高斯赛德尔迭代法matlab编程

合集下载

高斯赛德尔迭代法matlab编程

高斯赛德尔迭代法matlab编程

高斯赛德尔迭代法matlab编程高斯赛德尔迭代法 matlab 编程function[x,k]=GaussSeidel(A,b,x0,eps,M) %高斯赛德尔迭代法求方程组的解(矩阵公式求解)%A 为方程组的系数矩阵; b 为方程组的右端项%x 为线性方程组的解了; x0 为迭代初值%eps为误差限;M为迭代的最大次数if nargin==3eps= 1.0e-6;%默认精度M = 10000;% 参数不足时默认后两个条件elseif nargin ==4M = 10000;% 参数的默认值elseif nargin<3error(' 参数不足 ');returnend[n,m]=size(A);nb=length(b);%当方程组行与列的维数不相等时,停止计算,并输出出错信息 if n~=merror(' 矩阵 A 行数和列数必须相等 !');return;end%当方程组与右端项的维数不匹配时,停止计算,并输出出错信息if n~=nberror('矩阵A的行数必须和b的长度相等!'); return;endL =zeros(n,n);U =zeros(n,n);D =zeros(n,n);for i=2:nfor j=1:i-1L(i,j)=-A(i,j);endendfor i=1:n-1for j=i+1:nU(i,j)=-A(i,j);endendfor i=1:nD(i,i)=A(i,i);endB=inv(D-L)*U; %B 为迭代矩阵g=inv(D-L)*b; %g 为右端项高斯赛德尔迭代法 matlab 编程pr=max(abs(eig(B))); % 求迭代矩阵谱半径 if pr>=1 error(' 迭代矩阵谱半径大于 1 迭代法不收敛 '); return; endk=0;tol=1;while tol>=epsx = B*x0+g;k = k+1; % 迭代步数tol = norm(x-x0);% 前后两步迭代结果的误差x0 = x;if(k>=M)disp('Warning: 迭代次数太多,可能不收敛! ');return;end end。

matlab高斯赛德尔迭代法

matlab高斯赛德尔迭代法

标题:深入探讨MATLAB中的高斯-赛德尔迭代法一、概述MATLAB是一种强大的数学计算软件,被广泛应用于科学、工程和金融等领域。

在数值分析中,迭代法是解决非线性方程组和矩阵方程组的重要方法之一。

高斯-赛德尔迭代法是其中的一种,其在求解线性方程组时具有较好的收敛性和效率。

本文将深入探讨MATLAB中高斯-赛德尔迭代法的原理和实现方法。

二、高斯-赛德尔迭代法原理高斯-赛德尔迭代法是一种求解线性方程组的迭代法。

给定线性方程组Ax=b,其中A为系数矩阵,b为常数向量,迭代法的基本思想是通过不断逼近方程组的解x。

高斯-赛德尔迭代法的迭代公式如下:\[ x^{(k+1)} = D^{-1} (b - (L+U)x^{(k)}) \]其中,D、L和U分别为系数矩阵A的对角线、严格下三角部分和严格上三角部分。

迭代法的初始值可以任意选择,通常选取一个与解接近的初值,然后通过迭代逼近真实解。

三、MATLAB中高斯-赛德尔迭代法的实现MATLAB提供了丰富的数值计算函数和工具箱,使得高斯-赛德尔迭代法的实现变得非常简单。

下面我们将介绍如何在MATLAB中使用高斯-赛德尔迭代法求解线性方程组。

1. 设置参数在使用高斯-赛德尔迭代法之前,我们首先需要设置一些参数,如系数矩阵A、常数向量b、迭代步数等。

在MATLAB中可以通过定义变量来实现这些参数的设置。

2. 编写迭代函数接下来,我们需要编写高斯-赛德尔迭代法的迭代函数。

通过编写一个MATLAB函数来实现迭代公式的计算和迭代过程的控制。

3. 调用函数求解完成迭代函数的编写后,我们就可以通过调用该函数来求解线性方程组。

在MATLAB中,可以使用循环语句控制迭代步数,并在每一步更新迭代值,直到满足收敛条件为止。

四、案例分析为了更好地理解高斯-赛德尔迭代法在MATLAB中的应用,我们以一个具体的案例来进行分析和实践。

假设我们需要求解以下线性方程组:\[ \begin{cases} 4x_1 - x_2 + x_3 = 8 \\ -x_1 + 4x_2 - x_3 = 9 \\2x_1 - x_2 + 5x_3 = 7 \end{cases} \]我们可以通过MATLAB编写高斯-赛德尔迭代法的函数,并调用该函数来求解以上线性方程组。

二维gauss-seidel迭代法matlab代码

二维gauss-seidel迭代法matlab代码

二维Gauss-Seidel迭代法是解线性方程组的一种常用方法,通过迭代求解,能够快速且精确地得到方程组的解。

在MATLAB中,可以使用简洁的代码实现二维Gauss-Seidel迭代法,下面我们将介绍该方法的原理以及在MATLAB中的具体实现。

一、Gauss-Seidel迭代法原理1. Gauss-Seidel迭代法是一种逐次逼近的方法,通过不断迭代更新方程组中的未知数,最终得到方程组的解。

其基本思想是利用已知的未知数值不断逼近更精确的解。

2. 对于线性方程组Ax=b,可以将其表示为x(k+1)=Tx(k)+c的形式,其中T为迭代矩阵,c为常量向量,x为未知数向量。

Gauss-Seidel 迭代法通过不断更新x(k)的值,逐步逼近方程组的解。

3. 迭代矩阵T和常量向量c的具体计算方式为:首先将系数矩阵A分解为下三角矩阵L、对角矩阵D和上三角矩阵U,然后得到T=-L*(D^-1)*U,c=L*(D^-1)*b。

4. 通过不断迭代更新x(k)的值,直到满足一定的精度要求或者迭代次数达到设定值,即可得到方程组的解。

二、MATLAB实现二维Gauss-Seidel迭代法在MATLAB中,可以很方便地实现二维Gauss-Seidel迭代法,以下是具体的实现代码:```matlabfunction [x, k] = gauss_seidel(A, b, x0, tol, max_iter)A为系数矩阵,b为常量向量,x0为初始解向量,tol为精度要求,max_iter为最大迭代次数返回x为方程组的解,k为实际迭代次数n = length(b);x = x0;k = 0;err = tol + 1;L = tril(A, -1); 下三角矩阵U = triu(A, 1); 上三角矩阵D = diag(diag(A)); 对角矩阵T = -L*(D\U);c = L*(D\b);while err > tol k < max_iterx_old = x;x = T*x + c;err = norm(x - x_old, inf);k = k + 1;endend```三、代码说明1. 函数gauss_seidel接受系数矩阵A、常量向量b、初始解向量x0、精度要求tol和最大迭代次数max_iter作为输入参数,返回方程组的解x和实际迭代次数k。

gauss-seidel迭代法例题matlab代码

gauss-seidel迭代法例题matlab代码

【题目】:Gauss-Seidel迭代法及Matlab代码实例【内容】:1. Gauss-Seidel迭代法介绍Gauss-Seidel迭代法是一种用于解线性方程组的数值方法,基于逐次逼近的思想,通过不断迭代逼近线性方程组的解。

该方法通常用于求解大型稀疏线性方程组,其收敛速度相对较快。

2. 迭代公式推导假设有如下线性方程组:$$Ax=b$$其中A为系数矩阵,b为常数向量,x为未知向量。

Gauss-Seidel迭代法的迭代公式为:$$x^{(k+1)}=(D+L)^{-1}(b- Ux^{(k)})$$其中,D为A的对角矩阵,L为A的严格下三角矩阵,U为A的严格上三角矩阵,k为迭代次数。

3. Matlab代码实现下面给出Gauss-Seidel迭代法的Matlab代码实例:```matlabfunction [x, k] = gaussSeidel(A, b, x0, tol, maxIter)A: 系数矩阵b: 常数向量x0: 初始解向量tol: 容差maxIter: 最大迭代次数x: 解向量k: 迭代次数n = length(b);x = x0;k = 0;while k < maxIterx_old = x;for i = 1:nx(i) = (b(i) - A(i,1:i-1)*x(1:i-1) - A(i,i+1:n)*x_old(i+1:n)) / A(i,i); endif norm(x - x_old, inf) < tolreturnendk = k + 1;enddisp('迭代次数达到最大值,未达到容差要求'); end```4. 应用实例假设有如下线性方程组:$$\begin{cases}2x_1 - x_2 + x_3 = 5\\-x_1 + 2x_2 - x_3 = -2\\x_1 - x_2 + 2x_3 = 6\end{cases}$$系数矩阵A为:$$\begin{bmatrix}2 -1 1\\-1 2 -1\\1 -1 2\end{bmatrix}$$常数向量b为:$$\begin{bmatrix}5\\-2\\6\end{bmatrix}$$取初始解向量x0为:$$\begin{bmatrix}0\\0\\\end{bmatrix}$$容差tol为1e-6,最大迭代次数maxIter为100。

gauss-seidel迭代法收敛判断matlab

gauss-seidel迭代法收敛判断matlab

Gauss-Seidel迭代法是解线性方程组的一种常用方法,它通过不断迭代更新解向量,逐步逼近方程组的精确解。

在实际应用中,我们往往需要判断迭代法是否收敛,以保证计算结果的准确性和可靠性。

本文将以matlab为例,介绍如何利用数值计算软件对Gauss-Seidel迭代法的收敛性进行判断,并对其进行详细分析和讨论。

一、Gauss-Seidel迭代法简介Gauss-Seidel迭代法是一种逐次迭代的线性代数方法,用于求解线性方程组Ax=b的解向量x。

它的迭代更新公式为:xn+1i=1/aii(bi-∑(j=1,j≠i)n aijxj)其中,i=1,2,...,n;n为方程组的阶数;aii为系数矩阵A的第i行第i 列元素;bi是方程组右端的常数;xj为解向量x的第j个分量;∑(j=1,j≠i)n aijxj为除去第i个分量的求和。

通过不断迭代更新解向量的各个分量,最终可以逼近线性方程组的解。

二、Gauss-Seidel迭代法的收敛性判断针对Gauss-Seidel迭代法的收敛性判断,我们可以利用数值计算软件matlab进行分析。

在matlab中,可以使用以下命令进行Gauss-Seidel迭代法的计算:function[x,k]=GaussSeidel(A,b,x0,tol,maxk)n=length(b);x=x0;for k=1:maxkx0=x;for i=1:nx(i)=1/A(i,i)*(b(i)-A(i,:)*x+x(i));endif norm(x-x0,inf)<tolreturn;endenderror('达到最大迭代次数,方法未收敛');end在上述matlab代码中,A为系数矩阵,b为右端常数向量,x0为初始解向量,tol为迭代精度,maxk为最大迭代次数。

在函数中,我们设定了最大迭代次数以及迭代精度的条件,当满足这些条件时,算法将停止迭代。

三、Gauss-Seidel迭代法的收敛性分析Gauss-Seidel迭代法的收敛性与系数矩阵A的性质有关。

gauss-seidel迭代法matlab代码

gauss-seidel迭代法matlab代码

Gauss-Seidel迭代法是一种用于解线性方程组的数值方法,特别适用于稀疏矩阵。

以下是一个使用Matlab实现Gauss-Seidel迭代法的简单示例代码:```matlabfunction [x, iteration] = gaussSeidel(A, b, tol, maxIter)% 输入参数:% A:系数矩阵% b:右侧常数向量% tol:迭代收敛容差% maxIter:最大迭代次数n = length(b);x = zeros(n, 1); % 初始化解向量iteration = 0;while iteration < maxIterx_new = x; % 存储前一次迭代的解for i = 1:n% 计算新的解x(i) = (b(i) - A(i,1:i-1)*x(1:i-1) - A(i,i+1:n)*x_new(i+1:n)) / A(i,i);end% 计算迭代误差error = norm(x - x_new, inf);if error < tolreturn;enditeration = iteration + 1;endwarning('Gauss-Seidel迭代未收敛到指定容差。

');end```使用这个函数时,您需要提供系数矩阵A、右侧常数向量b、迭代收敛容差tol和最大迭代次数maxIter作为输入参数。

函数将返回解向量x和迭代次数iteration。

示例用法:```matlabA = [4, -1, 0; -1, 4, -1; 0, -1, 3];b = [12; -1; 0];tol = 1e-6;maxIter = 1000;[x, iteration] = gaussSeidel(A, b, tol, maxIter);fprintf('解向量x = \n');disp(x);fprintf('迭代次数= %d\n', iteration);```这将求解线性方程组Ax = b,并返回解向量x以及迭代次数。

matlab高斯-赛德尔迭代程序教案资料

matlab高斯-赛德尔迭代程序教案资料

matlab中应用的高斯-赛德尔迭代程序主程序如下:function X=gsdddy(A,b,X0,P,wucha,max1)D=diag(diag(A));U=-triu(A,1);L=-tril(A, -1);dD=det(D);if dD==0disp('请注意:因为对角阵D奇异,所以此方程无解')elsedisp('请注意:因为对角阵距D非奇异,所以此方程有解')iD=inv(D -L);B2=iD*U;f2=iD*b;jX=A\b;X=X0;[n m]=size(A);for k=1:max1X1=B2*X+f2;djwcX=norm(X1 -X,P);xdwcX=djwcX/(norm(X,P)+eps);if(djwcX<wucha)|(xdwcX<wucha)returnelsek;X1';k=k+1;X=X1;endendif(djwcX<wucha)|(xdwcX<wucha)disp('请注意:高斯-赛德尔迭代收敛,此A的分解矩阵D,U,L和方程组的精确解jX和近似解X如下:')elsediso('请注意:高斯-赛德尔迭代的结果没有达到给定的精度,并且迭代次数已经超过最大迭代次数max1,方程组的精确解jx和迭代X如下:')X=X';jX=kX';endendX=X';D;U;L;jX=jX';在主窗口框中输入以下例子>> A=[10 3 1;2 -10 3;1 3 10];>> b=[14;11;20];X0=[0 0 0]';>> X=gsdddy(A,b,X0,inf,0.001,100)请注意:因为对角矩阵D非奇异,所以此方程组有解。

X =1.2820-0.25921.9496。

Jacobi迭代法和Gauss-Seidel迭代法Matlab程序

Jacobi迭代法和Gauss-Seidel迭代法Matlab程序

解(1):采用Jacobi迭代法时,Matlab计算程序为: clear clci=1;a=[5 2 1;-1 4 2;2 -3 10];d=diag(diag(a));l=d-tril(a);u=d-triu(a);d0=inv(d);b=[-12;20;3];x0=[1;1;1];B=d0*(l+u);f=d0*b;x=B*x0+f;while norm(x-x0,inf)>=1e-4x0=x;x=B*x0+f;i=i+1;endxi采用Gauss-Seidel迭代法计算时,Matlab计算程序为: clearclci=1;a=[5 2 1;-1 4 2;2 -3 10];d=diag(diag(a));l=d-tril(a);u=d-triu(a);b=[-12;20;3];x0=zeros(3,1);B=inv(d-l)*u;f=inv(d-l)*b;x=B*x0+f;while norm(x-x0,inf)>=1e-4x0=x;x=B*x0+f;i=i+1;endxi习题6.7function [n,x]=sor22(A,b,X,x1,nm,w,ww)%用超松弛迭代法求解方程组Ax=b%输入:A为方程组的系数矩阵,b为方程组右端的列向量,X为迭代初值构成的列向量,x1为方程的精确解,nm为最大迭代次数,w为误差精度,ww为松弛因子%输出:x为求得的方程组的解构成的列向量,n为迭代次数n=1;m=length(A);D=diag(diag(A)); %令A=D-L-U,计算矩阵DL=tril(-A)+D; %令A=D-L-U,计算矩阵LU=triu(-A)+D; %令A=D-L-U,计算矩阵UM=inv(D-ww*L)*((1-ww)*D+ww*U); %计算迭代矩阵g=ww*inv(D-ww*L)*b; %计算迭代格式中的常数项%下面是迭代过程while n<=nmx=M*X+g; %用迭代格式进行迭代if norm(x1-X,'inf')<wdisp('迭代次数为');ndisp('方程组的解为');xreturn;%上面:达到精度要求就结束程序,输出迭代次数和方程组的解endX=x;n=n+1;end%下面:如果达到最大迭代次数仍不收敛,输出警告语句及迭代的最终结果(并不是方程组的解)disp('在最大迭代次数内不收敛!');disp('最大迭代次数后的结果为');xa=[4 -1 0;-1 4 -1;0 -1 4];b=[1;4;-3];c=200;d=5e-3;f=1.03;k=[0 ;0; 0];x1=[1/2;1;-1/2];g=sor22(a,b,k,x1,c,d,f)习题6.8function [n,x]=sor(A,b,X,nm,w,ww)%用超松弛迭代法求解方程组Ax=b%输入:A为方程组的系数矩阵,b为方程组右端的列向量,X为迭代初值构成的列向量,nm为最大迭代次数,w为误差精度,ww为松弛因子%输出:x为求得的方程组的解构成的列向量,n为迭代次数n=1;m=length(A);D=diag(diag(A)); %令A=D-L-U,计算矩阵DL=tril(-A)+D; %令A=D-L-U,计算矩阵LU=triu(-A)+D; %令A=D-L-U,计算矩阵UM=inv(D-ww*L)*((1-ww)*D+ww*U); %计算迭代矩阵g=ww*inv(D-ww*L)*b; %计算迭代格式中的常数项%下面是迭代过程while n<=nmx=M*X+g; %用迭代格式进行迭代if norm(x-X,'inf')<wdisp('迭代次数为');ndisp('方程组的解为');xreturn;%上面:达到精度要求就结束程序,输出迭代次数和方程组的解endX=x;n=n+1;end%下面:如果达到最大迭代次数仍不收敛,输出警告语句及迭代的最终结果(并不是方程组的解)disp('在最大迭代次数内不收敛!');disp('最大迭代次数后的结果为');xa=[5 2 1;-1 4 2;2 -3 10];b=[-12;20;3];c=200;d=5e-6;f=0.9;k=[0;0;0];g=sor(a,b,k,c,d,f)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档