高斯赛德尔与超松弛迭代法

合集下载

迭代法求解线性方程组的研究(精选.)

迭代法求解线性方程组的研究(精选.)

迭代法求解线性方程组的研究【摘要】:本文总结了解线性方程组的三个迭代法,Jacobi 迭代法,Gauss-seidel 迭代法,SOR迭代法,并且介绍了现代数值计算软件MATLAB 在这方面的应用,即分别给出三个迭代法的数值实验。

【关键字】:Jacobi 迭代法 Gauss-seidel 迭代法 SOR 迭代法 数值实验一. 引言迭代法是用某种极限过程去逐步逼近线性方程组精确解的方法,它是解高阶稀疏方程组的重要方法。

迭代法的基本思想是用逐次逼近的方法求解线性方程组。

设有方程组b Ax = …① 将其转化为等价的,便于迭代的形式f Bx x += …② (这种转化总能实现,如令b f A I B =-=,), 并由此构造迭代公式 f Bx xk k +=+)()1( …③式中B 称为迭代矩阵,f 称为迭代向量。

对任意的初始向量)0(x,由式③可求得向量序列∞0)(}{k x ,若*)(lim x xk k =∞→,则*x 就是方程①或方程②的解。

此时迭代公式②是收敛的,否则称为发散的。

构造的迭代公式③是否收敛,取决于迭代矩阵B 的性质。

本文介绍三种解线性方程组的最主要的三种迭代法:Jacobi 迭代法,Gauss-Seidel 迭代法和SOR 迭代法。

本文结构如下:第二部分介绍Jacobi 迭代法及其数值实验,第三部分介绍Gauss-Seidel 迭代法及其数值实验,第四部分介绍SOR 迭代法及其数值实验,第五部分总结。

二. 雅克比(Jacobi )迭代法1. 雅克比迭代法的格式设有方程组),,3,2,1(1n i b x aj j nj ij==∑= …①矩阵形式为b Ax =,设系数矩阵A 为非奇异矩阵,且),,3,2,1(,0n i a ii =≠从式①中第i 个方程中解出x ,得其等价形式)(111j nj j ijiii x ab a x ∑≠=-= …②取初始向量),,,()0()0(2)0(1)0(n x x x x=,对式②应用迭代法,可建立相应的迭代公式:)(111)()1(∑≠=++-=nj j i k j ij ii k ib x a a x …③ 也可记为矩阵形式:J x J k F B xk +==)()1( …④若将系数矩阵A 分解为A=D-L-U ,式中⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn a a a D2211,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=--0000121323121nn n n a a a a a a L ,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=--0000122311312n n n n a a a a a a D 。

第四章-解AX=b的迭代法

第四章-解AX=b的迭代法

•迭代格式的收敛性
2 k 引理4.1 (线性代数定理) 设矩阵序列 IM , , M , , M ,
k l i m M 0 ( M ) 1 . k

(证明见关治和陈景良编《数值计算方法》P410-412) 定理4.1 设迭代格式为
( k 1 ) ( k ) xM x g , k 0 , 1 , 2 , ( 4 . 3 )
充分性()设ρ(M)<1,证{x(k)}收敛。
如果ρ(M)<1 ,则I-M为非奇异矩阵。事实上,因
为ρ(M)<1,λi<1,因此λ=1不是M的特征值,即
| 1 IM || IM |0 .
所以方程组 (I-M)x = f 有惟一解x*,满足(I-M)x* = f ,即 x*=Mx* + f 。于是
( k ) ( k 1 ) 2 ( k 2 ) x x * M ( x x * ) M ( x x * ) k ( 0 ) k M ( x x * ) M . 0
由引理4.1知,
k () k I f ( M ) < 1 ,t h e nl i m M 0 , l i m ( x x * ) 0 , i . e . k k () k l i m x x * . k
写成矩阵形式
x1 0 x b 2 21 31 x3 b x b n n1
或简记为
b 12 b 13 0 b23 b 0 32 bn2 bn3
b 1n x 1 g 1 b2n x2 g2 b 3n x 3 g3 g x 0 n n
( k ) ( k ) ( k 1 ) ( k ) x x * x x q x x *

gauss-seidel迭代法收敛判断matlab

gauss-seidel迭代法收敛判断matlab

Gauss-Seidel迭代法是解线性方程组的一种常用方法,它通过不断迭代更新解向量,逐步逼近方程组的精确解。

在实际应用中,我们往往需要判断迭代法是否收敛,以保证计算结果的准确性和可靠性。

本文将以matlab为例,介绍如何利用数值计算软件对Gauss-Seidel迭代法的收敛性进行判断,并对其进行详细分析和讨论。

一、Gauss-Seidel迭代法简介Gauss-Seidel迭代法是一种逐次迭代的线性代数方法,用于求解线性方程组Ax=b的解向量x。

它的迭代更新公式为:xn+1i=1/aii(bi-∑(j=1,j≠i)n aijxj)其中,i=1,2,...,n;n为方程组的阶数;aii为系数矩阵A的第i行第i 列元素;bi是方程组右端的常数;xj为解向量x的第j个分量;∑(j=1,j≠i)n aijxj为除去第i个分量的求和。

通过不断迭代更新解向量的各个分量,最终可以逼近线性方程组的解。

二、Gauss-Seidel迭代法的收敛性判断针对Gauss-Seidel迭代法的收敛性判断,我们可以利用数值计算软件matlab进行分析。

在matlab中,可以使用以下命令进行Gauss-Seidel迭代法的计算:function[x,k]=GaussSeidel(A,b,x0,tol,maxk)n=length(b);x=x0;for k=1:maxkx0=x;for i=1:nx(i)=1/A(i,i)*(b(i)-A(i,:)*x+x(i));endif norm(x-x0,inf)<tolreturn;endenderror('达到最大迭代次数,方法未收敛');end在上述matlab代码中,A为系数矩阵,b为右端常数向量,x0为初始解向量,tol为迭代精度,maxk为最大迭代次数。

在函数中,我们设定了最大迭代次数以及迭代精度的条件,当满足这些条件时,算法将停止迭代。

三、Gauss-Seidel迭代法的收敛性分析Gauss-Seidel迭代法的收敛性与系数矩阵A的性质有关。

超松弛迭代法(SOR方法)

超松弛迭代法(SOR方法)

解:SOR迭代公式
x1( k
1)
(1 )x1(k )
4
(10 2x2(k )
4x3(k ) )
x
(k 2
1)
(1 )x2(k )
17
(3
2
x1(
k
1)
10x3(k ) )
x3( k
1)
(1 )x3(k )
9
(7 4x1(k 1)
10
x
(k 2
1)
)
初值 x (0) (0,0,0)T k = 0,1,2,…,
例该4方.4程用组S的OR精法确求解解线x (性*) 方 程(2组,1,1)T
如值只果需x(0取)迭ω取代(0=,04ω21,00x(=42)即1次T1xx,要11.高4便26达x斯11,可207到—xx要达22同4塞求到x样319德精0x精x3尔度130度迭要x,(3k7代求需1) 法要x)迭(和k) 代同1一1100初6次
数值计算方法
超松弛迭代法(SOR方法) 使用迭代法的困难在于难以估计其计算
量。有时迭代过程虽然收敛,但由于收敛速 度缓慢,使计算量变得很大而失去使用价值 。因此,迭代过程的加速具有重要意义。逐 次超松弛迭代(Successive Over relaxatic Method,简称SOR方法)法,可以看作是带参 数的高斯—塞德尔迭代法,实质上是高斯-塞 德尔迭代的一种加速方法。
或 Dx(k1) (1)Dx(k) (b Lx(k1) Ux(k) )
故 (D L)x(k1) (1)D Ux(k) b
显然对任何一个ω值,(D+ωL)非奇异,(因为假设 aii 0,i 1,2,, n )于是超松弛迭代公式为
x(k1) (D L)1 (1)D U x(k) (D L)1b

线性方程组的迭代法雅可比高斯塞德尔和超松弛迭代ppt课件

线性方程组的迭代法雅可比高斯塞德尔和超松弛迭代ppt课件

a11x1 a12 x2 a1n xn b1
a21 x1
a22 x2
a2n xn
b2
an1x1 an2 x2 ann xn bn
写据成此建立n 迭ai代j x公j 式 bi
i 1,2,, n
上若xi式(xkai称1ii)为0ja1解a11i(iiii方((bb程1ii,2组,jj的njn,1i n1Jaa)aijcxio,j分(jxbk)ij离)迭) 代出公i变i式量1,。21x,,2i , n , n
j=1
j ≠i
称A为严格对角占优阵。
2.如果A的元素满足
∑n
ai,i ≥ ai, j ,i = 1,2,..., n
j=1 j≠i
且至少一个不等式严格成立,称A为弱对角占优阵。 16
定义:设 A = (ai,j )n×n ,n ≥ 2
如果存在置换矩阵P,使得
PT
AP

A11 0
A12
A22
1
§6.1 迭代法的基本思想
迭代法的基本思想是将线性方程组转化 为便于迭代的等价方程组,对任选一组初始 值 xi(0) (i 1,2,, n) ,按某种计算规则,不断地 对所得到的值进行修正,最终获得满足精度 要求的方程组的近似解。
2
设 A Rnn 非奇异,b Rn,则线性方程组
Ax b 有惟一解 x A1b ,经过变换构造
x (k 1) 1
x (k 1) 2
x1(k 2x1(k)
)

x(k) 2
4x2(k )
3 3

x (0) 1

x (0) 2

0
计算得

利用超松弛迭代法求解问题

利用超松弛迭代法求解问题

利用超松弛迭代法求解问题在电场中,利用有限差分法求解场域中各个节点的点位。

其中求解差分方程组的解运用到了超松弛方法。

超松弛方法是高斯—塞德尔迭代法的变形。

它在迭代过程中,为了加速收敛,再把所得结果依次带入进行计算的同时,还使用把每一次迭代的变化量加权后再代入的方法。

运用超松弛迭代法求解下述问题:试用超松弛迭代法求解接地金属槽内的电位的分布。

已知:A=4CM,H=A\4=10CM给定边值:如图示;给定初值:Φ=0误差范围:E=10^-5计算:迭代次数N=?,Φ的分布。

分析:(1)、节点按从下到上,从左到右的顺序排列。

(2)、按高斯—塞德尔迭代公式进行迭代。

(3)、选择加速因子Α,且A在1到2之间。

以下为该题程序段:#INCLUDE <IOSTREAM.H>#INCLUDE<MATH.H>#INCLUDE<IOMANIP.H>BOOL SUCCESS(DOUBLE A[5][5][2], DOUBLE B) 构建函数其中DOUBLE A 代表记录数据前后两次的值。

{INT I,J;FOR (I=1;I<5;I++)FOR (J=1;J<5;J++) 依次对定义数组赋值{IF ( FABS(A[I][J][1]-A[I][J][0]) > B ) 误差在题设范围内则返回值TRUERETURN TRUE;} 否则返回FALSE RETURN FALSE;}INT MAIN(){INT N,I,J;DOUBLE A[5][5][2];DOUBLE B;B=0.00005;DOUBLE S=1.21;WHILE (1){N=0;COUT<<"输入加速因子数值(1<= A < 2 ) "<<ENDL; 输入题设CIN>>S;FOR(I=0;I<5;I++)FOR(J=0;J<5;J++){A[I][J][0]=0;A[I][J][1]=0;}FOR (I=0;I<5;I++){A[I][4][0]=100;A[I][4][1]=100;}WHILE ( N==0 || SUCCESS(A,B)){FOR(I=1;I<4;I++)FOR(J=1;J<4;J++){A[I][J][0]=A[I][J][1];A[I][J][1]=A[I][J][1]+(A[I-1][J][1]+A[I+1][J][1]+A[I][J+1][1]+A[I][J-1][1] [I][J][1]*4)*S/4; 由高斯—塞德尔迭代公式写出相应公式。

线性方程组的J-迭代,GS-迭代,SOR-迭代,SSOR-迭代方法

线性方程组的J-迭代,GS-迭代,SOR-迭代,SSOR-迭代方法

线性⽅程组的J-迭代,GS-迭代,SOR-迭代,SSOR-迭代⽅法西京学院数学软件实验任务书【实验课题】雅克⽐迭代、⾼斯—赛德尔迭代、超松弛迭代【实验⽬的】学习和掌握线性代数⽅程组的雅克⽐迭代、⾼斯—赛德尔迭代、超松弛迭代法,并且能够熟练运⽤这些迭代法对线性⽅程组进⾏求解。

【实验内容】 1、问题重述:对于线性⽅程组A b X =,即:1111221n 12112222n 21122nn n n n n n na x a x a xb a x a x a x b a x a x a x b +++=??+++=??+++= (1),其中,111212122111 0 - - 0 - 0 0 () - - - 0 n ij n nn n nn nn a a a a a a a a a a ?--A ==--??0n D L U≡--()1,n b b b T=如何运⽤雅克⽐迭代、⾼斯—赛德尔迭代、超松弛迭代法对线性⽅程组进⾏求解。

2、⽅法原理: 2.1雅克⽐迭代迭代思想:⾸先通过A b X =构造形如()x f x =的等式,然后给定⼀个初值(0)(0)(0)(0)12(,,)n x x x X = ,再通过(1)()()k k f +X =X 进⾏迭代。

step1 :对(1)相应第i ⾏中的i x ⽤其它元素表⽰为:11111121111122,12211111()()11()()11()()n nj j j j j j n ni i ij ji j j j i j i j iin nn n nj j n n nj j j j nn nn x b a x x b a x a a x b a x x b a x a a x b a x x b a x a a ===≠=-==?=-=+-??=-=+-??=-=+-∑∑∑∑∑∑即:()D b L U X =-+XStep 2 :进⾏迭代(0)(0)(0)(0)12(1)11()(,,)()n k k x x x D b D L U +--?X =?X=-+X ? ,0,1,2k = ,取它的判断条件为()(1)k k -X -X ⼩于⼀个确定的误差值ε,跳出循环。

雅可比迭代法和高斯超松弛迭代

雅可比迭代法和高斯超松弛迭代
(63)
雅可比迭代法分量形式(63)式也可改写为
(64)
(64)式更方便于编程求解。
雅可比迭代法公式简单,迭代思路明确。每迭代一次只需计算n个方程的向量乘法,程序编制时需设二个数组分别存放xk和xk+1便可实现此迭代求解。
2、高斯-赛德尔(Gauss-seidel)迭代法
由雅可比迭代法可知,在计算xk+1的过程中,采用的都是上一迭代步的结果xk。考察其计算过程,显然在计算新分量xik+1时,已经计算得到了新的分量, 。有理由认为新计算出来的分量可能比上次迭代得到的分量有所改善。希望充分利用新计算出来的分量以提高迭代解法的效率,这就是高斯-赛德尔迭代法(简称G-S迭代法)对(64)式进行改变可以得到G-S迭代法的分 量形式
(75)
其中ω称为松弛因子。
式(75)是迭代公式(74)的一个改进,可以选择松弛因子ω加速迭代过程的收敛。 式(75)的分量形式为
(76)
若对上述改进的迭代公式,按高斯-赛德尔迭代法尽量利用最新迭代得到的分量的原则,又可得到新的迭代公式
(77)
当线性方程组的系数矩阵A具有非零主元(aii≠0,i=1,2,3,…n)的特点时,可 以得到主元为1的方程组形式
雅可比迭代法和高斯-赛德尔迭代法以及超松弛迭代
对于给定的方程 用下式逐步代入求近似解的方法称为迭代法。如xk(当 )的极限存在,此极限即方程组的真正解,此迭代法收敛,否则称迭代法收敛。
1、雅可比(Jacobi)迭代法
设有方程组
Ax=b (56)
其展开形式为
(57)
系数矩阵A为非奇异阵,且 (i=1-n)A可分解为
高斯-赛德尔迭代的矩阵形式可表达为
(69)
高斯-赛德尔迭代法每步迭代的计算量与雅可比迭代相当,但在计算机进行计算时,只需存放x一个数组。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分别运用高斯赛德尔迭代法和超松弛迭代法解线性方程组:⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--243024410143034321x x x 。

1. 高斯赛德尔迭代法
编程思路:高斯赛德尔迭代法实在雅克比迭代法的基础上进行优化得到的,即在进行迭代时,将已经算得的第k+1步的迭代值代入第k+1步后边的变量的计算当中去,从而加快了迭代速度。

程序代码:
function varargout=Gauss_Seidelli(varargin)
A=[4 3 0;3 4 -1;0 -1 4];
b=[24 30 -24]';
x0=[0;0;0];
x=Gauss_Seidel(A,b,x0)
function x=Gauss_Seidel(A,b,x0)
n=100;%最大迭代次数
ee=0.0001;%精度
n1=length(b);
for i=1:n
x1=x0;
for j=1:n1
s=0;
for k=1:n1
if k~=j
s=s+A(j,k)*x0(k);
end
end
x0(j)=(b(j)-s)/A(j,j);
end
if norm(x1-x0)<ee
break
end
end
x=x0;
2. 超松弛迭代法
该方法是在高斯赛德尔迭代法的基础上将前一步的结果)(k i x 和)1( k i x 进行适当的线性组合以加速收敛,松弛因子ω的选择是关键,当1<ω<2时,即为超松弛迭代法。

程序代码:
function varargout=SORli(varargin)
clc
A=[4 3 0;3 4 -1;0 -1 4];
b=[24;30;-24];
x0=[0;0;0];w=1.3;
x=SOR(A,b,x0,w);
for i=1:3
fprintf('%4.2f ',x(i));
end
fprintf('\n');
function x=SOR(A,b,x0,w)
%AX=b
%x0初始点
%w 为 松弛因子
n=100;%最大迭代次数
ee=0.0001;%精度
n1=length(b);
for i=1:n
x1=x0;
for j=1:n1
s=0;
for k=1:n1
if k~=j
s=s+A(j,k)*x0(k);
end
end
x0(j)=(1-w)*x0(j)+w*(b(j)-s)/A(j,j);
end
if norm(x1-x0)<ee
break
end
end
x=x0;。

相关文档
最新文档