信息论与编码 第3讲
信息论与编码理论-第3章信道容量-习题解答

信息论与编码理论-第3章信道容量-习题解答-071102(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第3章 信道容量习题解答3-1 设二进制对称信道的转移概率矩阵为2/31/31/32/3⎡⎤⎢⎥⎣⎦解: (1) 若12()3/4,()1/4P a P a ==,求(),(),(|),(|)H X H Y H X Y H Y X 和(;)I X Y 。
i i 2i=13311H(X)=p(a )log p(a )log()log()0.8113(/)4444bit -=-⨯-=∑符号111121*********j j j=132117p(b )=p(a )p(b |a )+p(a )p(b |a )=43431231125p(b )=p(a )p(b |a )+p(a )p(b |a )=4343127755H(Y)=p(b )log(b )=log()log()0.9799(/)12121212bit ⨯+⨯=⨯+⨯=---=∑符号22i j j i j i j i ,H(Y|X)=p(a ,b )logp(b |a )p(b |a )logp(b |a )2211log()log()0.9183(/)3333i jjbit -=-=-⨯-⨯=∑∑符号I(X;Y)=H(Y)H(Y|X)=0.97990.91830.0616(/)bit --=符号 H(X|Y)=H(X)I(X;Y)=0.81130.06160.7497(/bit --=符号)(2)求该信道的信道容量及其达到信道容量时的输入概率分布。
二进制对称信息的信道容量H(P)=-plog(p)-(1-p)log(1-p)1122C =1-H(P)=1+log()+log()=0.0817(bit/)3333符 BSC 信道达到信道容量时,输入为等概率分布,即:{,} 注意单位3-2 求下列三个信道的信道容量及其最佳的输入概率分布。
信息论与编码课件第三章

离散无记忆信道的信道容量
I( x
0;Y )
2 j 1
p(b j
0) log
p(b j 0) p(b j )
log 2
I( x 2;Y ) log 2
而I( x
1;Y )
2 j 1
p(b j 1) log
p(b j 1) p(b j )
0
1
I( x 0;Y ) I( x 2;Y ) log 2, p(0) p(2) 0
C
I ( x ai ;Y )
m j 1
p(b j ai ) log
p(b j ai ) p(b j )
特殊DMC的信道容量
例:准对称信道
准对称信道
0.8 0.1 0.1 P3 0.1 0.1 0.8
1 p(a1 ) p(a2 ) 2
n
p(b j ) p(ai ) p(b j ai ) i 1
H (Y
|
a2 )
H(Y | an )
P 1 M
C
log
n
ห้องสมุดไป่ตู้
2
j
j1
P P 1 C p(bj ) p(ai )
达到信道容量时输入、输出概率分布的唯一性
例:
1 / 2 1 / 2 0 0
P
0
1/2 1/2
0
0 0 1/ 2 1/ 2
1 / 2 0 0 1 / 2
取
p(a1 )
p(a3 )
1, 2
p(a2 ) p(a4 ) 0
4
C
信息论及编码理论基础(第三章)讲诉

2018/11/16
9
§3.2 离散无记忆(简单)信 源的等长编码
(9)在无错编码的前提下,编码的最低代价 当R≥logK时,能够实现无错编码。 (DN≥KL) 当R<H(U1)时,无论怎样编码都是有错编码。这是因为 R<H(U1)≤logK。 (DN<KL) (如果H(U1)=logK,则以上两种情形已经概括了全部情形。 但如果H(U1)<logK,则还有一种情形) 当logK>R>H(U1)时,虽然无论怎样编码都是有错编码, 但可以适当地编码和译码使译码错误的概率pe任意小。这 就是所谓“渐进无错编码”。
EV1 qk loga
k 1
2018/11/16
qk
H (U1 )
13
§3.2 离散无记忆(简单)信 源的等长编码
取IL是(V1V2…VL)的如下函数: I L
1 L Vl L l 1
则 ① IL最终是(U1U2…UL)的函数; ② 1 L 1 L 1 EI L EVl H (U1 ) DI L D Vl 2 L l 1 L l 1 L
2018/11/16
12
§3.2 离散无记忆(简单)信 源的等长编码
设…U-2U-1U0U1U2…是离散无记忆(简单)信源的输出随机变 量序列。设U1的概率分布为
a1 a2 aK U1 ~ q q q K 1 2
取Vl是Ul的如下函数:当Ul=ak时, Vl=loga(1/qk)。则 ①随机变量序列…V-2V-1V0V1V2…相互独立,具有相同的概率 分布; K ② 1
2018/11/16 5
§3.2 离散无记忆(简单)信 源的等长编码
例:离散无记忆简单信源发出的随机变量序列为:…U-2U1U0U1U2…。其中U1的事件有3个:{晴, 云, 阴}。 (U1U2)有9个事件 {(晴晴),(晴云),(晴阴),(云晴),(云云), (云阴),(阴晴),(阴云), (阴阴)}。 用字母表{0, 1}对(U1U2)的事件进行2元编码如下: (晴晴)→0000,(晴云)→0001,(晴阴)→0011, (云晴)→0100,(云云)→0101,(云阴)→0111, (阴晴)→1100,(阴云)→1101,(阴阴)→1111。
信息论与编码技术第三章课后习题答案

Chap3 思考题与习题 参考答案3.1 设有一个信源,它产生0、1 序列的消息。
它在任意时间而且不论以前发生过什么符号,均按P(0)=0.4,P(1)=0.6 的概率发出符号。
(1) 试问这个信源是否平稳的? (2) 试计算H(X 2),H(X 3/X 1X 2)及H ∞。
(3) 试计算H(X 4),并写出X 4 信源中可能有的所有符号。
解:(1)根据题意,此信源在任何时刻发出的符号概率都是相同的,均按p(0)=0.4,p(1)=0.6,即信源发出符号的概率分布与时间平移无关,而且信源发出的序列之间也是彼此无信赖的。
所以这信源是平稳信源。
(2)23123121()2()2(0.4log 0.40.6log 0.6) 1.942(/)(|)()()log ()(0.4log 0.40.6log 0.6)0.971(/)lim (|)()0.971(/)i i iN N N N H X H X bit symbols H X X X H X p x p x bit symbol H H X X X X H X bit symbol ∞−→∞==−×+===−=−+====∑" (3)4()4()4(0.4log 0.40.6log 0.6) 3.884(/)H X H X bit symbols ==−×+=4X 的所有符号:0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 11113.2 在一个二进制的信道中,信源消息集X={0,1}且p(1)=p(0),信宿的消息集Y={0,1},信道传输概率(10)1/p y x ===4,(01)1/p y x ===8。
求:(1) 在接收端收到y=0后,所提供的关于传输消息x 的平均条件互信息I(X ;y=0); (2) 该情况下所能提供的平均互信息量I(X ;Y)。
信息论与编码第三版 第3章

(2)增强通信的可靠性: 综上所述,提高抗干扰能力往往是以降低信息传输效率为代价
信息论与编码
信源编码的概念:对信源的原始符号按一定的数学规则进行变换的一种
代码。
信源编码包括两个功能:
(1)将信源符号变换成适合信道传输的符号; {b1, b2,…, bD}是适合 编码输出码字cm = cm1 cm2 … {a1, a2, …, (2)压缩信源冗余度,提高传输效率。 ak}为信 信道传输的D个符号, cmn, c mk∈{b1, b2,…, bD}, 源符号集,序列中 用作信源编码器的 k = 1, 2 , …, n ,n表示码字 每一个符号uml都取 信源编码模型: 编码符号。 长度,简称码长。 自信源符号集。
1 1 1 n 2 2 2 3 4 4 2.75 (码元/符号) 4 8 16
RD
H X n
2.75 1 (比特/码元时间) 2.75
信息论与编码
§3.2 等长码及等长编码定理
一.等长编码定理
考虑对一简单信源S进行等长编码,信源符号集有K个符号,码符号集 含D个符号,码字长度记为n。对信源作等长无差错编码,要得到惟一可译 码,必须满足下式:
扩展信源
信源编码器
信道符号(码符号)集{b1,b2,...bD}
信源符号集{a1,a2,...ak}
原码的N次扩展码是将信源作N次扩展得到的新信源符号序列u(N) =u1 …uN = (u11 u12 … u1L) … (uN1 uN2 … uNL),对应码符号序列c(N) =c1 …cN = (c11 c12 … c1n) … (cN1 cN2 … cNn) ,记集合C (N) = {c1(N), c2(N), …},C (N) 即原码C的N次扩展码。
信息论与编码理论-第3章信道容量-习题解答-071102

第3章 信道容量习题解答3-1 设二进制对称信道的转移概率矩阵为2/31/31/32/3⎡⎤⎢⎥⎣⎦解: (1) 若12()3/4,()1/4P a P a ==,求(),(),(|),(|)H X H Y H X Y H Y X 和(;)I X Y 。
i i 2i=13311H(X)=p(a )log p(a )log()log()0.8113(/)4444bit -=-⨯-=∑符号111121*********j j j=132117p(b )=p(a )p(b |a )+p(a )p(b |a )=43431231125p(b )=p(a )p(b |a )+p(a )p(b |a )=4343127755H(Y)=p(b )log(b )=log()log()0.9799(/)12121212bit ⨯+⨯=⨯+⨯=---=∑符号 22i j j i j i j i ,H(Y|X)=p(a ,b )logp(b |a )p(b |a )logp(b |a )2211log()log()0.9183(/)3333i jjbit -=-=-⨯-⨯=∑∑符号I(X;Y)=H(Y)H(Y|X)=0.97990.91830.0616(/)bit --=符号 H(X|Y)=H(X)I(X;Y)=0.81130.06160.7497(/bit --=符号)(2)求该信道的信道容量及其达到信道容量时的输入概率分布。
二进制对称信息的信道容量H(P)=-plog(p)-(1-p)log(1-p)1122C =1-H(P)=1+log()+log()=0.0817(bit/)3333符 BSC 信道达到信道容量时,输入为等概率分布,即:{,}注意单位3-4 设BSC 信道的转移概率矩阵为112211Q εεεε-⎡⎤=⎢⎥-⎣⎦1)写出信息熵()H Y 和条件熵(|)H Y X 的关于1()H ε和2()H ε表达式,其中()log (1)log(1)H εεεεε=----。
《信息论与编码》第三章习题解答

1 p(i, j ) 3 1 , 3
所以从编码树每个内节点长出的三个分支都具有等概率,即第一层节点概率为 第二层节点概率为
1 1 ,…。从而任何一个消息(树叶)出现概率必定为 的整数次幂。 9 3
I (u L ) − H (U ) > δ L
求在(a) , (b)给定的 L=L0 情况下 A 中元素数目的上、下限。 [解] 由概率论中切比雪夫不等式
P{|
其中
σ2 I (U L ) − H (U ) |> δ } ≤ I 2 = ε L Lδ 3 1 3 1 H (U ) = − log − log = 0.81bit 4 4 4 4
H (X ) ,所以 log 3
其 中 (i, k1 ) , (k1 + 1, k 2 ) , (k 2 + 1, j ) 是 由 内 节 点 (i, j ) 分 岔 出 去 的 三 个 节 点 , 所 以
p (i, k1 ) + p(k1 + 1, k 2 ) + p (k 2 + 1, j ) = p(i, j ) 。由于码 D 的平均码长 L =
(b) 求三元 Huffman 码,计算 n 和 η ; [解] (a) 由信源概率分布可知
H (U ) = −
∑p
i =1
10
i
log p i = 3.234bit
相应的 Huffman 编码过程如下图所示; 111 a1 101 a2 100 a3 011 a4 001 a5 000 a6 1101 a7 1100 a8 0101 a9 0100 a10
0.16 (1) 0.14 (1) 0.13 (0) 0.12 (1) 0.1 (1) 0.09 (0) 0.08 (1) 0.07 (0) 0.06 (1) 0.05 (0)
《信息论与编码》习题解答-第三章

第三章 信道容量-习题答案3.1 设二元对称信道的传递矩阵为⎥⎦⎤⎢⎣⎡3/23/13/13/2 (1) 若P(0) = 3/4, P(1) = 1/4,求H(X), H(X/Y), H(Y/X)和I(X;Y); (2) 求该信道的信道容量及其达到信道容量时的输入概率分布;解: 1)symbolbit Y X H X H Y X I symbol bit X Y H Y H X H Y X H X Y H Y H Y X H X H Y X I symbol bit y p Y H x y p x p x y p x p y x p y x p y p x y p x p x y p x p y x p y x p y p symbolbit x y p x y p x p X Y H symbolbit x p X H jj iji j i j i i i / 062.0749.0811.0)/()();(/ 749.0918.0980.0811.0)/()()()/()/()()/()();(/ 980.0)4167.0log 4167.05833.0log 5833.0()()(4167.032413143)/()()/()()()()(5833.031413243)/()()/()()()()(/ 918.0 10log )32lg 324131lg 314131lg 314332lg 3243( )/(log )/()()/(/ 811.0)41log 4143log 43()()(222221212221221211112111222=-==-==+-=+-=-=-==⨯+⨯-=-==⨯+⨯=+=+==⨯+⨯=+=+==⨯⨯+⨯+⨯+⨯-=-==⨯+⨯-=-=∑∑∑∑2)21)(/ 082.010log )32lg 3231lg 31(2log log );(max 222==⨯++=-==i mi x p symbolbit H m Y X I C3.2 解:(1)αα-==1)(,)(21x p x p⎥⎦⎤⎢⎣⎡=4/14/12/102/12/1P ,⎥⎦⎤⎢⎣⎡---=4/)1(4/)1(2/)1(02/12/1)(αααααj i y x P 4/)1()(,4/14/)(,2/1)(321αα-=+==y p y p y p接收端的不确定度:))1(41log()1(41)4141log()4141()2log(21)(αααα---++-=Y H)1log(41)1log(4123αααα---++-= (2))4log()1(41)4log()1(41)2log()1(210)2log(21)2log(21)|(ααααα-+-+-+++=X Y H α2123-= (3))|()();(X Y H Y H Y X I -=);(max )()(Y X C i x p =α,0)(=ααC d d,得到5/3=α 161.0)5/3();max(===C Y X C 3.3∑==⨯++=+=21919.001.0log 01.099.0log 99.02log log )log(j ij ij p p m C0.919*1000=919bit/s 3.4 3.5 3.6⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2/1002/12/12/10002/12/10002/12/1P 121log 2121log 214log log )log(41=++=+=∑=ij j ij p p m C3.7(1)联合概率⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=010330110110115215110161ij p ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0103101535152525121)|(j i y x p 31)(0=y p ,21)(1=y p ,61)(3=y p499.16log 612log 213log 31)(=++=Y H(2)175.1910log 30310log 301310log 101310log10152log 1525log 151310log 1012log 61)|(log )()|(=+++++++=-=∑ij i j j i x y p y x p X Y H (3)当接收为2y ,发送为2x 时正确,如果发送为1x 和3x 为错误,各自的概率为: 5/1)|(21=y x p ,5/1)|(22=y x p ,5/3)|(23=y x p它的错误概率为:5/4)|()|(2321=+=y x p y x p p e(4)平均错误概率为:733.010/115/110/310/130/115/2=+++++ (5)同样为0.733 (6)此信道不好,因为信源等概率分布,从转移信道来看,正确发送的概率11y x >-为0.5,有一半失真;22y x >-为0.3,严重失真;33y x >-为0,完全失真。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.4 平均互信息量
2.1 单 符 号 离 散 信 源
(1) 互信息量和条件互信息量
① 互信息量 互信息量的三种不同表达式 观察者站在通信系统总体立场上
▼ 通信后:输入随机变量 X 和输出随机变量 Y 之间由信道的统计
特性相联系,其联合概率密度: p(xi yj)=p(xi)p(yj /xi )= p(yj)p(xi / yj) 后验不确定度:
(1) 互信息量和条件互信息量
① 互信息量 互信息量定义: 最简单的通信系统模型: X—信源发出的离散消息集合 Y—信宿收到的离散消息集合 信源通过有干扰的信道发出消息传递给信宿; 信宿事先不知道某一时刻发出的是哪一个消息,所以每 个消息是随机事件的一个结果。
信源X 有扰信道 信宿Y
干扰源 图2.1.3 简单通信系统模型
▼ 自信息量:对 yj 一无所知的情况下 xi 存在的不确定度; ▼ 条件自信息量:已知 yj 的条件下 xi 仍然存在的不确定度; ▼ 互信息量:两个不确定度之差是不确定度被消除的部分,即等
于自信息量减去条件自信息量。
2010-3-11
The Department of Communication Engineering, NCUT
▼ 通信后的互信息量,等于前后不确定度的差:
I ( x i ; y j ) = log 2
1 1 − log 2 p( x i ) p( y j ) p( x i y j )
= I ' ( x i y j ) − I '' ( x i y j ) = I ( x i ) + I ( y j ) − I ( x i y j )
14
2.1.4 平均互信息量
2.1 单 符 号 离 散 信 源
(1) 互信息量和条件互信息量
① 互信息量 互信息量的三种不同表达式 观察者站在输入端
I ( y j ; x i ) = log 2 1 1 − log 2 = I ( y j ) − I ( y j / xi ) p( y j ) p( y j / x i )
▼ 通信前:输入随机变量 X 和输出随机变量 Y 之间没有任何关联
关系,即 X,Y 统计独立;
▼ p(xi yj)=p(xi) y j ) = log 2
2010-3-11
1 p( x i ) p( y j )
16
The Department of Communication Engineering, NCUT
▼ 两个随机事件的可能结果 xi 和 yj 之间的统计约束程度; ▼ 从 yj 得到的关于 xi 的信息量 I(xi;yj) 与从 xi 得到的关于 yj 的信息
量 I(yj; xi) 是一样的,只是观察的角度不同而已。
2010-3-11
The Department of Communication Engineering, NCUT
13
2.1.4 平均互信息量
2.1 单 符 号 离 散 信 源
(1) 互信息量和条件互信息量
① 互信息量 互信息量的三种不同表达式 观察者站在输出端
1 1 I ( x i ; y j ) = log 2 − log 2 = I ( xi ) − I ( xi / y j ) p( x i ) p( x i / y j )
I ( x i ; y j ) = log 2 = log 2 p( x i / y i ) p( x i ) ( i = 1,2, … , n; j = 1,2, … , m )
1 1 − log 2 p( x i ) p( x i / y j )
= I ( xi ) − I ( xi / y j )
I ( xi y j ) = I ( xi ) + I ( y j / xi )
2010-3-11
The Department of Communication Engineering, NCUT
10
2.1.4 平均互信息量
2.1 单 符 号 离 散 信 源
(1) 互信息量和条件互信息量
① 互信息量 举例 某地二月份天气构成的信源为:
2
第二章 信源及其信息量
本章重点:信源的统计特性和数学模型、各类信源的信息测 度—熵及其性质。
2.1 单符号离散信源 2.2 扩展信源 2.3 连续信源 2.4 离散无失真信源编码定理 2.5 小结
2010-3-11
The Department of Communication Engineering, NCUT
▼ 这三种表达式实际上是等效的,在实际应用中可根据具体情况
选用一种较为方便的表达式。
2010-3-11
返回目录
18
The Department of Communication Engineering, NCUT
2.1.4 平均互信息量
2.1 单 符 号 离 散 信 源
(1) 互信息量和条件互信息量
I '' ( x i y j ) = log 2
2010-3-11
1 p( x i y j )
17
The Department of Communication Engineering, NCUT
2.1.4 平均互信息量
2.1 单 符 号 离 散 信 源
(1) 互信息量和条件互信息量
① 互信息量 互信息量的三种不同表达式 观察者站在通信系统总体立场上
2010-3-11
The Department of Communication Engineering, NCUT
9
2.1.4 平均互信息量
2.1 单 符 号 离 散 信 源
(1) 互信息量和条件互信息量
① 互信息量 互信息量定义: 互信息量: yj 对 xi 的互信息量定义为后验概率与先验 概率比值的对数。
2010-3-11
The Department of Communication Engineering, NCUT
8
2.1.4 平均互信息量
2.1 单 符 号 离 散 信 源
(1) 互信息量和条件互信息量
① 互信息量 互信息量定义: 先验概率:信源发出消息 xi 的概率 p(xi )。 后验概率:信宿收到 yj 后推测信源发出 xi 的概率: p(xi / yj )。
2010-3-11
The Department of Communication Engineering, NCUT
11
2.1.4 平均互信息量
2.1 单 符 号 离 散 信 源
(1) 互信息量和条件互信息量
① 互信息量 举例
计算 y1 与各种天气之间的互信息量 对天气 x1,不必再考虑 对天气 x2, I ( x 2 ; y1 ) = log 2 p( x 2 / y1 ) = log 2 1 / 2 = 1(比特 ) p( x 2 ) 1/ 4 对天气 x3, I ( x 3 ; y1 ) = log 2 对天气 x4 , I ( x4 ; y1 ) = log 2
观察者得知输入端发出 xi 前、后对输出端出现 yj 的不确 定度的差。
2010-3-11
The Department of Communication Engineering, NCUT
15
2.1.4 平均互信息量
2.1 单 符 号 离 散 信 源
(1) 互信息量和条件互信息量
① 互信息量 互信息量的三种不同表达式 观察者站在通信系统总体立场上
② 互信息的性质 对称性 I(xi ; yj) = I(yj ; xi) 推导过程:
I ( x i ; y j ) = log 2 = log 2 p( x i / y j ) p( x i ) = log 2 p( x i / y j ) p( y j ) p ( x i ) p( y j ) p( y j / x i ) p( y j ) = I ( y j ; xi )
2.1 单 符 号 离 散 信 源
将信道的发送和接收端分别看成是两个“信源”,则两者 之间的统计依赖关系(信道输入和输出之间)描述了信道 的特性。
(1) 互信息量和条件互信息量 (2) 平均互信息量的定义 (3) 平均互信息量的物理含义 (4) 平均互信息量的性质
2010-3-11
The Department of Communication Engineering, NCUT
⎡ Y ⎤ ⎧ y1 , ⎢ P (Y )⎥ = ⎨ p( y ), 1 ⎣ ⎦ ⎩ 0 ≤ p( y j ) ≤ 1,
∑ p( x ) = 1
i =1 i
n
ym ⎫ ⎬ p( y2 ), …, p( y j ), …, p( ym )⎭ y2 ,
m
…,
yj,
…,
∑ p( y ) = 1
j =1 j
p( x i y j ) / p ( x i ) p( y j )
= log 2
2010-3-11
The Department of Communication Engineering, NCUT
19
2.1.4 平均互信息量
2.1 单 符 号 离 散 信 源
(1) 互信息量和条件互信息量
② 互信息的性质 对称性 互信息量的对称性表明:
⎡ X ⎤ ⎧x1(晴), x2 (阴), x3 (雨), x4 (雪)⎫ ⎬ ⎢P( X )⎥ = ⎨ 1, 1 1 1 , , ⎦ ⎩ 2 ⎣ 4 8 8 ⎭
收到消息 y1:“今天不是晴天” 收到 y1 后:p(x1/y1)=0, p(x2/y1)=1/2, p(x3/y1)=1/4,p(x4/y1)=1/4
20
2.1.4 平均互信息量
2.1 单 符 号 离 散 信 源