点.(1)若点,求点和点的坐标;(2)将点绕点逆时针方向旋转,点的对应点为,若,两点关于点中心对称,求点的坐标和抛物线解析式:(3)在(1)的条件下,点为直线下方抛物线上的一个动点,过点作轴,与相交于点,过点作轴,与轴相交于点,求的最大值及此时点的坐标.DC AB P 10CAB ∠=︒P ∠ABCD 3AB =5BC =ABCD ()0180αα︒<<︒AEFG 90α=︒CF CF 'EF FE BC EP CF CF BM BM 2y ax bx c =++a b c 0a ≠()1,4M -x A B A B y C ()0,3C -A B A B 90︒A 1A A 1A M 1A P BC P PD x ∥BC D P PE y x E PD PE +P由作图可知:垂直平分∵,∴,∴∵,∵,∴∵∴CD 4AB =11124OM OB AB ===22CM OC OM =-=CD OB ⊥45ACB ∠=︒12DCB ∠=︒45ACD ACB DCB ∠=∠-∠=DMF AMC∠=∠D AFD A ACD ∠+∠=∠+∠∵,∴,∴ ,∴,∵,2AOB BOC ∠=∠ 2AB BC= AD BDBC ==AD BD BC ==AB AD BD <+∵,∴,∴,∵,∴,∴点F 在以为直径的半圆上运动,∴当点F 运动到与的交点90ABC BAD ∠=∠=︒AD BC ∥DAE AEB ∠=∠ADF BAE =∠∠90DFA ABE ==︒∠∠AD OB O F【点睛】本题考查的是勾股定理与勾股定理的逆定理的应用,垂径定理的应用,三角形的外接圆的圆心的确定,熟练的利用垂径定理应用于作图是解本题的关键.19.(Ⅰ),;(Ⅱ【分析】(Ⅰ)利用公式法解一元二次方程即可解题;(Ⅱ)①根据一元二次方程根的判别式求解即可;11x =215x =-②由题可得,,当选择①时,,解得:或(舍去);当选择②时,,解得:;当选择③时,则,即,解得:;【点睛】本题考查一元二次方程的解法,根的判别式,根与系数的关系,,熟练掌握一元二次方程根的判别式与根的情况的关系,以及根与系数关系并能灵活运用是解答的关键.20.(1)(2)平滑曲线见详解,③(3)(4)(),【分析】(1)将,代入函数解析式,即可求解;(2)画出图象,观察图象即可求解;(3)根据图象可找出当时,对应的近似值,即可求解;(4)图象经过,,可求,验证,是否在抛物线上,从而可以确定s 与t 的函数关系式,再当即可求解.【详解】(1)解:当时,,,,故答案:.(2)解:画图如下,观察图象可知,除了③号点,其它各点都在同一个抛物线上,故这个计时点的位置编号可能是③.故答案为:③;(3)解:如图,1221x x k +=+2121x x k =+212k +=1k =1k =-213k +=1k =()2121x x -=()()()2221212421411x x x x k k +-=+-+=1k =03.122.52s t t =+0t ≥10.625m0=t 0s =30s =t ()1,4.5()2,1422.52s t t =+()3,28.5()4,481.5t =0=t 0s =∴000c ++=0c ∴=0由图象得:当此滑雪者滑行距离为30m 时,用时约为,故答案:.(4)解:由题意得,图象经过,,则有,解得:,,当时,当时,,,在抛物线上,s 与t 的函数关系式(),当时,(),答:s 与t 的函数关系式(),滑雪者在故障位置的滑行距离.【点睛】本题考查了二次函数在实际问题中的应用,数形结合是解题的关键.21.(1)(2)【分析】(1)直接利用圆周角定理得出的度数,再利用等弧所对的圆周角相等得到求出答案;(2)连接,,首先求出的度数,得到为等边三角形,再根据等边三角形的性质求出答案.【详解】(1)∵四边形内接于,∴,3.1s 3.1()1,4.5()2,144.54214a b a b +=⎧⎨+=⎩2.52a b =⎧⎨=⎩∴22.52s t t =+3t =22.532328.5s =⨯+⨯=4t =22.542448s =⨯+⨯=()3,28.5∴()4,4822.52s t t =+∴22.52s t t =+0t ≥1.5t =22.5 1.52 1.5s =⨯+⨯10.625=m 22.52s t t =+0t ≥10.625m 30︒3DCB ∠DCB DBC ∠=∠OB OC BOC ∠OBC ABCD O 180DCB BAD ∠+∠=︒【点睛】本题考查的是圆内接四边形的性质、圆周角定理的推论、等边三角形的判定和性质,掌握圆内接四边形的对角互补是解题的关键.22.(1),(2).26D ∠=︒DBC ∠30P ∠=︒(2)如图,连接,由题意可知,在根据勾股定理得∵,∴,又∵,PA Rt AED ED AD =90PEA PBA ∠=∠=︒EPA BPA ∠=∠BC AD【点睛】本题考查了矩形的性质,三角形中位线,勾股定理,圆的性质,掌握这些知识点灵活运用是解题关键.25.(1),(2),(3)取得最大值()1,0A -()3,0B ()5,8A '-()2114y x =-PD PE +498将点代入得,解得:()30A -,()214y a x =--1640a -=14a =。

2024-2025学年人教版八年级上册期中数学复习训练试卷(天津)(含答案)

2024-2025学年人教版八年级上册期中数学复习训练试卷(天津)(含答案)

2024-2025学年第一学期人教版八年级期中数学复习训练试卷(天津)试卷满分:120分 考试时间:100分钟一、选择题本大愿共12小题每小题3分共36分在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列图形中,不是轴对称图形的是( )A .B .C .D .2.下列长度的三条线段中,能组成三角形的是( )A .,,B .,,C .,,D .,,3.用直尺和圆规作一个角等于已知角,如图,能得出的依据是( )A .B .C .D .4 . 一个等腰三角形的两边长分别为6和12,则这个等腰三角形的周长为( )A .30B .24C .18D .24或305. 如图,是的两条中线,连接.若,则(  )A .1B .1.5C .2.5D .56. 如图,在△ABC 中,根据尺规作图痕迹,下列说法不一定正确的是(  )3cm 1cm 1cm 1cm 2cm 3cm2cm 3cm 4cm 4cm 4cm 9cmAOB AO B '''∠=∠SSS SAS ASA AASAD CE ,ABC V ED 10ABC S =△S =阴影A.AF=BF B.AE=ACC.∠DBF+∠DFB=90°D.∠BAF=∠EBC7.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=( )A.40°B.30°C.20°D.10°8.如图,AC=FD,BC=ED,要利用“SSS”来判定△ABC和△FED全等时,下面的4个条件中:①AE=FB;②AB=FE;③AE=BE;④BF=BE,可利用的是( )A.①或②B.②或③C.①或③D.①或④9.如图,在△ABC中,已知点D,E,F分别为边AC,BD,CE的中点,且阴影部分图形面积等于4平方厘米,则△ABC的面积为( )A .8平方厘米B .12平方厘米C .16平方厘米D .18平方厘米10 . 如图,中,,且,垂直平分,交于点,交于点,若周长为16,,则为( )A .5B .8C .9D .1011. 如图,在中, 垂直平分,点P 为直线上的任意一点,则的最小值是( )A .6B .7C .8D .1012 .如图,C 为线段上一动点(不与点A ,E 重合),在同侧分别作正三角形和正三角形,与交于点O ,与交于点P ,与交于点Q ,连接.以下五个结论:①;②;③;④;其中恒成立的结论有( )个ABC V AB AE =AD BC ⊥EF AC AC F BC E ABC V 6AC =DC ABC V 906810BAC AB AC BC EF ∠=︒===,,,,BC EF AP BP +AE AE ABC CDE AD BE AD BC BE CD PQ AD BE =PQ AE ∥EQ DP =60AOB ∠=︒A .1B .2C .3D .4二、境空题:本大题共6小题,每小题3分,共18分,请将答案直接填在答题纸中对应的横线上。

2022-2023学年天津市和平区九年级(上)期中数学试题及答案解析

2022-2023学年天津市和平区九年级(上)期中数学试题及答案解析

2022-2023学年天津市和平区九年级(上)期中数学试卷一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. “垃圾分类,利国利民”,在2019年7月1日起上海开始正式实施垃圾分类,到2020年底先行先试的46个重点城市,要基本建成垃圾分类处理系统.以下四类垃圾分类标志的图形,其中既是轴对称图形又是中心对称图形的是( )A. 可回收物B. 有害垃圾C. 厨余垃圾D. 其他垃圾2. 一元二次方程x2−2x+1=0的根的情况是( )A. 有两个不等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定3. 如图,菱形ABCD对角线交点与坐标原点O重合,点A(−2,5),则点C的坐标是( )A. (5,−2)B. (2,−5)C. (2,5)D. (−2,−5)4. 用配方法解方程x2+8x+9=0,变形后的结果正确的是( )A. (x+4)2=−7B. (x+4)2=−9C. (x+4)2=7D. (x+4)2=255. AB是⊙O的直径,点C在圆上,∠ABC=65°,那么∠OCA的度数是( )A. 25°B. 35°C. 15°D. 20°6. 把抛物线y=−2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为( )A. y=−2(x+1)2+2B. y=−2(x+1)2−2C. y=−2(x−1)2+2D. y=−2(x−1)2−27. 若M(−4,y1),N(−3,y2),P(1,y3)为二次函数y=x2+4x−5的图象上的三点,则y1,y2,y3的大小关系是( )A. y1<y2<y3B. y2<y1<y3C. y3<y1<y2D. y1<y3<y28. 某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是( )A. 50(1+x)2=182B. 50+50(1+x)+50(1+x)2=182C. 50(1+2x)=182D. 50+50(1+x)+50(1+2x)2=1829. 关于二次函数y=2x2+4x−1,下列说法正确的是( )A. 图象与y轴的交点坐标为(0,1)B. 图象的对称轴在y轴的右侧C. 当x<0时,y的值随x值的增大而减小D. y的最小值为−310. 高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=12米,净高CD=9米,则此圆的半径OA=( )A. 6米B. 132米C. 7米D. 152米11. 如图,△ABC 中,∠C =90°,AC =BC =√2,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B 的长为( )A. 2−√2B. √32C. √3−1D. 112. 二次函数y =ax 2+bx +c(a,b,c 是常数,a ≠0)的自变量x 与函数值y 的部分对应值如表: x… −2 −1 0 1 2 …y =ax 2+bx +c … t m −2 −2 n …且当x =−12时,与其对应的函数值y >0,有下列结论: ①abc <0;②m =n ;③−2和3是关于x 的方程ax 2+bx +c =t 的两个根;④a <83. 其中,正确结论的个数是( )A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)13. 写出下列一元二次方程的根(2x −7)(x +2)=0 ______.14. 函数y =2(x −1)2图象的顶点坐标为______ .15. 如图,线段AB 经过圆心O ,交⊙O 于点A 、C ,∠B =30°,直线BD 与⊙O 切于点D ,则∠ADB 的度数是______.16. 已知二次函数y=kx2−7x−7的图象和x轴有交点,则k的取值范围______.17. △ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是___________.18. 如图,△ABC是等边三角形,AB=4√3,D是BC的中点,F是直线AB上一动点,线段DF 绕点D逆时针旋转90°,得到线段DE,当点F运动时,CE的最小值是______.三、解答题(本大题共7小题,共66.0分。

2020-2021学年天津市部分区八年级(上)期中数学试卷 (解析版) (1)

2020-2021学年天津市部分区八年级(上)期中数学试卷 (解析版) (1)

2020-2021学年天津市部分区八年级第一学期期中数学试卷一、选择题1.(3分)在美术字中,有的是轴对称图形.下面4个汉字可以看成是轴对称图形的是()A.B.C.D.2.(3分)一个三角形的两边长为12和7,第三边长为整数,则第三边长的最大值是()A.16B.17C.18D.193.(3分)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC4.(3分)等腰三角形的两边长分别为6和12,则这个三角形的周长为()A.18B.24C.30D.24或305.(3分)点P(﹣2,1)关于y轴对称的点的坐标为()A.(﹣2,﹣1)B.(2,1)C.(2,﹣1)D.(﹣2,1)6.(3分)已知在含有30°角的直角三角形中,斜边长为8cm,则这个三角形的最短边长为()A.2cm B.4cm C.6cm D.8cm7.(3分)已知△ABC≌△DEF,且△DEF的面积为18,BC=6,则BC边上的高等于()A.13B.3C.4D.68.(3分)如图,已知AB=BC,AD=CD,若∠A=80°,∠ABD=35°,则∠BDC的度数是()A.35°B.55°C.65°D.75°9.(3分)如图,已知BA⊥AC,BE为△ABC的角平分线,作ED⊥BC于D,则下列结论①AE=DE;②∠BEA=∠BED;③AB=BD;④∠CED=∠BED,其中一定成立的有()A.1个B.2个C.3个D.4个10.(3分)如图,已知△ABC是等边三角形,且AD=BE=CF,则△DEF是()A.等边三角形B.不等边三角形C.等腰三角形但不是等边三角形D.直角三角形11.(3分)如图,在∠MON内有一点P,点P关于OM的对称点是点G,点P关于ON 的对称点是点H,连接GH分别交OM,ON于点A,B.若GH的长是12cm,则△PAB 的周长为()A.12B.13C.14D.1512.(3分)如图所示,∠E=∠F=90°,AE=AF,AB=AC,下列结论①∠FAN=∠EAM;②EM=FN;③CD=DN;④△ACN≌△ABM.其中下列结论中正确的个数是()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,每小题3分,共18分.将答案直接填在题中横线上. 13.(3分)在△ABC中,已知∠B=3∠A,∠C=5∠A,则∠A=,∠B=,∠C=.14.(3分)一个多边形的内角和等于它的外角和,则它是边形.15.(3分)在△ABC中,已知∠A=∠B=60°,且△ABC的周长为24cm,则AB的长为cm.16.(3分)如图,已知BC=CD,只需补充一个条件,则有△ABC≌△ADC.17.(3分)如图,在△ABC中,已知AB=AC,D为BC的中点,若∠B=50°,则∠DAC的度数为.18.(3分)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE、CD的中点.若BN=4cm,则BM的长为cm.三、解答题:本大题共8小题,其中19题6分,20~24题每题8分,25~26题每题10分,共66分.写出文字说明、演算步骤或证明过程.19.(6分)△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.作出△ABC关于y对称的△A1B1C1,并写出点△A1B1C1的坐标.20.(8分)若一个多边形的内角和是1260°,求这个多边形的边数.21.(8分)如图,在△ABC中,AD是BC边上的中线,AE是BC边上的高线,已知AE =4,△ABD的面积是6,求BC的长.22.(8分)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM =AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.23.(8分)如图,在△ABC中,已知AB=AC=BD,∠BAD=70°,求△ABC中各角的度数.24.(8分)如图,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm.求△ABC的周长.25.(10分)如图所示,在△ABC中,∠B=60°,AB=AC,点D、E分别在BC、AB上,且BD=AE,AD与CE交于点F.(1)求证:△ABC是等边三角形;(2)求证:AD=CE;(3)求∠DFC的度数.26.(10分)如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点B,D,E在同一直线上,AF⊥BE于点F.(1)求证:△ABD≌△ACE;(2)直接写出BE,CE,AF之间的数量关系.参考答案一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的.请将答案选项填在下表中1.(3分)在美术字中,有的是轴对称图形.下面4个汉字可以看成是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不合题;故选:C.2.(3分)一个三角形的两边长为12和7,第三边长为整数,则第三边长的最大值是()A.16B.17C.18D.19解:设第三边为a,根据三角形的三边关系,得:12﹣7<a<12+7,即5<a<19,∵a为整数,∴a的最大值为18.故选:C.3.(3分)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC解:选项A、添加AB=DE可用AAS进行判定,故本选项错误;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选:C.4.(3分)等腰三角形的两边长分别为6和12,则这个三角形的周长为()A.18B.24C.30D.24或30解:(1)当三边是6,6,12时,6+6=12,不符合三角形的三边关系,应舍去;(2)当三边是6,12,12时,符合三角形的三边关系,此时周长是30;所以这个三角形的周长是30.故选:C.5.(3分)点P(﹣2,1)关于y轴对称的点的坐标为()A.(﹣2,﹣1)B.(2,1)C.(2,﹣1)D.(﹣2,1)解:根据两点关于y轴对称的点的坐关系:横坐标互为相反数,纵坐标不变.∴点P(﹣2,1)关于y轴对称的点的坐标为(2,1).故选:B.6.(3分)已知在含有30°角的直角三角形中,斜边长为8cm,则这个三角形的最短边长为()A.2cm B.4cm C.6cm D.8cm解:在含有30°角的直角三角形中,斜边长为8cm,∴这个三角形的最短边长为×8=4(cm).故选:B.7.(3分)已知△ABC≌△DEF,且△DEF的面积为18,BC=6,则BC边上的高等于()A.13B.3C.4D.6解:设△ABC的面积为S,边BC上的高为h,∵△ABC≌△DEF,BC=6,△DEF的面积为18,∴两三角形的面积相等即S=18,又S=•BC•h=18,∴h=6,故选:D.8.(3分)如图,已知AB=BC,AD=CD,若∠A=80°,∠ABD=35°,则∠BDC的度数是()A.35°B.55°C.65°D.75°解:在△CBD和△ABD中,,∴△CBD≌△ABD(SSS),∴∠C=∠A=80°,∠CBD=∠ABD=35°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣80°﹣35°=65°,故选:C.9.(3分)如图,已知BA⊥AC,BE为△ABC的角平分线,作ED⊥BC于D,则下列结论①AE=DE;②∠BEA=∠BED;③AB=BD;④∠CED=∠BED,其中一定成立的有()A.1个B.2个C.3个D.4个解:∵BE为△ABC的角平分线,∴∠ABE=∠DBE,∵BA⊥AC,ED⊥BC,∴∠A=∠BDE=90°,在△ABE和△DBE中,,∴△ABE≌△DBE(AAS),∴AE=DE,∠BEA=∠BED,AB=BD,故①②③成立,∵ED⊥BC,∴∠CED+∠C=90°,∠BED+∠DBE=90°,当∠C=∠DBE时,∠CED=∠BED,故④不一定成立,一定成立的有3个,故选:C.10.(3分)如图,已知△ABC是等边三角形,且AD=BE=CF,则△DEF是()A.等边三角形B.不等边三角形C.等腰三角形但不是等边三角形D.直角三角形解:∵△ABC为等边三角形,∴AB=BC=CA,∠A=∠B=∠C=60°,∵AD=BE=CF,∴BD=CE=AF,∴△ADF≌△BED≌△CFE(SAS),∴DF=ED=EF,∴△DEF为等边三角形,故选:A.11.(3分)如图,在∠MON内有一点P,点P关于OM的对称点是点G,点P关于ON 的对称点是点H,连接GH分别交OM,ON于点A,B.若GH的长是12cm,则△PAB 的周长为()A.12B.13C.14D.15解:∵点P关于OM的对称点是点G,点P关于ON的对称点是点H,∴PA=AG,PB=BH,∵GH=AG+AB+BH=PA+AB+PB=12cm,∴△PAB的周长为12cm.故选:A.12.(3分)如图所示,∠E=∠F=90°,AE=AF,AB=AC,下列结论①∠FAN=∠EAM;②EM=FN;③CD=DN;④△ACN≌△ABM.其中下列结论中正确的个数是()A.1个B.2个C.3个D.4个解:在Rt△AEB与Rt△AFC中,,∴Rt△AEB≌Rt△AFC(HL),∴∠FAM=∠EAN,∴∠EAN﹣∠MAN=∠FAM﹣∠MAN,即∠EAM=∠FAN.故①正确;又∵∠E=∠F=90°,AE=AF,∴△EAM≌△FAN(ASA),∴EM=FN.故②正确;由△AEB≌△AFC知:∠B=∠C,又∵∠CAB=∠BAC,AC=AB,∴△ACN≌△ABM(ASA);故④正确.由于条件不足,无法证得③CD=DN;故正确的结论有:①②④;故选:C.二、填空题:本大题共6小题,每小题3分,共18分.将答案直接填在题中横线上. 13.(3分)在△ABC中,已知∠B=3∠A,∠C=5∠A,则∠A=20°,∠B=60°,∠C=100°.解:设∠A=x,则∠B=3x,∠C=5x,根据题意得x+3x+5x=180°,解得x=20°,则3x=60°,5x=100°,所以∠A=20°,∠B=60°,∠C=100°.故答案为:20°,60°,100°.14.(3分)一个多边形的内角和等于它的外角和,则它是四边形.解:∵多边形的外角和是360度,多边形的内角和等于它的外角和,则内角和是360度,∴这个多边形是四边形.故答案为:四.15.(3分)在△ABC中,已知∠A=∠B=60°,且△ABC的周长为24cm,则AB的长为8cm.解:在△ABC中,∵∠A=∠B=60°,∴△ABC是等边三角形,∵△ABC的周长为24cm,∴AB=×24=8(cm),故答案为:8.16.(3分)如图,已知BC=CD,只需补充一个条件AB=AD,则有△ABC≌△ADC.解:∵BC=DC,AC=AC,∴若补充条件AB=AD,则△ABC≌△ADC(SSS),若补充条件∠ACB=∠ACD,则△ABC≌△ADC(SAS),故答案为:AB=AD.17.(3分)如图,在△ABC中,已知AB=AC,D为BC的中点,若∠B=50°,则∠DAC 的度数为40°.解:∵AB=AC,D是BC中点,∴AD是∠BAC的角平分线,∵∠B=50°,∴∠BAC=80°,∴∠DAC=40°.故答案为:40°.18.(3分)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE、CD的中点.若BN=4cm,则BM的长为4cm.解:在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴∠BAE=∠BDC,∴AE=CD,∵M、N分别是AE、CD的中点,∴AM=DN,在△ABM和△DBN中,,∴△ABM≌△DBN(SAS),∴BM=BN=4cm.故答案为:4.三、解答题:本大题共8小题,其中19题6分,20~24题每题8分,25~26题每题10分,共66分.写出文字说明、演算步骤或证明过程.19.(6分)△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.作出△ABC关于y对称的△A1B1C1,并写出点△A1B1C1的坐标.解:如图所示,由图可知,A1(﹣2,4),B1(﹣1,1),C1(﹣3,2).20.(8分)若一个多边形的内角和是1260°,求这个多边形的边数.解:设这个多边形的边数为n,由题意可得:(n﹣2)×180°=1260°,解得n=9,答:这个多边形的边数为9.21.(8分)如图,在△ABC中,AD是BC边上的中线,AE是BC边上的高线,已知AE =4,△ABD的面积是6,求BC的长.解:∵AD为△ABC的中线,∴S△ABC=2S△ABD=2×6=12,∴×AE•BC=12,即4•BC=12,∴BC=6.22.(8分)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM =AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.【解答】证明:∵MD⊥AB,∴∠MDE=∠C=90°,∵ME∥BC,∴∠B=∠MED,在△ABC与△MED中,,∴△ABC≌△MED(AAS).23.(8分)如图,在△ABC中,已知AB=AC=BD,∠BAD=70°,求△ABC中各角的度数.解:∵AB=AD,∴∠ADB=∠BAD=70°,∴∠B=180°﹣70°﹣70°=40°,∵AB=AC,∴∠B=∠C=40°,∴∠BAC=180°﹣40°﹣40°=100°.24.(8分)如图,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm.求△ABC的周长.解:∵DE是AC的垂直平分线,∴DA=DC,∵△ABD的周长为13cm.∴AB+BD+AD=13cm,∵AE=3cm,∴AC=6cm,∴△ABC的周长=AB+BC+AC=AB+BD+AD+AC=19cm.25.(10分)如图所示,在△ABC中,∠B=60°,AB=AC,点D、E分别在BC、AB上,且BD=AE,AD与CE交于点F.(1)求证:△ABC是等边三角形;(2)求证:AD=CE;(3)求∠DFC的度数.【解答】证明:(1)∵∠B=60°,AB=AC,∴△ABC是等边三角形;(2)∵△ABC是等边三角形,∴∠B=∠CAE=∠ACB=60°,AC=AB,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴AD=CE.(3)∵△ABD≌△CAE,∴∠BAD=∠ACE,∴∠DFC=∠FAC+∠ACE=∠FAC+∠BAD=∠CAE=60°.26.(10分)如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点B,D,E在同一直线上,AF⊥BE于点F.(1)求证:△ABD≌△ACE;(2)直接写出BE,CE,AF之间的数量关系.【解答】证明:(1)∵△ACB和△DAE均为等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∠ADE=∠AED=45°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),(2)BE=CE+2AF,理由如下:∵△ABD≌△ACE,∴BD=CE,∠ADB=∠AEC,∵点A,D,E在同一直线上,∴∠ADB=180°﹣45°=135°,∴∠AEC=135°,∴∠BEC=∠AEC﹣∠AED=135°﹣45°=90°;∵∠DAE=90°,AD=AE,AF⊥DE,∴AF=DF=EF,∴DE=DF+EF=2AF,∴BE=BD+DE=CE+2AF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年天津市和平区八年级(上)期中数学试卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(3分)(2014•成都)下列图形中,不是轴对称图形的是()
A.B.C.D.
2.(3分)(2015秋•和平区期中)如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()
A.3cm B.4cm C.5cm D.6cm
3.(3分)(2015秋•和平区期中)如图,下列条件中,不能证明△ABD≌△ACD的是()
A.∠B=∠C,BD=DC B.BD=DC,AB=AC
C.∠B=∠C,∠BAD=∠CAD D.∠ADB=∠ADC,BD=DC
4.(3分)(2015秋•和平区期中)下列长度的三条线段,能组成三角形的是()A.1,2,3 B.4,5,6 C.7,8,16 D.9,10,20
5.(3分)(2015秋•和平区期中)已知点A的坐标是(1,2),则点A关于x轴的对称点的坐标是()
A.(1,﹣2)B.(﹣1,2)C.(﹣1,﹣2)D.(2,1)
6.(3分)(2015秋•和平区期中)一个多边形的内角和是外角的2倍,则它是()A.四边形B.五边形C.六边形D.八边形
7.(3分)(2015秋•和平区期中)如图,△ACB≌△ACB,点A和点A′,点B和点B′是对应点,∠BCB′=30°,则∠ACA′的度数为()
A.20°B.30°C.35°D.40°
8.(3分)(2015秋•和平区期中)△ABC中,∠B=∠A+10°,∠C=∠B+10°,则∠A=()
A.30°B.40°C.50°D.60°
9.(3分)(2011•和平区一模)如图,△AEB、△AFC中,∠E=∠F,∠B=∠C,AE=AF,则下列结论错误的是()
A.∠EAM=∠FAN B.BE=CF C.△ACN≌△ABM D.CD=DN
10.(3分)(2015秋•和平区期中)如图,△ABC中,AD⊥BC于点D,且BD=DC,E是BC延长线上一点,且点C在AE的垂直平分线上.有下列结论:
①AB=AC=CE;②AB+BD=DE;③AD=AE;④BD=DC=CE.
其中,正确的结论是()
A.只有①B.只有①②C.只有①②③ D.只有①④
11.(3分)(2015秋•和平区期中)下列说法:
①关于某条直线对称的两个三角形是全等三角形
②两个全等的三角形关于某条直线对称
③到某条直线距离相等的两个点关于这条直线对称
④如果图形甲和图形乙关于某条直线对称,则图形甲是轴对称图形
其中,正确说法个数是()
A.1 B.2 C.3 D.4
12.(3分)(2015秋•和平区期中)如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠BAC:∠ABC:∠BCA=28:5:3,则∠α的度数为()
A.90°B.85°C.80°D.75°
二、填空题(每题3分,共18分)
13.(3分)(2015秋•和平区期中)如图,△ABC中,∠C=90°,∠A=30°,BC=1.5cm,则AB的长是cm.
14.(3分)(2013•黔西南州)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.
15.(3分)(2011•河南)如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为.
16.(3分)(2015秋•和平区期中)△ABC中,∠A=60°,AB与AC这两边上的高所在的直线相交于点H,若△ABC不是直角三角形,则∠BHC=(度).
17.(3分)(2015秋•和平区期中)如图,Rt△ABC中,∠ACB=90°,分别以点A、点B为圆心,AC、BC长为半径画弧,两弧交于点P、点C,若∠PBC=50°,则∠APC=
(度).
18.(3分)(2015秋•和平区期中)点D、E、F分别在△ABC的BC,CA,AB边上,∠CAD=3∠BAD,∠ABE=3∠CBE,∠BCF=3∠ACF,BE、CF交于点M,CF、AD交于点N,且满足∠BMF=2∠CND,那么∠BAC等于(度).
三、简答题(本大题共6小题,共46分)
19.(6分)(2002•湛江)如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,
使CE=CB.连接DE,那么量出DE的长,就是A、B的距离.请说明DE的长就是A、B 的距离的理由.
20.(8分)(2015秋•和平区期中)已知点D在AB上,点E在AC上,AB=AC,∠ABE=∠ACD.
(1)如图①,求证:AD=AE.
(2)如图②,若BE、CD交于点P,连接BC,求证:PB=PC.
21.(8分)(2015秋•和平区期中)(1)如图所示的正多边形的对称轴有几条?把答案写在
你图下方的横线上:
条条条条条.
(2)一个正n边形有条对称轴;
(3)①在图①中画出正六边形的一条对称轴l;
②在图②中,用无刻度的直尺,准确画出正五边形的一条对称轴l(不写画法,保留画图痕迹)
22.(8分)(2015秋•蓟县期中)如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD 交于点O,OB=OC.求证:∠1=∠2.
23.(8分)(2015秋•和平区期中)如图,BE与CD相交于点A,CF为∠BCD的平分线,EF为∠BED的平分线,EF与CD交于点M,CF与BE交于点N.
(1)若∠D=70°,∠BED=30°,则∠EMA=(度);
(2)若∠B=60°,∠BCD=40°,则∠ENC=(度);
(3)∠F与∠B、∠D有怎样的数量关系?证明你的结论.
24.(8分)(2011秋•和平区期末)如图,△ABC中,BC=2AC,∠DBC=∠ACB=120°,BD=BC,CD交边AB于点E.
(1)求∠ACE的度数.
(2)求证:DE=3CE.
2015-2016学年天津市和平区八年级(上)期中数学试卷
参考答案
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.A;2.B;3.A;4.B;5.A;6.C;7.B;8.C;9.D;10.B;11.A;12.C;
二、填空题(每题3分,共18分)
13.3;14.15;15.4;16.120;17.35;18.;
三、简答题(本大题共6小题,共46分)
19.;20.;21.3;4;5;6;7;n;22.;23.85;80;24.;。

相关文档
最新文档