常州市2019-2020学年度第二学期期末考试数学试题(图片版)

合集下载

2019-2020学年江苏省常州市2019级高一下学期期末考试数学试卷及答案

2019-2020学年江苏省常州市2019级高一下学期期末考试数学试卷及答案
19. (12分)
在△ABC中,内角A,B,C所对的边分别为a,b,c.已知
(1)求角A的大小;
(2)若b+c-6,△ABC的面积为5,求a.
20. (12分)
新冠肺炎疫情期间,为确保“停课不停学",各校精心组织了线上教学活动开学后,某校采用分层抽样的方法从三个年级的学生中抽取一个容量为150的样本进行关于线上教学实施情况的问卷调查.已知该校高一年级共有学生660人,抽取的样本中高二年级有50人,高三年级有45人.下表是根据抽样调查情况得到的高二学生日睡眠时间(单位:h)的频率分布表
A. 2
B.4
C. 6
D. 8
二、填空题:本题共4小题,每小题5分,共20分
13.直线 :2x+y+1=0与直线 :4x+ 2y-3=0之间的距离为________
14.如图,把一个表面涂有蓝漆的正方体木块锯成64个完全相同的的小正方体,若从中任取一块,则这一块至多有一直涂有蓝漆的概率为________
四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤。
17. (10分)
在平面直角坐标系xOy中,已知△ABC的顶点A(1,5),B(-3,7),C(-8,2).
(1)求AC边上的高所在直线方程:
(2)求△ABC的面积.
18. (12分)
已知
(1)求cosα-sinα;
(2)求
(3)设M,N是圆C上任意两个不同的点,若以MN为直径的圆与直线l都没有公共点,求k的取值范围.
2019-2020学年江苏省常州市2019级高一下学期期末考试
9.已知直线 :3x-y-1-0, :x+2y-5-0, :x-ay-3-0不能围成三角形,则实数a的取值可能为

常州市名校2019-2020学年七年级第二学期期末统考数学试题含解析

常州市名校2019-2020学年七年级第二学期期末统考数学试题含解析

常州市名校2019-2020学年七年级第二学期期末统考数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每题只有一个答案正确)1.如(y+a )与(y-7)的乘积中不含y 的一次项,则a 的值为( )A .7B .-7C .0D .14【答案】A【解析】试题分析:根据多项式的乘法计算法则可得:原式=()2a 7y 7a y +--,根据不含y 的一次项可知:a -7=0,则a=7,故选A .2.已知图中的两个三角形全等,则α∠的度数是( )A .72︒B .60︒C .58︒D .50︒【答案】D【解析】【分析】 根据全等三角形对应角相等解答即可.【详解】∵两个三角形全等,∴∠α=50°.故选:D .【点睛】此题考查全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.3.已知关于x 的不等式40x a -≤的非负整数解是012、、,则a 的取值范围是( ) A .34a ≤<B .812a ≤≤C .812a ≤<D .34a ≤≤【答案】C【分析】先求出不等式的解集,再根据其非负整数解列出不等式,解此不等式即可.【详解】解:解不等式4x-a≤0得到:x≤a4,∵非负整数解是0,1,2,∴2≤a4<3,解得8≤a<1.故选择:C. 【点睛】本题考查了一元一次不等式的整数解,根据x的取值范围正确确定a4的范围是解题的关键.解不等式时要根据不等式的基本性质.4.在﹣3,0,1四个数中,是无理数的是()A.﹣3 B C.0 D.1【答案】B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】解:﹣3,0,1是有理数,是无理数,故选B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.5.方程ax-4y=x-1是关于x,y的二元一次方程,则a的取值范围为( )A.a≠0B.a≠-1C.a≠1D.a≠2【答案】C【解析】【分析】将方程整理得(a-1)x-4y=-1.因为此方程为关于x,y的二元一次方程,所以a-1≠0,所以a≠1.解:方程合并同类项后得(a-1)x=4y-1根据题意a-1≠0 ,即a≠1时这个方程才是关于x、y的二元一次方程,故选C.【点睛】本题考查二元一次方程的定义,掌握成立条件是解题关键.6.下列长度的三条线段能组成三角形的是()A.1.5cm,2cm,2.5cm B.2cm,5cm,8cmC.1cm,3cm,4cm D.5cm,3cm,1cm【答案】A【解析】A. 1.5+2>2.5,根据三角形的三边关系,能组成三角形,符合题意;B. 2+5<8,根据三角形的三边关系,不能够组成三角形,不符合题意;C. 1+3=4,根据三角形的三边关系,不能组成三角形,不符合题意;D. 1+3<5,根据三角形的三边关系,不能够组成三角形,不符合题意.故选A.7.下列计算结果正确的是()A.2a·3a=6a B.6a÷3a=3a C.(a-b)=2a-2b D.32a+23a=55a【答案】B【解析】【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】a2·a3=a5,故选项A错误,a6÷a3=a3,故选项B正确,(a-b)2=a2-2ab+b2,故选项C错误,3a2+2a3不能合并,故选项D错误,故选B.【点睛】本题考查同底数幂的乘除法、幂的乘方与积的乘方、合并同类项、完全平方公式,解答本题的关键是明确它们各自的计算方法.8.三张同样的卡片上正面分别有数字5、6、7,背面朝上放在桌子上,小明从中任意抽取一张作为百位,A .13 B .16 C .19 D .23【答案】A【解析】【分析】根据题意可知当抽取5作为百位时组成的三位数小于600,故可求解.【详解】依题意可知:当抽取5作为百位时组成的三位数小于600,故任意抽取5作为百位的概率是13故选A .【点睛】此题主要考查概率的求解,解题的关键是熟知概率公式的运用.9.若实数a ,b 满足关系式21a b -=和23a b +=,则点(),a b 有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】把两式相加消去b,求出a 的值,再求得b 的值即可求解.【详解】两式相加得2a=4解得a=2.∴221b -=解得b=±1,∴(),a b 可以为(2,-1)或(2,1)故选B.【点睛】此题主要考查平方根的性质,解题的关键是熟知平方根的定义.10.若多项式2x bx c ++因式分解后的一个因式是()1x +,则b c -的值是()A .1-B .1C .0D .2-【答案】B根据多项式x 2+bx +c 因式分解后的一个因式是(x +1),即可得到当x +1=0,即x =−1时,x 2+bx +c =0,即1−b +c =0,即可得到b−c 的值.【详解】解:1x +为2x bx c ++因式分解后的一个因式.∴当10x +=,即1x =-时,20x bx c ++=,即2(1)(1)0b c -+⋅-+=,1b c ∴-+=-,1b c ∴-=.故选:B .【点睛】本题主要考查了因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.二、填空题11.比较大小:12__________0.1.(填“>”“<”或“=”) 【答案】>【解析】【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】∵1112-0.5=-=2222,-2>2,∴22->2.故12>2.1. 故答案为:>.【点睛】此题考查实数大小比较,解题关键在于掌握比较两个实数的大小,可以采用作差法、取近似值法等. 12.将一个小球在如图所示的地撰上自由滚动,最终停在黑色方砖上的概率为_____.【答案】12. 【解析】【分析】 根据几何概率的求法:最终没有停在黑色方砖上的概率即停在白色方砖上的概率就是白色区域面积与总面积的比值.【详解】观察这个图可知:白色区域与黑色区域面积相等,各占12,故其概率等于12. 故答案为:12 【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.13.如图,在ABC ∆中,//EF BC ,ACG ∠是ABC ∆的外角,BAC ∠的平分线交BC 于点D ,若1150∠=︒,2110∠=︒,则3∠=_______.【答案】70°.【解析】【分析】先求∠1、∠2的邻补角的度数,再根据三角形的内角和可求得∠DAC 的度数,亦即∠BAD 的度数,再用三角形的内角和可求得∠B 的度数,最后根据两直线平行,同位角相等即得结果.【详解】解:∵1150∠=︒,∴∠ACB=30°,∴∠DAC=180°-∠2-∠ACG=180°-110°-30°=40°,∴∠BAD=∠DAC=40°,∵2110∠=︒,∴∠ADB=70°,在△ABD 中,∠B=180°-∠BAD -∠ADB=180°―70°―40°=70°,∵EF ∥BC ,∴∠3=∠B=70°.故答案为70°.【点睛】本题考查了三角形的内角和、角平分线和三角形外角的概念以及平行线的性质,属于基础题型,熟练掌握三角形的内角和和平行线的性质是求解的关键.14.已知()2x-y 310x y +++-=,则y x 的值为_________【答案】12 【解析】【分析】根据非负数性质,求得x 、y 的值,然后代入所求求值即可.【详解】∵()2x-y 30,10x y ≥+-≥+,()2x-y 310x y +++-=∴3010x y x y -+=⎧⎨+-=⎩, 解得12x y =-⎧⎨=⎩∴y x =2-1=12. 故答案为:12 【点睛】考核知识点:非负数性质,负指数幂.利用非负数性质求解是关键..15.如图,BD 平分ABC ∠,DE AB ⊥于E ,DF BC ⊥于F ,6,8AB BC ==. 若21ABC S ∆=,则DE =____________.【解析】【分析】根据角平分线上的点到角的两边的距离相等可得DE=DF ,然后根据三角形的面积公式列式计算即可得解.【详解】∵BD 平分∠ABC ,DE ⊥AB ,DF ⊥BC ,∴DE=DF ,∵AB=6,BC=8,∴S △ABC =12AB•DE+12BC•DF=12×6DE+12×8DE=21, 即1DE+4DE=21,解得DE=1.故答案为:1.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,是基础题,熟记性质是解题的关键.16.如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在'D ,'C 的位置.若66EFB ∠=,则'AED ∠的度数为______.【答案】48°【解析】【分析】先根据平行线的性质得出DEF ∠的度数,再根据翻折变换的性质得出D EF ∠'的度数,根据平角的定义即可得出结论.【详解】//AD BC ,66EFB ∠=︒,∴66DEF ∠=︒,又DEF D EF ∠=∠',∴66D EF ∠='︒,∴18026648AED ∠=︒-⨯︒='︒.本题考查的是平行线的性质以及折叠的性质,用到的知识点为:两直线平行,内错角相等.17.若4x2+(a﹣1)xy+9y2是完全平方式,则a=_____.【答案】13或﹣1【解析】【分析】根据完全平方公式得出(a﹣1)xy=±2×2x×3y,即可解答【详解】∵4x2+(a﹣1)xy+9y2=(2x)2+(a﹣1)xy+(3y)2,∴(a﹣1)xy=±2×2x×3y,解得a﹣1=±12,∴a=13,a=﹣1.故答案为13或﹣1.【点睛】此题考查完全平方公式,解题关键在于利用完全平方公式求出(a﹣1)xy=±2×2x×3y三、解答题18.已知AB∥CD,点E为平面内一点,BE⊥CE于E,(1)如图1,请直接写出∠ABE和∠DCE之间的数量关系;(2)如图2,过点E作EF⊥CD,垂足为F,求证:∠CEF=∠ABE;(3)如图3,在(2)的条件下,作EG平分∠CEF交DF于点G,作ED平分∠BEF交CD于D,连接BD,若∠DBE+∠ABD=180°,且∠BDE=3∠GEF,求∠BEG的度数.【答案】(1)∠DCE=90°+∠ABE;(2)见解析;(3)∠BEG=105°.【解析】【分析】(1)结论:∠DCE=90°+∠ABE.如图1中,从BE交DC的延长线于H.利用三角形的外角的性质即可证明;(2)只要证明∠CEF与∠CEM互余,∠BEM与∠CEM互余,可得∠CEF=∠BEM即可解决问题;(3)如图3中,设∠GEF=α,∠EDF=β.想办法构建方程求出α即可解决问题;【详解】理由:如图1中,从BE交DC的延长线于H.∵AB∥CH,∴∠ABE=∠H,∵BE⊥CE,∴∠CEH=90°,∴∠DCE=∠H+∠CEH=90°+∠H,∴∠DCE=90°+∠ABE.(2)如图2中,作EM∥CD,∵EM∥CD,CD∥AB,∴AB∥CD∥EM,∴∠BEM=∠ABE,∠F+∠FEM=180°,∵EF⊥CD,∴∠F=90°,∴∠FEM=90°,∴∠CEF与∠CEM互余,∵BE⊥CE,∴∠BEC=90°,∴∠BEM与∠CEM互余,∴∠CEF=∠BEM,∴∠CEF=∠ABE.∴∠BDE=3∠GEF=3α,∵EG平分∠CEF,∴∠CEF=2∠FEG=2α,∴∠ABE=∠CEF=2α,∵AB∥CD∥EM,∴∠MED=∠EDF=β,∠KBD=∠BDF=3α+β,∠ABD+∠BDF=180°,∴∠BED=∠BEM+∠MED=2α+β,∵ED平分∠BEF,∴∠BED=∠FED=2α+β,∴∠DEC=β,∵∠BEC=90°,∴2α+2β=90°,∵∠DBE+∠ABD=180°,∠ABD+∠BDF=180°,∴∠DBE=∠BDF=∠BDE+∠EDF=3α+β,∵∠ABK=180°,∴∠ABE+∠B=DBE+∠KBD=180°,即2α+(3α+β)+(3α+β)=180°,∴6α+(2α+2β)=180°,∴α=15°,∴∠BEG=∠BEC+∠CEG=90°+15°=105°.【点睛】本题考查平行线的性质、垂线的性质、三角形的内角和定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考常考题型.19.在中,,点,分别是边,上的点,点是一动点.记为,为,为.(1)若点在线段上,且,如图1,则_____________;(2)若点在边上运动,如图2所示,请猜想,,之间的关系,并说明理由;(3)若点运动到边的延长线上,如图3所示,则,,之间又有何关系?请直接写出结论,不用说明理由.【答案】(1);(2);(3)【解析】【分析】(1)根据邻补角的性质可得∠1+∠2+∠PDC+∠PEC=360°,根据四边形的内角和等于360°可得∠PDC +∠PEC+∠C+∠α=360°,然后可得∠1+∠2=∠C+∠α;(2)仿照(1)的解法,即可得到∠α,∠1,∠2之间的关系;(3)根据三角形的外角性质计算即可.【详解】(1)∵∠1+∠PDC=180°,∠2+∠PEC=180°,∴∠1+∠2+∠PDC+∠PEC=360°,∵四边形CDPE的内角和是360°,∴∠PDC+∠PEC+∠C+∠α=360°,∴∠1+∠2=∠C+∠α=90°+50°=140°,故答案为:140°;(2)理由:∵∴又∵四边形的内角和是∴∴(3)由三角形的外角性质可知,∠3=∠2+∠α,∴∠1=90°+∠3=90°+∠2+∠α.【点睛】本题考查的是三角形的外角性质、三角形内角和定理、四边形的内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.20.已知点P(3m﹣6,m+1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大5;(4)点P在过点A(﹣1,2),且与x轴平行的直线上.【答案】(1)点P的坐标为(0,3);(2)点P的坐标为(﹣9,0);(3)点P的坐标为(﹣3,2);(4)点P的坐标为(﹣3,2).【解析】【分析】(1)让横坐标为0求得m的值,代入点P的坐标即可求解;(2)让纵坐标为0求得m的值,代入点P的坐标即可求解;(3)让纵坐标-横坐标=5得m的值,代入点P的坐标即可求解;(4)让纵坐标为2求得m的值,代入点P的坐标即可求解.【详解】(1)∵点P(3m-6,m+1)在y轴上,∴3m-6=0,解得:m=2,∴m+1=1+2+1=3-,∴点P的坐标为:(0,3);(2)∵点P(3m-6,m+1)在x轴上,∴m+1=0,解得:m=-1,∴3m-6=3×(-1)-6=-9,∴P点坐标为:(-9,0).(3)∵点P (3m-6,m+1)的点P 的纵坐标比横坐标大5,∴m+1-(3m-6)=5, 解得:m=1,∴3m-6=3×1-6=-3,m+1=1+1=2,∴P 点坐标为:(-3,2).(4) ∵点P (3m-6,m+1)在过点A (-1,2),并且与x 轴平行的直线上,∴m+1=2, 解得:m=1,∴3m-6=3×1-6=-3,m+1=1+1=2,∴P 点坐标为:(-3,2).21.计算:(1)()()3222223a b a b a b -+⋅- (2)()()22a b c a b c +--+(3)已知6510x y -=,求()()()222232x y x y x y y ⎡⎤-+---⎦÷⎣-的值. 【答案】 (1) 6317a b ;(2)22244a b bc c -+-;(3)10【解析】【分析】(1)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;(2)原式利用平方差公式,以及完全平方公式化简即可得到结果;(3)原式中括号中利用平方差公式,以及完全平方公式化简,再利用多项式除以单项式法则计算得到最简结果,把已知等式代入计算即可求出值.【详解】解:(1)原式6324229a b a b a b =-+⋅636318a b a b =-+=6317a b(2)原式()()22a b c a b c ⎡⎤⎡⎤⎣⎦=---⎣+⎦22(2)a b c =--()22244a b bc c =--+22244a b bc c =-+-(3)原式()2222441292x y x xy y y ⎡⎤=---+÷⎣⎦ ()212102xy y y =-÷65x y =-6510x y -=,∴原式10=【点睛】此题考查了整式的混合运算,以及整式的化简求值,熟练掌握运算法则是解本题的关键.22.如图,点A E F C 、、、在一直线上,,,DE BF DE BF AE CF ==∥.试说明AB CD ∥的理由.【答案】详见解析【解析】【分析】利用SAS 证明AFB CED △≌△,根据全等三角形的性质可得 A C ∠=∠,继而根据平行线的判定可得答案.【详解】DE BF ∥,DEF BFE ∴∠=∠,AE CF =,AF CE ∴=,在AFB △与CED 中,AF CE DEF BFE DE BF =⎧⎪∠=∠⎨⎪=⎩,∴()AFB CED SAS △≌△ , ∴A C ∠=∠,∴AB CD ∥.【点睛】本题考查了全等三角形的判定与性质,熟练掌握相关定理是解题的关键.23.如图,已知ABC △中,AB AC =,O 是ABC △内一点,且OB OC =,试说明AO BC ⊥的理由.【答案】详见解析【解析】【分析】先证明AOB AOC △≌△,再利用全等三角形的性质得到BAO CAO ∠=∠,然后利用等腰三角形三线合一的性质,即可证明.【详解】证明:在AOB 与AOC △中,AB AC OB OCAO AO (已知)(已知)(公共边)=⎧⎪=⎨⎪=⎩∴(...)AOB AOC S S S △≌△∴BAO CAO ∠=∠(全等三角形的对应角相等)∵AB AC =(已知)∴AO BC ⊥(等腰三角形的三线合一)【点睛】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题和等腰三角形三线合一性质的运用.24.如图,在方格纸内将水平向右平移4个单位得到△.(1)画出△; (2)画出边上的中线和高线;(利用网格点和直尺画图) (3)的面积为 .【答案】 (1)见解析; (2) 见解析;(3) 4.【解析】【分析】(1)根据图形平移的性质画出△A′B′C′即可;(2)先取AB的中点D,再连接CD即可;过点C作CD⊥AB交AB的延长线于点E,CE即为所求;(3)利用割补法计算△ABC的面积.【详解】(1)如图所示:(2)如图所示;(3)S△BCD=20-5-1-10=4.25.如图,在数轴上,点A、B分别表示数1、﹣2x+5,(1)求x的取值范围;(2)数轴上表示数﹣x+3的点应落在.A.点A的左边B.线段AB上C.点B的右边【答案】(1)x<2;(2)B.【解析】【分析】(1)根据数轴上A与B的位置列出不等式,求出解集即可确定出x的范围;(2)根据x的范围判断即可.【详解】解:(1)由数轴上点的位置得:﹣2x+5>1,解得:x<2;(2)由x<2,得到﹣x+3>1,且﹣2x+5>﹣x+3,则数轴上表示数﹣x+3的点在线段AB 上,故选B【点睛】此题考查了解一元一次不等式以及数轴,熟练掌握不等式的性质是解本题的关键.。

2019-2020学年常州市名校七年级第二学期期末统考数学试题含解析

2019-2020学年常州市名校七年级第二学期期末统考数学试题含解析

2019-2020学年常州市名校七年级第二学期期末统考数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每题只有一个答案正确)1.已知三角形三边长分别为2,5,x ,则x 的取值范围是( )A .17x <<B .37xC .35x <<D .25x << 【答案】B【解析】【分析】根据三角形的三边关系,列出式子即可得到答案.【详解】解:∵三角形三边长分别为2,5,x ,根据三角形的三边关系(三角形两边之和大于第三边,两边只差小于第三边),得到:5252x -<<+,即:37x ,故选B .【点睛】本题主要考查了三角形的三边关系:三角形两边之和大于第三边,两边只差小于第三边;掌握三角形三边关系是解题的关键.2.下列等式从左到右的变形,属于因式分解的是( )A .a (x -y )=ax -ayB .x 2-1=(x+1)(x -1)C .(x+1)(x+3)=x 2+4x+3D .x 2+2x+1=x (x+2)+1【答案】B【解析】试题分析:根据因式分解的定义只有B,是把一个多项式转化为两个因式积的形式.考点:因式分解3.下列说法中,正确的是( )A .腰对应相等的两个等腰三角形全等;B .等腰三角形角平分线与中线重合;C .底边和顶角分别对应相等的两个等腰三角形全等;D .形状相同的两个三角形全等.【答案】C【解析】【分析】根据全等三角形和等腰三角形的性质对各项进行判断即可.【详解】A. 腰对应相等的两个等腰三角形不一定全等,错误;B. 等腰三角形顶角的角平分线与底边中线重合,底角的角平分线与腰上的中线不一定重合,错误;C. 底边和顶角分别对应相等的两个等腰三角形全等,正确;D. 形状相同的两个三角形不一定全等,错误;故答案为:C.【点睛】本题考查了全等三角形和等腰三角形的问题,掌握全等三角形和等腰三角形的性质是解题的关键.4.如图,在△ABC中,AB=AC=13,BC=10,D是BC的中点,DE⊥AB,垂足为点E,则DE的长是()A.12013B.7513C.6013D.1513【答案】C【解析】【分析】首先由题意可判定△ABC为等腰三角形,可得AD⊥BC,BD=CD=5,然后根据勾股定理,得AD=12,通过两种方法求ABDS,可得出DE.【详解】解:连接AD,如图所示,∵在△ABC中,AB=AC=13,BC=10,D是BC的中点,∴AD⊥BC,BD=CD=5根据勾股定理,得2222AB-BD=13-5=12()∴ABD1=BD AD 2S △=1512=302=1AB DE2∴DE=60 13.故答案为C.【点睛】此题主要考查等腰三角形的性质,关键是利用不同的底和高求同一三角形的面积,即可得解.5.点P (-1,3)在A .第一象限.B .第二象限.C .第三象限.D .第四象限【答案】B【解析】试题分析:平面直角坐标系内各个象限内的点的坐标的符号特征:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).点P (-1,3)在第二象限,故选B.考点:点的坐标点评:本题属于基础应用题,只需学生熟练掌握各个象限内的点的坐标的符号特征,即可完成. 6.若分式2101x x -=-,则x 的取值为( ) A .1x =B .1x =-C .1x =±D .0x =【答案】B【解析】【分析】根据分子等于零,且分母不等于零求解即可.【详解】由题意得x 2-1=0,且x-1≠0,∴x=-1.故选B.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.7.如图,点在的延长线上,下列条件中能判定的是( )A.B.C.D.【答案】B【解析】【分析】根据平行线的三种判定方法进行判定.【详解】解:A选项,时,(内错角相等,两直线平行),所以,不能判定,A错误;B选项(同旁内角互补,两直线平行),B正确;C、D选项能判定,C、D错误.故答案为:B【点睛】本题考查了平形四边形的判定,判定方法有3个:同位角相等;内错角相等;同旁内角互补,同时也要区分同位角、内错角、同旁内角是哪两条直线的.8.在如图的方格纸中,每个小方格都是边长为1的正方形,点A、B是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C使△ABC的面积为2个平方单位,则满足条件的格点C的个数是()A.5 B.4 C.3 D.2【答案】A【解析】如图所示:满足条件的C点有5个。

江苏省常州市2019-2020学年高二下学期期末考试数学试题 Word版含解析

江苏省常州市2019-2020学年高二下学期期末考试数学试题 Word版含解析

江苏省常州教育学会学业水平测试2019—2020学年度第二学期(期末)高二数学试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.从5名男生和4名女生中,选出男女各1名学生主持某次活动,不同的选法种数为 A .9 B .10 C .20 D .40 2.若326n n A C =,则n 的值为A .4B .5C .6D .73.同时抛掷一颗红骰子和一颗蓝骰子,观察向上的点数,记“红骰子向上的点数为奇数”为事件A ,“两颗骰子的点数之积为奇数”为事件B ,则P(B ∣A)= A .12 B .13 C .14 D .164.某年级有6个班级,3位数学教师,每位教师任教2个班级,则不同分法的种数有 A .15 B .45 C .90 D .5405.函数22()e xx xf x +=的大致图象是6.对某同学7次考试的数学成绩x 和物理成绩y 进行分析,下面是该生7次考试的成绩.发现他的物理成绩y 与数学成绩x 是线性相关的,利用最小二乘法得到线性回归方程为y =0.5x a +,若该生的数学成绩达到130分,估计他的物理成绩大约是A .114.5B .115C .115.5D .116 7.已知函数3()31f x ax x =++的极大值与极小值的差为4,则实数a 的值为 A .﹣1 B .14-C .14D .18.我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的 数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉 三角形”.若将这些数字依次排列构成数列1,1,1,1,2,1, 1,3,3,1,1,4,6,4,1,…,则此数列的第2020项为 A .363C B .463CC .364C D .464C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.下列求导数运算不正确的是A .(sin )cos x x '=-B .2ln 2(log )x x'=C .2ln 1ln ()x x x x+'= D .2121(e )2e x x ++'= 10.已知在某市的一次学情检测中,学生的数学成绩X 服从正态分布N(105,100),其中90分为及格线,120 分为优秀线,下列说法正确的是附:随机变量ξ服从正态分布N(μ,2σ),则P(μσξμσ-<<+)=0.6826, P(22μσξμσ-<<+)=0.9544,P(33μσξμσ-<<+)=0.9974. A .该市学生数学成绩的期望为105 B .该市学生数学成绩的标准差为100 C .该市学生数学成绩及格率超过0.99D .该市学生数学成绩不及格的人数和优秀的人数大致相等 11.已知复数8i2iz +=-,其中i 是虚数单位,则以下说法正确的是 A .复数z 的实部为3 B .复数z 的虚部为2iC .复数z 的模为13D .复数z 的共轭复数32i z =-+12.由0,1,2,3,4,5,6,7,8,9这10个数字组成无重复数字的五位数,其中偶数的个数是 A .41139488A A A A +⋅⋅ B .41439498()A A A A +- C .54143109498()A A A A A -+- D .54143109598()A A A A A --- 三、填空题:本题共4小题,每小题5分,共20分. 13.已知2()nx x+的展开式中第5项与第7项的二项式系数相等,则展开式中常数项为 .第8题14.有一个活动小组有6名男生和4名女生,从中任选3名学生,至多选中2名男生的概率为 . 15.已知函数()e ln xf x a x =+,若曲线()y f x =在1x =处的切线方程为y x b =+,则a +b = .16若a =2b =3c ,则E(X)为 ;若b =12,V(X)的最大值为 . (本小题第一空2分,第二空3分)四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)已知22(815)(56)i z m m m m =-++-+,其中i 是虚数单位,m 为实数.(1)当z 为纯虚数时,求m 的值;(2)当复数z ·i 在复平面内对应的点位于第二象限时,求m 的取值范围. 18.(本题满分12分)江苏省从2021年开始,高考取消文理分科,实行“3+1+2”的模式,其中的“1”表示每位学生必须从物理、历史中选择一个科目且只能选择一个科目,某校为了解高一年级学生对“1”的选课情况,随机抽取了100名学生进行问卷调查,如下表是根据调查结果得到的2×2列联表.((2)请你依据该列联表判断是否有99.5%的把握认为选择科目与性别有关?说明你的理由.附:对于2×2列联表有22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.19.已知函数21()(1)ln 2f x x m x m x =-++,m ∈R . (1)若m =﹣1,求函数()f x 在区间[1e,e]上的最小值; (2)若m >0,求函数()f x 的单调增区间. 20.(本题满分12分)已知2012(1)nn n x a a x a x a x +=++++,n N *∈.(1)当7n =时,求1357a a a a +++的值; (2)求01235(21)n a a a n a +++++.21.(本题满分12分)常州别称龙城,是一座有着3200多年历史的文化古城.常州既有春秋淹城、天宁寺等名胜古迹,又有中华恐龙园、嬉戏谷等游乐景点,每年都有大量游客来常州参观旅游.为合理配置旅游资源,管理部门对首次来中华恐龙园游览的游客进行了问卷调查,据统计,其中23的人计划只游览中华恐龙园,另外13的人计划既游览中华恐龙园又参观天宁寺.每位游客若只游览中华恐龙园,得1分;若既游览中华恐龙园又参观天宁寺,得2分.假设每位首次来中华恐龙园游览的游客均按照计划进行,且是否参观天宁寺相互独立,视频率为概率.(1)有2名首次来中华恐龙园游览的游客是拼车到常州的,求“这2名游客都是既游览中华恐龙园又参观天宁寺”的概率;(2)从首次来中华恐龙园游览的游客中随机抽取3人,记这3人的合计得分为X ,求X 的概率分布和数学期望. 22.(本题满分12分)已知函数()()e xf x x a b =++,a ,b ∈R .(1)若a =1,求关于x 的不等式()(0)f x f >的解集;(2)若1e a b +=,讨论函数()f x 的零点个数.江苏省常州教育学会学业水平测试2019—2020学年度第二学期(期末)高二数学试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.从5名男生和4名女生中,选出男女各1名学生主持某次活动,不同的选法种数为 A .9 B .10 C .20 D .40 答案:C考点:分步计数原理解析:5×4=20,故选C . 2.若326n n A C =,则n 的值为A .4B .5C .6D .7 答案:B考点:排列公式与组合公式解析:由326n n A C =得(1)(1)(2)62n n n n n ---=⨯,解得n =5,故选B . 3.同时抛掷一颗红骰子和一颗蓝骰子,观察向上的点数,记“红骰子向上的点数为奇数”为事件A ,“两颗骰子的点数之积为奇数”为事件B ,则P(B ∣A)= A .12 B .13 C .14 D .16答案:A考点:条件概率解析:1()2P A =,91()364P B ==,1()14()1()22P B P B A P A ===,故选A .4.某年级有6个班级,3位数学教师,每位教师任教2个班级,则不同分法的种数有 A .15 B .45 C .90 D .540 答案:C 考点:组合解析:222642156190C C C =⨯⨯=,故选C .5.函数22()e xx xf x +=的大致图象是答案:A考点:利用导数研究函数的性质解析:∵22()e x x x f x +=,∴22()exx f x -'=,列表如下:故选A .6.对某同学7次考试的数学成绩x 和物理成绩y 进行分析,下面是该生7次考试的成绩.发现他的物理成绩y 与数学成绩x 是线性相关的,利用最小二乘法得到线性回归方程为y =0.5x a +,若该生的数学成绩达到130分,估计他的物理成绩大约是A .114.5B .115C .115.5D .116 答案:B考点:线性回归方程解析:100x =,100y =,所以0.51000.510050a y x =-=-⨯=,0.513050115y =⨯+=,故选B .7.已知函数3()31f x ax x =++的极大值与极小值的差为4,则实数a 的值为 A .﹣1 B .14- C .14D .1 答案:A考点:利用导数研究函数的极值解析:∵3()31f x ax x =++,∴2()33f x ax '=+,令()0f x '=,解得1x a=±-, ∴11()()f f a a ---- 111111()()3()()()3()4a a aa a a a a=⨯--+--⨯------= 解得a =﹣1,故选A .8.我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的 数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉 三角形”.若将这些数字依次排列构成数列1,1,1,1,2,1, 1,3,3,1,1,4,6,4,1,…,则此数列的第2020项为 A .363C B .463CC .364C D .464C 答案:A考点:二项式定理解析:第2020项是第64行的第4个数字,即为363C ,故选A .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.下列求导数运算不正确的是A .(sin )cos x x '=-B .2ln 2(log )x x'=C .2ln 1ln ()x x x x+'= D .2121(e )2e x x ++'= 答案:ABC考点:导数的运算解析:选项A ,(sin )cos x x '=,故A 错误;选项B ,21(log )ln 2x x '=,故B 错误; 选项C ,2ln 1ln ()x xx x -'=,故C 错误; 选项D 错误,故本题选ABC .10.已知在某市的一次学情检测中,学生的数学成绩X 服从正态分布N(105,100),其中90第8题分为及格线,120 分为优秀线,下列说法正确的是附:随机变量ξ服从正态分布N(μ,2σ),则P(μσξμσ-<<+)=0.6826,P(22μσξμσ-<<+)=0.9544,P(33μσξμσ-<<+)=0.9974.A .该市学生数学成绩的期望为105B .该市学生数学成绩的标准差为100C .该市学生数学成绩及格率超过0.99D .该市学生数学成绩不及格的人数和优秀的人数大致相等 答案:AD考点:正态分布解析:期望为105,选项A 正确;方差为100,标准差为10,选项B 错误;该市85分以上占97.72%,故C 错误;根据对称性可判断选项D 正确,故选AD . 11.已知复数8i2iz +=-,其中i 是虚数单位,则以下说法正确的是 A .复数z 的实部为3 B .复数z 的虚部为2iC .复数zD .复数z 的共轭复数32i z =-+ 答案:AC 考点:复数解析:8i32i 2iz +==+-,故实部为3,虚部为2,z ==32i z =-,故AC 正确.12.由0,1,2,3,4,5,6,7,8,9这10个数字组成无重复数字的五位数,其中偶数的个数是 A .41139488A A A A +⋅⋅ B .41439498()A A A A +- C .54143109498()A A A A A -+- D .54143109598()A A A A A --- 答案:ABD 考点:排列解析:如果个位是0,有49A 个,如果个位不是0,有113488A A A ⋅⋅个,故A 正确;由于13438898A A A A ⋅=-,故B 正确;由于5441099A A A -≠,故C 错误;由于541433411310959889488()41A A A A A A A A A A ---==+⋅⋅,故D 正确.故选ABD . 三、填空题:本题共4小题,每小题5分,共20分. 13.已知2(nx+的展开式中第5项与第7项的二项式系数相等,则展开式中常数项为 .答案:45考点:二项式定理解析:4610nnC C n =⇒=,52021021()r r rr rr nn T C x C x --+==,520082r r -=⇒=,82101045C x C ==.14.有一个活动小组有6名男生和4名女生,从中任选3名学生,至多选中2名男生的概率为 . 答案:56考点:概率解析:3064310516C C P C =-=. 15.已知函数()e ln xf x a x =+,若曲线()y f x =在1x =处的切线方程为y x b =+,则a +b = .答案:0考点:利用导数研究函数的切线解析:∵()e ln xf x a x =+,∴()e xaf x x'=+,(1)e 1f a '=+=, ∴e 1b =+,∴a +b =0.16若a =2b =3c ,则E(X)为 ;若b =12,V(X)的最大值为 . (本小题第一空2分,第二空3分) 答案:411-,12考点:随机变量的均值与方差解析:由a =2b =3c ,1a b c ++=,解得611a =,311b =,211c =, ∴6324()10111111111E X =-⨯+⨯+⨯=-, b =12时,12a c +=,()101E X abc a c =-⨯+⨯+⨯=-+,2222()(1)01E X a b c a c =-⨯+⨯+⨯=+, 222()()()()V X E X E X a c a c =-=+--+,把12a c =-代入得, 211()(2)22V X c =--,14c =时,V(X)有最大值,为12. 四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)已知22(815)(56)i z m m m m =-++-+,其中i 是虚数单位,m 为实数. (1)当z 为纯虚数时,求m 的值;(2)当复数z ·i 在复平面内对应的点位于第二象限时,求m 的取值范围.解:(1)因为z 为纯虚数,所以2281503523560m m m m m m m m ⎧-+===⎧⎪⇒⎨⎨≠≠-+≠⎪⎩⎩或且综上可得,当z 为纯虚数时m =5;(2)因为22i (815)i (56)z m m m m ⋅=-+--+在复平面内对应的点位于第二象限,2281505332(56)0m m m m m m m m ⎧-+>><⎧⎪⇒⎨⎨><--+<⎪⎩⎩或或,即m <2或者m >5, 所以m 的取值范围为(-∞,2)(5,+∞).18.(本题满分12分)江苏省从2021年开始,高考取消文理分科,实行“3+1+2”的模式,其中的“1”表示每位学生必须从物理、历史中选择一个科目且只能选择一个科目,某校为了解高一年级学生对“1”的选课情况,随机抽取了100名学生进行问卷调查,如下表是根据调查结果得到的2×2列联表.((2)请你依据该列联表判断是否有99.5%的把握认为选择科目与性别有关?说明你的理由.有22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.解:(1)随机抽取的100名学生中女生为40人,则男生有100﹣40=60人,所以m =60,b =10,c =20; (2)根据题目所给数据得到如下2×2的列联表:则K 2的观测值:22100(50201020)12.770306040K ⨯⨯-⨯=≈⨯⨯⨯, 因为12.7>7.879,所以有99.5%的把握认为选择科目与性别有关.19.(本题满分12分)已知函数21()(1)ln 2f x x m x m x =-++,m ∈R . (1)若m =﹣1,求函数()f x 在区间[1e ,e]上的最小值; (2)若m >0,求函数()f x 的单调增区间.解:(1)m =﹣1时,21()ln 2f x x x =-,(1)(1)()x x f x x +-'=,x ∈[1e,e], 令()0f x '=得1x =-(舍去)或者1x =,列表如下:所以,当x =1时,函数()f x 的最小值为1(1)2f =, (2)(1)()()x x m f x x--'=,x >0 ①当m =1时,对任意x >0,都有()0f x '≥恒成立(当且仅当x =1时,()0f x '=) 则函数()f x 在区间(0,+∞)上单调递增;②当m >1时,令()0f x '>,得x <1或x >m ;则函数()f x 在区间(0,1),(m ,+∞)上单调递增;③当0<m <1时,令()0f x '>,得x <m 或x >1;则函数()f x 在区间(0,m ),(1,+∞)上单调递增;综上可得,当m =1时,函数()f x 的单调增区间为(0,+∞);当m >1时,函数()f x 的单调增区间为(0,1),(m ,+∞);当0<m <1时,函数()f x 的单调增区间为(0,m ),(1,+∞).20.(本题满分12分)已知2012(1)n n n x a a x a x a x +=++++,n N *∈.(1)当7n =时,求1357a a a a +++的值;(2)求01235(21)n a a a n a +++++. 解:(1)当n =7时,7270127(1)x a a x a x a x +=++++, 令x =1,有7012345672a a a a a a a a =+++++++,①令x =﹣1,有012345670a a a a a a a a =-+-+-+-,②①﹣②得7135722()a a a a =+++,所以61357264a a a a +++==,(2)由题意,i i n a C =,可得i n i a a -=,i =0,1,2,3,…,n ,记01235(21)(21)i n S a a a i a n a =++++++++,则210(21)[2()1]53n n i S n a n i a a a a -=+++-+++++012(21)(21)(23)[2()1]i n n a n a n a n i a a =++-+-++-+++ 所以0122(22)()n S n a a a a =+++++, 令x =1得,0122n n a a a a ++++=, 所以01235(21)(21)(1)2n i n a a a i a n a S n ++++++++==+. 21.(本题满分12分)常州别称龙城,是一座有着3200多年历史的文化古城.常州既有春秋淹城、天宁寺等名胜古迹,又有中华恐龙园、嬉戏谷等游乐景点,每年都有大量游客来常州参观旅游.为合理配置旅游资源,管理部门对首次来中华恐龙园游览的游客进行了问卷调查,据统计,其中23的人计划只游览中华恐龙园,另外13的人计划既游览中华恐龙园又参观天宁寺.每位游客若只游览中华恐龙园,得1分;若既游览中华恐龙园又参观天宁寺,得2分.假设每位首次来中华恐龙园游览的游客均按照计划进行,且是否参观天宁寺相互独立,视频率为概率.(1)有2名首次来中华恐龙园游览的游客是拼车到常州的,求“这2名游客都是既游览中华恐龙园又参观天宁寺”的概率;(2)从首次来中华恐龙园游览的游客中随机抽取3人,记这3人的合计得分为X ,求X 的概率分布和数学期望.解:(1)由题意,每位游客只游览中华恐龙园的概率为23,既游览中华恐龙园又参观天宁寺的概率为13记两位游客中一位游客“既游览中华恐龙园又参观天宁寺”为事件A ,则P(A)=13, 另一位游客“既游览中华恐龙园又参观天宁寺”为事件B ,则P(B)=13, 所以“这2名游客都是既游览中华恐龙园又参观天宁寺”为事件AB ,因为游客是否参观天宁寺相互独立,所以P(AB)=P(A)P(B)=111=339⨯, 答:“这2名游客都是既游览中华恐龙园又参观天宁寺”的概率为19, (2)随机变量X 的可能取值为3,4,5,6,3303218(3)()()3327P X C ===,2213214(4)()()339P X C ===, 1123212(5)()()339P X C ===,0033211(6)()()3327P X C ===, ∴X 的概率分布为:所以E(X)=84213456279927⨯+⨯+⨯+⨯=4 答:X 的数学期望为4.22.(本题满分12分)已知函数()()e x f x x a b =++,a ,b ∈R .(1)若a =1,求关于x 的不等式()(0)f x f >的解集;(2)若1e a b +=,讨论函数()f x 的零点个数.解:(1)a =1时,()(1)e x f x x b =++,()(2)e x f x x '=+,当x >﹣2时,()0f x '>,所以()f x 在区间(﹣2,+∞)上单调递增,由()(0)f x f >得x >0;当x ≤﹣2时,(1)e 0x x +<,此时()()e 1(0)x f x x a b b b f =++<<+=,综上可得,不等式()(0)f x f >的解集为(0,+∞);(2)1e a b +=时,1()()e e x a f x x a +=++,()(1)e xf x x a '=++,令()0f x '=得x =﹣a ﹣1,列表如下:所以,当x =﹣a ﹣1时,函数()f x 的极小值为11(1)e e a a f a --+--=-+; ①当11(1)e e 0a a f a --+--=-+>即1a >-时,对任意x ∈R ,都有()(1)0f x f a ≥-->恒成立,从而函数()f x 无零点,②当11(1)e e 0a a f a --+--=-+=即1a =-时,对任意x ∈R ,都有()(1)0f x f a ≥--≥恒成立(当且仅当x =0时,()0f x =),从而函数()f x 的零点个数为1,③当11(1)e e 0a a f a --+--=-+<即1a <-时,在区间[﹣a ﹣1,﹣a ]上,函数()f x 图象是连续不断的一条曲线,其中(1)0f a --< 1()e 0a f a +-=>,函数()f x 在区间[﹣a ﹣1,+∞ )上单调递增,所以函数()f x 在区间(﹣a ﹣1,+∞)上的零点个数为1;在区间[4a ,﹣a ﹣1]上,函数()f x 图象是连续不断的一条曲线,其中(1)0f a --< 3(4)e (5e e)a a f a a =+,即3()t h t te =,1t <-,3()(31)0t h t e t '=+<,所以3()t h t te =在区间(-∞,﹣1]上单调递减,由a <﹣1得3()(1)e h a h ->-=-,即33e e a a ->-,所以33(4)e (5e e)e (5e e)0a a a f a a -=+>-+>,又因为函数()f x 在区间(-∞,﹣a ﹣1]上单调递减,所以函数()f x 在区间(-∞,﹣a ﹣1)上的零点个数为1;从而函数()f x 的零点个数为2.综上可得,当1a >-时,函数()f x 无零点,当1a =-时,函数()f x 的零点个数为1,当1a <-时,函数()f x 的零点个数为2.。

2019-2020学年江苏省常州市七年级(下)期末数学试卷(有答案解析)

2019-2020学年江苏省常州市七年级(下)期末数学试卷(有答案解析)

2019-2020学年江苏省常州市七年级(下)期末数学试卷题号一二三四总分得分一、选择题(本大题共8小题,共16.0分)1.下列运算正确的是()A. (ab)2=a2b2B. a2+a4=a6C. (a2)3=a5D. a2•a3=a62.如果a<b,那么下列不等式成立的是()A. a-b>0B. a-3>b-3C. a>bD. -2a>-2b3.如图,为了估计一池塘岸边两点A,B之间的距离,小丽同学在池塘一侧选取了一点P,测得PA=5m,PB=4m,那么点A与点B之间的距离不可能是()A. 6mB. 7mC. 8mD. 9m4.如图,平移△ABC得到△DEF,其中点A的对应点是点D,则下列结论中不成立的是()A. AD∥BEB. AD=BEC. ∠ABC=∠DEFD. AD∥EF5.不等式组的解集在数轴上表示为()A. B.C. D.6.《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()A. B. C. D.7.下列命题中假命题的是()A. 两直线平行,内错角相等B. 三角形的一个外角大于任何一个内角C. 如果a∥b,b∥c,那么a∥cD. 过直线外一点有且只有一条直线与这条直线平行8.三角形的3边长分别是xcm、(x+1)cm、(x+2)cm,它的周长不超过33cm.则x的取值范围是()A. x≤10B. x≤11C. 1<x≤10D. 2<x≤11二、填空题(本大题共8小题,共16.0分)9.25÷23=______.10.计算:9982=______.11.小明同学在百度搜索引擎中输入“中国梦,我的梦”,引擎搜索耗时0.00175秒,将这个数用科学记数法表示为______.12.数学中,判断一个命题是假命题,只需举出一个______.13.若(a+b)2=5,(a-b)2=3,则a2+b2=______.14.如图,将三角板的直角顶点放在直尺的一边上,若∠1=60°,则∠2的度数为______°.15.编一个二元一次方程组,使它有无数组解______.16.已知x-y-1=0,则3x÷9y=______.三、计算题(本大题共2小题,共16.0分)17.计算:(1)2-2×(43×80)(2)a(a+1)-(a+1)218.常州地铁一号线建设过程中有大量的沙石需要运输.“常发”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石(1)求“常发”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“常发”车队需要一次运输沙石不少于165吨,为了完成任务,准备增购两种卡车共6辆,那么载重为8吨的卡车最多购进多少辆?四、解答题(本大题共7小题,共52.0分)19.分解因式:(1)2ax2-2ay2(2)a3+2a2(b+c)+a(b+c)220.解方程组和不等式组:(1)(2)21.如图,AB∥CD,∠A=∠D,判断AF与ED的位置关系,并说明理由.22.如图摆放两个正方形,它们的周长之和为32、面积之和为34,求阴影部分的面积.23.观察下列各式:(x-1)÷(x-1)=1(x2-1)÷(x-1)=x+1;(x3-1)÷(x-1)=x2+x+1(x4-1)÷(x-1)=x3+x2+x+1(1)根据上面各式的规律可得(x n+1-1)÷(x-1)=______;(2)求22019+22018+22017+……+2+1的值.24.关于x、y的方程组的解是一组正整数,求整数m的值.25.(1)读读做做:平行线是平面几何中最基本、也是非常重要的图形.在解决某些平面几何问题时,若能依据问题的需要,添加恰当的平行线,往往能使证明顺畅、简洁.请根据上述思想解决教材中的问题:如图①,AB∥CD,则∠B+∠D______∠E(用“>”、“=”或“<”填空);(2)倒过来想:写出(1)中命题的逆命题,判断逆命题的真假并说明理由.(3)灵活应用如图②,已知AB∥CD,在∠ACD的平分线上取两个点M、N,使得∠AMN=∠ANM,求证:∠CAM=∠BAN.-------- 答案与解析 --------1.答案:A解析:解:A、(ab)2=a2b2,故原题计算正确;B、a2和a4不是同类项不能合并,故原题计算错误;C、(a2)3=a6,故原题计算错误;D、a2•a3=a5,故原题计算错误;故选:A.分别根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加进行计算即可.此题主要考查了积的乘方、合并同类项、幂的乘方、同底数幂的乘法,关键是熟练掌握各计算法则.2.答案:D解析:解:∵a<b,∴a-b<0,∴选项A不符合题意;∵a<b,∴a-3<b-3,∴选项B不符合题意;∵a<b,∴a<b,∴选项C不符合题意;∵a<b,∴-2a>-2b,∴选项D符合题意.故选:D.根据不等式的性质,逐项判断即可.此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.3.答案:D解析:解:∵PA、PB、AB能构成三角形,∴PA-PB<AB<PA+PB,即1m<AB<9m.故选:D.首先根据三角形的三边关系定理求出AB的取值范围,然后再判断各选项是否正确.考查了三角形的三边关系:已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.4.答案:D解析:解:∵平移△ABC得到△DEF,∴AD∥BE,AD=BE,BC∥EF,△ABC≌△DEF,∵△ABC≌△DEF,∴∠ABC=∠DEF.故选:D.利用平移的性质得到AD∥BE,AD=BE,BC∥EF,△ABC≌△DEF,则利用全等的性质得到∠ABC=∠DEF,然后对各选项进行判断.本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.5.答案:C解析:解:解不等式2x-1>x,得:x>1,则不等式组解集为1<x≤2,故选:C.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.答案:B解析:解:设该物品的价格是x钱,共同购买该物品的有y人,依题意,得:.故选:B.设该物品的价格是x钱,共同购买该物品的有y人,由“每人出8钱,则多3钱;每人出7钱,则差4钱”,即可得出关于x,y的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.7.答案:B解析:解:A、两直线平行,内错角相等,A是真命题;B、三角形的一个外角大于与它不相邻的任何一个内角,B是假命题;C、如果a∥b,b∥c,那么a∥c,C是真命题;D、过直线外一点有且只有一条直线与这条直线平行,D是真命题;故选:B.根据平行线的性质、三角形的外角性质、平行公理判断.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.答案:C解析:解:∵一个三角形的3边长分别是xcm,(x+1)cm,(x+2)cm,它的周长不超过33cm,∴,解得1<x≤10.故选:C.根据三角形的三边关系以及周长列出不等式组,求出x的取值范围即可.本题考查的是三角形三边关系、解一元一次不等式组,在解答此题时要注意三角形的三边关系.9.答案:4解析:解:25÷23=22=4.故填4.根据同底数幂相除,底数不变指数相减计算即可.本题考查了同底数幂的除法,运用法则的关键是看底数是否相同,而指数相减是被除式的指数减去除式的指数.10.答案:996004解析:解:原式=(1000-2)2=1000000-4000+4=996004,故答案为:996004原式变形后,利用完全平方公式计算即可求出值.此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.11.答案:1.75×10-3解析:解:0.00175秒,将这个数用科学记数法表示为1.75×10-3,故答案为:1.75×10-3.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.答案:反例解析:解:数学中,判断一个命题是假命题,只需举出一个反例,故答案为:反例.根据假命题的概念解答.本题考查的是命题和定理,命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.13.答案:4解析:解:∵(a+b)2=a2+2ab+b2=5①,(a-b)2=a2-2ab+b2=3②,①+②,得2(a2+b2)=8,∴a2+b2=4.故答案为:4.把已知条件的两算式根据完全平方公式展开,然后相加即可.本题主要考查完全平方公式的运用,学生经常漏掉乘积二倍项而导致出错.14.答案:30解析:解:如图,∵∠1=60°,∴∠3=∠1=60°,∴∠2=90°-60°=30°.故答案是:30.由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.此题考查了平行线的性质.注意两直线平行,同位角相等定理的应用是解此题的关键.15.答案:解析:解:根据题意得:,此方程组有无数组解;故答案为:.(答案不唯一)两个方程化简后是同一个方程可满足条件.本题考查了二元一次方程组的解,理解题意是解题的关键.16.答案:9解析:解:∵x-y-1=0,∴x-y=1,∴x-2y=2,∴3x÷9y=3x÷32y=3x-2y=32=9,故答案为:9把3x÷9y写成3x÷32y,再根据同底数幂的除法法则解答即可.本题主要考查了同底数幂的除法运算,熟练掌握运算法则是解答本题的关键.17.答案:解:(1)原式=×64×1=16;(2)原式=a2+a-a2-2a-1=-a-1.解析:(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并即可得到结果.此题考查了单项式乘多项式,以及实数的运算,熟练掌握运算法则是解本题的关键.18.答案:解:(1)设“常发”车队载重量为8吨、10吨的卡车分别有x辆、y辆,根据题意,得:,解得:,答:“常发”车队载重量为8吨、10吨的卡车分别有5辆、7辆;(2)设载重为8吨的卡车增购了z辆,由题意,得:8(5+z)+10(7+6-z)≥165,解得:z≤,∵z是整数,∴载重为8吨的卡车最多购进2辆.解析:(1)根据“‘常发’车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石”分别得出等式,组成方程组,求出即可;(2)利用“‘常发’车队需要一次运输沙石不少于165吨”得出不等式,解之求出z的范围,从而得出答案.此题主要考查了二元一次方程组的应用以及不等式的应用,根据已知得出正确的不等式关系是解题关键.19.答案:解:(1)2ax2-2ay2=2a(x2-y2)=2a(x+y)(x-y);(2)a3+2a2(b+c)+a(b+c)2=a[a2+2a(b+c)+(b+c)2]=a(a+b+c)2.解析:(1)直接提取公因式2a,再利用平方差公式分解因式得出答案;(2)直接提取公因式a,再利用完全平方公式分解因式得出答案.此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.20.答案:解:(1),②-①,得:x=2,将x=2代入①,得:2-y=1,解得y=1,则方程组的解为;(2)解不等式2x+4>3,得:x>-0.5,解不等式-(x+5)-1<3,得:x>-11,则不等式组的解集为x>-0.5.解析:(1)利用加减消元法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.答案:解:AF∥ED.理由:∵AB∥CD,∴∠A=∠AFC,∵∠A=∠D,∵∠D=∠AFC,∴AF∥ED.解析:先根据两直线平行内错角相等,可得∠A=∠AFC,然后由∠A=∠D,根据等量代换可得:∠D=∠AFC,然后根据同位角相等两直线平行,即可得到AF∥ED.此题考查了平行线的判定与性质,熟记内错角相等⇔两直线平行;同位角相等⇔两直线平行;同旁内角互补⇔两直线平行,是解题的关键.22.答案:解:设大小正方形的边长分别为a,b,由题意可得,解得:a+b=8,∴(a+b)2=64,∴a2+b2+2ab=64,∴ab=15,S阴影=S两正方形-S△ABD-S△BFG=a2+b2-a2-b(a+b)=(a2+b2-ab)=×(34-15)=.解析:由题意可求a+b=8,由完全平方公式可求ab的值,由面积的和差关系可求解.此题考查了完全平方公式的几何背景,熟练运用完全平方公式求ab的值是解本题的关键.23.答案:x n+x n-1+…+x+1解析:解:(1)根据上面各式的规律,可得:(x n+1-1)÷(x-1)=x n+x n-1+…+x+1.(2)∵(x n+1-1)÷(x-1)=x n+x n-1+…+x+1,∴22019+22018+22017+……+2+1=(22020-1)÷(2-1)=22020-1故答案为:x n+x n-1+…+x+1.(1)根据上面各式的规律,可得:(x n+1-1)÷(x-1)=x n+x n-1+…+x+1.(2)根据(1)总结出的规律,可得:22019+22018+22017+……+2+1=(22020-1)÷(2-1),据此求出算式的值是多少即可.此题主要考查了整式的除法的运算方法,有理数的混合运算的方法,以及数字的变化类,要注意总结出规律,并能应用规律.24.答案:解:解方程组得,∵x、y均为正整数,∴,解得<m<6,∵m为整数,∴m=4或5,当m=4时,;当m=5时,,∵x、y均为整数,∴m=5.解析:解方程组得出,由x、y均为整数得出关于m的不等式组,解之求得m的范围,再由m的整数且x、y为整数可得答案.此题考查的是二元一次方程组和不等式的性质,要注意的是x,y都为正数,则解出x,y关于m的式子,最终求出m的范围,即可知道整数m的值.25.答案:=解析:(1)解:过E作EF∥AB,如图①所示:则EF∥AB∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠B+∠D=∠BEF+∠DEF,即∠B+∠D=∠BED;故答案为:=;(2)解:逆命题为:若∠B+∠D=∠BED,则AB∥CD;该逆命题为真命题;理由如下:过E作EF∥AB,如图①所示:则∠B=∠BEF,∵∠B+∠D=∠BED,∠BEF+∠DEF=∠BED,∴∠D=∠BED-∠B,∠DEF=∠BED-∠BEF,∴∠D=∠DEF,∴EF∥CD,∵EF∥AB,∴AB∥CD;(3)证明:过点N作NG∥AB,交AM于点G,如图②所示:则NG∥AB∥CD,∴∠BAN=∠ANG,∠GNC=∠NCD,∵∠AMN是△ACM的一个外角,∴∠AMN=∠ACM+∠CAM,又∵∠AMN=∠ANM,∠ANM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠BAN+∠NCD,∵CN平分∠ACD,∴∠ACM=∠NCD,∴∠CAM=∠BAN.(1)过E作EF∥AB,则EF∥AB∥CD,由平行线的性质得出∠B=∠BEF,∠D=∠DEF,即可得出结论;(2)过E作EF∥AB,则∠B=∠BEF,证出∠D=∠DEF,得出EF∥CD,即可得出结论;(3)过点N作NG∥AB,交AM于点G,则NG∥AB∥CD,由平行线的性质得出∠BAN=∠ANG,∠GNC=∠NCD,由三角形的外角性质得出∠AMN=∠ACM+∠CAM,证出∠ACM+∠CAM=∠ANG+∠GNC,得出∠ACM+∠CAM=∠BAN+∠NCD,由角平分线得出∠ACM=∠NCD,即可得出结论.本题考查了命题与定理、平行线的性质与判定、逆命题、三角形的外角性质、角平分线定义等知识;熟练掌握平行线的判定与性质,作出辅助平行线是解决问题的关键.。

2019-2020学年江苏省常州市七年级(下)期末数学试卷(有答案解析)

2019-2020学年江苏省常州市七年级(下)期末数学试卷(有答案解析)

题号一二三四总分)得分一、选择题(本大题共8小题,共分)1.,2.下列运算正确的是()A. (ab)2=a2b2B. a2+a4=a6C. (a2)3=a5D. a2•a3=a63.如果a<b,那么下列不等式成立的是()A. a-b>0B. a-3>b-3C. a>bD. -2a>-2b4.如图,为了估计一池塘岸边两点A,B之间的距离,小丽同学在池塘一侧选取了一点P,测得PA=5m,PB=4m,那么点A与点B之间的距离不可能是()A. 6mB. 7mC. 8mD. 9m5.如图,平移△ABC得到△DEF,其中点A的对应点是点D,则下列结论中不成立的是()A. AD∥BEB. AD=BEC. ∠ABC=∠DEFD. AD∥EF6.不等式组的解集在数轴上表示为()A. B.C. D.7.《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何意思是:现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()A. B. C. D.8.下列命题中假命题的是()A. 两直线平行,内错角相等B. 三角形的一个外角大于任何一个内角C. 如果a∥b,b∥c,那么a∥cD. 过直线外一点有且只有一条直线与这条直线平行9.三角形的3边长分别是xcm、(x+1)cm、(x+2)cm,它的周长不超过33cm.则x的取值范围是()&A. x≤10B. x≤11C. 1<x≤10D. 2<x≤11二、填空题(本大题共8小题,共分)10.25÷23=______.11.计算:9982=______.12.小明同学在百度搜索引擎中输入“中国梦,我的梦”,引擎搜索耗时秒,将这个数用科学记数法表示为______.13.数学中,判断一个命题是假命题,只需举出一个______.14.若(a+b)2=5,(a-b)2=3,则a2+b2=______.15.如图,将三角板的直角顶点放在直尺的一边上,若∠1=60°,则∠2的度数为______°.16.17.18.19.编一个二元一次方程组,使它有无数组解______.20.已知x-y-1=0,则3x÷9y=______.三、计算题(本大题共2小题,共分)21.计算:(1)2-2×(43×80)(2)a(a+1)-(a+1)222.23.24.25.26.27.28.29.常州地铁一号线建设过程中有大量的沙石需要运输.“常发”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石30.(1)求“常发”车队载重量为8吨、10吨的卡车各有多少辆?31.(2)随着工程的进展,“常发”车队需要一次运输沙石不少于165吨,为了完成任务,准备增购两种卡车共6辆,那么载重为8吨的卡车最多购进多少辆?32.33.34.35.36.37.38.四、解答题(本大题共7小题,共分)39.分解因式:40.(1)2ax2-2ay241.(2)a3+2a2(b+c)+a(b+c)242.43.44.45.46.47.48.49.,50.解方程组和不等式组:51.(1)52.(2)53.54.55.56.57.58.59.60.如图,AB∥CD,∠A=∠D,判断AF与ED的位置关系,并说明理由.61.如图摆放两个正方形,它们的周长之和为32、面积之和为34,求阴影部分的面积.62.63.64.65.66.67.观察下列各式:68.(x-1)÷(x-1)=169.(x2-1)÷(x-1)=x+1;70.(x3-1)÷(x-1)=x2+x+171.(x4-1)÷(x-1)=x3+x2+x+172.(1)根据上面各式的规律可得(x n+1-1)÷(x-1)=______;73.(2)求22019+22018+22017+……+2+1的值.74.75.76.77.78.79.80.81.关于x、y的方程组的解是一组正整数,求整数m的值.82.83.84.85.86.87.88.89.、90.(1)读读做做:91.平行线是平面几何中最基本、也是非常重要的图形.在解决某些平面几何问题时,若能依据问题的需要,添加恰当的平行线,往往能使证明顺畅、简洁.92.请根据上述思想解决教材中的问题:93.如图①,AB∥CD,则∠B+∠D______∠E(用“>”、“=”或“<”填空);94.(2)倒过来想:95.写出(1)中命题的逆命题,判断逆命题的真假并说明理由.96.(3)灵活应用97.如图②,已知AB∥CD,在∠ACD的平分线上取两个点M、N,使得∠AMN=∠ANM,求证:∠CAM=∠BAN.98.-------- 答案与解析--------1.答案:A解析:解:A、(ab)2=a2b2,故原题计算正确;B、a2和a4不是同类项不能合并,故原题计算错误;C、(a2)3=a6,故原题计算错误;D、a2•a3=a5,故原题计算错误;故选:A.分别根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加进行计算即可.此题主要考查了积的乘方、合并同类项、幂的乘方、同底数幂的乘法,关键是熟练掌握各计算法则.2.答案:D解析:解:∵a<b,∴a-b<0,∴选项A不符合题意;∵a<b,∴a-3<b-3,∴选项B不符合题意;∵a<b,∴a<b,∴选项C不符合题意;∵a<b,∴-2a>-2b,∴选项D符合题意.故选:D.根据不等式的性质,逐项判断即可.此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.3.答案:D解析:解:∵PA、PB、AB能构成三角形,∴PA-PB<AB<PA+PB,即1m<AB<9m.故选:D.首先根据三角形的三边关系定理求出AB的取值范围,然后再判断各选项是否正确.考查了三角形的三边关系:已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.4.答案:D解析:解:∵平移△ABC得到△DEF,∴AD∥BE,AD=BE,BC∥EF,△ABC≌△DEF,∵△ABC≌△DEF,∴∠ABC=∠DEF.故选:D.利用平移的性质得到AD∥BE,AD=BE,BC∥EF,△ABC≌△DEF,则利用全等的性质得到∠ABC=∠DEF,然后对各选项进行判断.本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.5.答案:C—解析:解:解不等式2x-1>x,得:x>1,则不等式组解集为1<x≤2,故选:C.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.答案:B解析:解:设该物品的价格是x钱,共同购买该物品的有y人,依题意,得:.故选:B.设该物品的价格是x钱,共同购买该物品的有y人,由“每人出8钱,则多3钱;每人出7钱,则差4钱”,即可得出关于x,y的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.7.答案:B解析:解:A、两直线平行,内错角相等,A是真命题;B、三角形的一个外角大于与它不相邻的任何一个内角,B是假命题;C、如果a∥b,b∥c,那么a∥c,C是真命题;D、过直线外一点有且只有一条直线与这条直线平行,D是真命题;故选:B.根据平行线的性质、三角形的外角性质、平行公理判断.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.答案:C解析:解:∵一个三角形的3边长分别是xcm,(x+1)cm,(x+2)cm,它的周长不超过33cm,∴,解得1<x≤10.故选:C.根据三角形的三边关系以及周长列出不等式组,求出x的取值范围即可.本题考查的是三角形三边关系、解一元一次不等式组,在解答此题时要注意三角形的三边关系.9.答案:4解析:解:25÷23=22=4.故填4.根据同底数幂相除,底数不变指数相减计算即可.本题考查了同底数幂的除法,运用法则的关键是看底数是否相同,而指数相减是被除式的指数减去除式的指数.10.答案:996004解析:解:原式=(1000-2)2=+4=996004,故答案为:996004原式变形后,利用完全平方公式计算即可求出值.此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.11.答案:×10-3解析:解:秒,将这个数用科学记数法表示为×10-3,故答案为:×10-3.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.答案:反例解析:解:数学中,判断一个命题是假命题,只需举出一个反例,故答案为:反例.根据假命题的概念解答.本题考查的是命题和定理,命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.13.答案:4…解析:解:∵(a+b)2=a2+2ab+b2=5①,(a-b)2=a2-2ab+b2=3②,①+②,得2(a2+b2)=8,∴a2+b2=4.故答案为:4.把已知条件的两算式根据完全平方公式展开,然后相加即可.本题主要考查完全平方公式的运用,学生经常漏掉乘积二倍项而导致出错.14.答案:30解析:解:如图,∵∠1=60°,∴∠3=∠1=60°,∴∠2=90°-60°=30°.故答案是:30.由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.此题考查了平行线的性质.注意两直线平行,同位角相等定理的应用是解此题的关键.15.答案:解析:解:根据题意得:,此方程组有无数组解;故答案为:.(答案不唯一)两个方程化简后是同一个方程可满足条件.本题考查了二元一次方程组的解,理解题意是解题的关键.16.答案:9解析:解:∵x-y-1=0,∴x-y=1,∴x-2y=2,∴3x÷9y=3x÷32y=3x-2y=32=9,故答案为:9把3x÷9y写成3x÷32y,再根据同底数幂的除法法则解答即可.本题主要考查了同底数幂的除法运算,熟练掌握运算法则是解答本题的关键.17.答案:解:(1)原式=×64×1=16;(2)原式=a2+a-a2-2a-1=-a-1.解析:(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并即可得到结果.此题考查了单项式乘多项式,以及实数的运算,熟练掌握运算法则是解本题的关键.18.答案:解:(1)设“常发”车队载重量为8吨、10吨的卡车分别有x辆、y辆,根据题意,得:,解得:,答:“常发”车队载重量为8吨、10吨的卡车分别有5辆、7辆;(2)设载重为8吨的卡车增购了z辆,由题意,得:8(5+z)+10(7+6-z)≥165,解得:z≤,∵z是整数,∴载重为8吨的卡车最多购进2辆.解析:(1)根据“‘常发’车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石”分别得出等式,组成方程组,求出即可;(2)利用“‘常发’车队需要一次运输沙石不少于165吨”得出不等式,解之求出z的范围,从而得出答案.此题主要考查了二元一次方程组的应用以及不等式的应用,根据已知得出正确的不等式关系是解题关键.19.答案:解:(1)2ax2-2ay2=2a(x2-y2)=2a(x+y)(x-y);(2)a3+2a2(b+c)+a(b+c)2=a[a2+2a(b+c)+(b+c)2]=a(a+b+c)2.解析:(1)直接提取公因式2a,再利用平方差公式分解因式得出答案;(2)直接提取公因式a,再利用完全平方公式分解因式得出答案.此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.20.答案:解:(1),②-①,得:x=2,将x=2代入①,得:2-y=1,解得y=1,则方程组的解为;(2)解不等式2x+4>3,得:x>,解不等式-(x+5)-1<3,得:x>-11,则不等式组的解集为x>.解析:(1)利用加减消元法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.答案:解:AF∥ED.理由:∵AB∥CD,∴∠A=∠AFC,∵∠A=∠D,∵∠D=∠AFC,∴AF∥ED.解析:先根据两直线平行内错角相等,可得∠A=∠AFC,然后由∠A=∠D,根据等量代换可得:∠D=∠AFC,然后根据同位角相等两直线平行,即可得到AF∥ED.此题考查了平行线的判定与性质,熟记内错角相等⇔两直线平行;同位角相等⇔两直线平行;同旁内角互补⇔两直线平行,是解题的关键.22.答案:解:设大小正方形的边长分别为a,b,由题意可得,解得:a+b=8,∴(a+b)2=64,∴a2+b2+2ab=64,∴ab=15,S阴影=S两正方形-S△ABD-S△BFG=a2+b2-a2-b(a+b)=(a2+b2-ab)=×(34-15)=.解析:由题意可求a+b=8,由完全平方公式可求ab的值,由面积的和差关系可求解.此题考查了完全平方公式的几何背景,熟练运用完全平方公式求ab的值是解本题的关键.23.答案:x n+x n-1+…+x+1解析:解:(1)根据上面各式的规律,可得:(x n+1-1)÷(x-1)=x n+x n-1+…+x+1.(2)∵(x n+1-1)÷(x-1)=x n+x n-1+…+x+1,∴22019+22018+22017+……+2+1=(22020-1)÷(2-1)=22020-1故答案为:x n+x n-1+…+x+1.(1)根据上面各式的规律,可得:(x n+1-1)÷(x-1)=x n+x n-1+…+x+1.(2)根据(1)总结出的规律,可得:22019+22018+22017+……+2+1=(22020-1)÷(2-1),据此求出算式的值是多少即可.此题主要考查了整式的除法的运算方法,有理数的混合运算的方法,以及数字的变化类,要注意总结出规律,并能应用规律.24.答案:解:解方程组得,∵x、y均为正整数,∴,解得<m<6,∵m为整数,∴m=4或5,当m=4时,;当m=5时,,∵x、y均为整数,∴m=5.解析:解方程组得出,由x、y均为整数得出关于m的不等式组,解之求得m的范围,再由m的整数且x、y为整数可得答案.此题考查的是二元一次方程组和不等式的性质,要注意的是x,y都为正数,则解出x,y关于m的式子,最终求出m的范围,即可知道整数m的值.25.答案:=解析:(1)解:过E作EF∥AB,如图①所示:则EF∥AB∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠B+∠D=∠BEF+∠DEF,即∠B+∠D=∠BED;故答案为:=;(2)解:逆命题为:若∠B+∠D=∠BED,则AB∥CD;该逆命题为真命题;理由如下:过E作EF∥AB,如图①所示:则∠B=∠BEF,∵∠B+∠D=∠BED,∠BEF+∠DEF=∠BED,∴∠D=∠BED-∠B,∠DEF=∠BED-∠BEF,∴∠D=∠DEF,∴EF∥CD,∵EF∥AB,∴AB∥CD;(3)证明:过点N作NG∥AB,交AM于点G,如图②所示:则NG∥AB∥CD,∴∠BAN=∠ANG,∠GNC=∠NCD,∵∠AMN是△ACM的一个外角,∴∠AMN=∠ACM+∠CAM,又∵∠AMN=∠ANM,∠ANM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠BAN+∠NCD,∵CN平分∠ACD,∴∠ACM=∠NCD,∴∠CAM=∠BAN.(1)过E作EF∥AB,则EF∥AB∥CD,由平行线的性质得出∠B=∠BEF,∠D=∠DEF,即可得出结论;(2)过E作EF∥AB,则∠B=∠BEF,证出∠D=∠DEF,得出EF∥CD,即可得出结论;(3)过点N作NG∥AB,交AM于点G,则NG∥AB∥CD,由平行线的性质得出∠BAN=∠ANG,∠GNC=∠NCD,由三角形的外角性质得出∠AMN=∠ACM+∠CAM,证出∠ACM+∠CAM=∠ANG+∠GNC,得出∠ACM+∠CAM=∠BAN+∠NCD,由角平分线得出∠ACM=∠NCD,即可得出结论.本题考查了命题与定理、平行线的性质与判定、逆命题、三角形的外角性质、角平分线定义等知识;熟练掌握平行线的判定与性质,作出辅助平行线是解决问题的关键.。

2019-2020学年江苏省常州市八年级下学期期末数学试卷 (解析版)

2019-2020学年江苏省常州市八年级下学期期末数学试卷 (解析版)

2019-2020学年江苏省常州市八年级第二学期期末数学试卷一、选择题(共8小题).1.观察下列地铁标志,其中是中心对称图案的是()A.B.C.D.2.以下调查中,最适合采用普查方式的是()A.调查运河的水质B.调查全国中学生的身高C.调查某市居民的疫情防控知识D.调查某班级学生的视力3.下列运算正确的是()A.+=B.3﹣=2C.×(﹣)=﹣4D.÷=34.下列属于必然事件的是()A.水中捞月B.水滴石穿C.守株待兔D.刻舟求剑5.分式可化简为()A.x﹣y B.C.x+y D.6.1888年,海因里希•鲁道夫•赫兹证实了电磁波的存在,这成了后来大部分无线科技的基础.电磁波波长λ(单位:米)、频率f(单位:赫兹)满足函数关系λf=3×108,下列说法正确的是()A.电磁波波长是频率的正比例函数B.电磁波波长20000米时,对应的频率1500赫兹C.电磁波波长小于30000米时,频率小于10000赫兹D.电磁波波长大于50000米时,频率小于6000赫兹7.如图,矩形ABCD的对角线BD=6,∠AOD=120°,则矩形ABCD的面积为()A.9B.9C.12D.128.如图,菱形ABCD的对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,若AH =DH,则∠DHO的度数是()A.25°B.22.5°C.30°D.15°二、填空题(共8小题).9.若式子有意义,则实数x的取值范围是.10.当x=时,分式的值是0.11.已知与最简二次根式是同类二次根式,则a的值是.12.在不透明袋子里装有颜色不同的8个球,这些球除颜色外完全相同.每次从袋子里摸出1个球记录下颜色后再放回,经过多次重复试验,发现摸到白球的频率稳定在0.25,估计袋中白球有个.13.若▱ABCD的周长为20,且AC=5,则△ABC的周长为.14.已知点A在反比例函数y=的图象上,点A关于x轴的对称点A′在反比例函数y=的图象上,则k=.15.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是.16.等边△AOB的边长为4,如图所示地放置在平面直角坐标系中,点B绕点A旋转30°,恰好落在反比例函数y=(k≠0)的图象上,则k=.三.简答题.第20-222题每题题每题8分,文字说明、演算步骤或推理过程)17.计算:(1)﹣+;(2)×÷(﹣2).18.(1)计算:﹣;(2)先化简,再求值:(x+)÷,其中x=.19.解方程:(1)=;(2)+2=.20.小张同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形统计图和条形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)小张同学共调查了名居民的年龄,扇形统计图中a=.(2)补全条形统计图,并注明人数;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计该辖区有多少居民?21.你吃过拉面吗?在做拉面的过程中渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的横截面积x(mm2)(x>0)的反比例函数,其图象如图所示.(1)请写出点P的实际意义;(2)求出y与x的函数关系式;(3)当面条的横截面积是1.6mm2时,求面条的总长度.22.△ABC三边长分别为,AB=2,BC=,AC=.(1)请在方格内画出△ABC,使它的顶点都在格点上;(2)求△ABC的面积;(3)求最短边上的高.23.如图,正方形ABCD的对角线AC、BD相交于点O,将BD向两个方向延长,分别至点E和点F,且使BE=DF.(1)判断四边形AECF的形状,并证明你的猜想;(2)若AB=3,BE=3,求四边形AECF的周长.24.张老师到一家文具店给该校学生购买笔记本,文具店规定一次购买500本及以上,可享受8折优惠.若该校学生每人购买一本,不能享受8折优惠,需要付款3876元.张老师想了想发现多买114本后,不仅可以享受8折优惠,而且同样只要付3876元.该校学生有多少人?25.如图,四边形AOBC是矩形,反比例函数y=(k>0)在第一象限内的图象与矩形AOBC的边AC、BC分别交于点M、N(点M、点N不与点C重合).(1)=;(2)若BN═BC,且四边形MONC的面积为9,求反比例函数的表达式;(3)判断与的关系,并说明理由.参考答案一、选择题(本大题共8小题,每小题2分,共16分)1.观察下列地铁标志,其中是中心对称图案的是()A.B.C.D.【分析】根据中心对称图形的定义对各选项分析判断即可得解.解:A、是中心对称图形,故本选项符合题意;B、不是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意.故选:A.2.以下调查中,最适合采用普查方式的是()A.调查运河的水质B.调查全国中学生的身高C.调查某市居民的疫情防控知识D.调查某班级学生的视力【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:A、调查运河的水质,应用抽样调查,故本选项不合题意;B、调查全国中学生的身高,调查范围广,采用普查方式,故本选项不合题意;C、调查某市居民的疫情防控知识,调查范围广,采用普查方式,故本选项不合题意;D、调查某班级学生的视力,采用普查方式,故本选项符合题意.故选:D.3.下列运算正确的是()A.+=B.3﹣=2C.×(﹣)=﹣4D.÷=3【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.解:不能合并,故选项A错误;不能合并,故选项B错误;×(﹣)=﹣4,故选项C正确;=,故选项D错误;故选:C.4.下列属于必然事件的是()A.水中捞月B.水滴石穿C.守株待兔D.刻舟求剑【分析】直接利用随机事件以及必然事件、不可能事件的定义分别分析得出答案.解:A、水中捞月是不可能事件,不合题意;B、水滴石穿是必然事件,符合题意;C、守株待兔是随机事件,不合题意;D、刻舟求剑是不可能事件,不合题意;故选:B.5.分式可化简为()A.x﹣y B.C.x+y D.【分析】原式分子分解因式后,约分即可得到结果.解:原式==x+y.故选:C.6.1888年,海因里希•鲁道夫•赫兹证实了电磁波的存在,这成了后来大部分无线科技的基础.电磁波波长λ(单位:米)、频率f(单位:赫兹)满足函数关系λf=3×108,下列说法正确的是()A.电磁波波长是频率的正比例函数B.电磁波波长20000米时,对应的频率1500赫兹C.电磁波波长小于30000米时,频率小于10000赫兹D.电磁波波长大于50000米时,频率小于6000赫兹【分析】根据函数关系λf=3×108确定函数模型,确定其增减性,然后根据自变量的取值范围确定函数的取值范围即可确定正确的选项.解:A、∵函数关系λf=3×108,∴电磁波波长是频率的反比例函数,故错误,不符合题意;B、当λ=20000米时,f==15000赫兹,故错误,不符合题意;C、∵f=,∴f随着λ的增大而减小,∴电磁波波长小于30000米时,频率大于10000赫兹,故错误,不符合题意;D、电磁波波长大于50000米时,频率小于6000赫兹,故正确,符合题意,故选:D.7.如图,矩形ABCD的对角线BD=6,∠AOD=120°,则矩形ABCD的面积为()A.9B.9C.12D.12【分析】根据矩形的性质得出∠ABC=90°,AO=BO,求出△AOB是等边三角形,求出AB=3,AC=6,根据勾股定理求出BC,再求出面积即可.解:∵∠AOD=120°,∴∠AOB=1880°﹣∠AOD=60°,∵四边形ABCD是矩形,∴AC=BD=6,AO=OC,BO=DO==3,∴AO=OB=3,∴△AOB是等边三角形,∴AB=AO=3,在Rt△ABC中,由勾股定理得:BC===3,∴矩形ABCD的面积是AB×BC=3×=9,故选:B.8.如图,菱形ABCD的对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,若AH =DH,则∠DHO的度数是()A.25°B.22.5°C.30°D.15°【分析】求出∠HDO,再证明∠DHO=∠HDO即可解决问题;解:∵AH=DH,DH⊥AB,∴∠DAH=∠ADH=45°,∵四边形ABCD是菱形,∴∠DAO=∠DAB=22.5°,AC⊥BD,∴∠AOD=90°,∠ADO=67.5°,∴∠HDO=∠ADO﹣∠ADH=22.5°,∵∠DHB=90°,DO=OB,∴OH=OD,∴∠DHO=∠HDO=22.5°故选:B.二、填空题(本大题共8小题,每小题2分,共16分)9.若式子有意义,则实数x的取值范围是x≥3.【分析】根据二次根式的性质(被开方数大于等于0)解答.解:根据题意,得x﹣3≥0,解得,x≥3;故答案是:x≥3.10.当x=﹣1时,分式的值是0.【分析】根据分式值为零的条件可得x+1=0,且x2+1≠0,再解即可.解:由题意得:x+1=0,且x2+1≠0,解得:x=﹣1,故答案为:﹣1.11.已知与最简二次根式是同类二次根式,则a的值是2.【分析】先化简=2,根据同类二次根式的定义得出2a﹣1=3,求出方程的解即可.解:=2,∵与最简二次根式是同类二次根式,∴2a﹣1=3,解得:a=2,故答案为:2.12.在不透明袋子里装有颜色不同的8个球,这些球除颜色外完全相同.每次从袋子里摸出1个球记录下颜色后再放回,经过多次重复试验,发现摸到白球的频率稳定在0.25,估计袋中白球有2个.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解:设袋中白球有x个,根据题意得:=0.25,解得:x=2,经检验:x=2是分式方程的解,故袋中白球有2个.故答案为:2.13.若▱ABCD的周长为20,且AC=5,则△ABC的周长为15.【分析】因为ABCD是平行四边形,由题意得AB+BC=10,而AC知道,那么△ABC 的周长就可求出.解:∵平行四边形中对边相等,∴AB+BC=20÷2=10,∴△ABC的周长=AB+BC+AC=10+5=15.故答案为:15.14.已知点A在反比例函数y=的图象上,点A关于x轴的对称点A′在反比例函数y=的图象上,则k=﹣6.【分析】根据题意,可以先设出点A的坐标,然后即可得到点A′的坐标,从而可以得到k的值,本题得以解决.解:设点A的坐标为(a,),则点A关于x轴的对称点A′的坐标为(a,﹣),∵点A′在反比例函数y=的图象上,∴﹣=,解得,k=6,故答案为:﹣6.15.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是菱形.【分析】由条件可知AB∥CD,AD∥BC,再再证明AB=BC即可解决问题.解:过点D作DE⊥AB于E,DF⊥BC于F.∵两张长方形纸条的宽度相等,∴DE=DF.又∵平行四边形ABCD的面积=AB•DE=BC•DF,∴AB=BC,∴平行四边形ABCD为菱形.故答案为:菱形.16.等边△AOB的边长为4,如图所示地放置在平面直角坐标系中,点B绕点A旋转30°,恰好落在反比例函数y=(k≠0)的图象上,则k=4﹣8或8.【分析】分两种情形:当点B绕点A顺时针旋转30°得到AB′,AB′交OB于H.当点B绕点A逆时针旋转30°得到AB″,过点A作AM⊥y轴于M,过点B″作B″N ⊥MA交MA的延长线于N.分别求出B′,B″的坐标即可.解:当点B绕点A顺时针旋转30°得到AB′,AB′交OB于H.∵△AOB是等边三角形,∴∠OAB=60°,∵∠BAB′=30°,∴∠OAB′=∠BAB′,∴AH⊥OB,OH=BH=2,∴AH===2,∵AB=AB′=4,∴HB′=4﹣2,∴B′(2,2﹣4),∵点B′在y=上,∴k=4﹣8.当点B绕点A逆时针旋转30°得到AB″,过点A作AM⊥y轴于M,过点B″作B″N ⊥MA交MA的延长线于N.∵∠OAB=60°,∠BAB″=30°,∴∠OAB″=90°,∵∠AMO=∠N=90°,∴λAOM+∠OAM=90°,∠OAM+∠NAB″=90°,∴∠AOM=∠NAB″,∵AO=AB″,∴△AMO≌△B″NA(AAS),∴AM=NB,∴MN=AM+AN=2+2,∴B″(2+2,2﹣2),∵B″在y=上,∴k=(2+2)(2﹣2)=8,综上所述,满足条件的k的值为4﹣8或8.故答案为4﹣8或8.三.简答题.第20-222题每题题每题8分,文字说明、演算步骤或推理过程)17.计算:(1)﹣+;(2)×÷(﹣2).【分析】(1)直接化简二次根式进而计算得出答案;(2)直接利用二次根式的混合运算法则计算得出答案.解:(1)原式=2﹣+=3;(2)原式=×2×(﹣)=2×(﹣)=﹣1.18.(1)计算:﹣;(2)先化简,再求值:(x+)÷,其中x=.【分析】(1)直接将分式通分运算进而利用分式的性质化简即可;(2)直接将括号里面通分运算进而化简分式得出答案.解:(1)原式=﹣=﹣==;(2)(x+)÷,=•=•=x2﹣x,当x=时,原式=()2﹣=2﹣.19.解方程:(1)=;(2)+2=.【分析】先将方程两边都乘以最简公分母,化分式方程为整式方程,解整式方程求出未知数的值,再检验,从而得出答案.解:(1)两边都乘以(x+1)(x﹣1),得:3(x﹣1)=6,解得x=3,检验:x=3时,(x+1)(x﹣1)=8≠0,∴分式方程的解为x=3;(2)两边都乘以x﹣4,得:﹣3+2(x﹣4)=1﹣x,解得x=4,检验:当x=4时,x﹣4=0,∴x=4是分式方程的增根,∴原分式方程无解.20.小张同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形统计图和条形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)小张同学共调查了500名居民的年龄,扇形统计图中a=20%.(2)补全条形统计图,并注明人数;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计该辖区有多少居民?【分析】(1)用15~40岁的人数除以该组所占百分比即可得到总人数;用0~14岁人数除以总人数即可得到该组所占百分比;(2)小长方形的高等于该组的人数;(3)用总人数乘以该组所占百分比即可.解:(1)由条形统计图和扇形统计图可知:15~40岁的有230人,占总人数的46%,∴230÷46%=500人,∵0~14岁有100人,∴a=100÷500=20%;故答案为:20%;(2)41~59的人数为500﹣(100+230+60)=110(人),补全图形如下:(3)3500÷(1﹣46%﹣22%﹣12%)=17500,答:估计该辖区有17500居民.21.你吃过拉面吗?在做拉面的过程中渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的横截面积x(mm2)(x>0)的反比例函数,其图象如图所示.(1)请写出点P的实际意义;(2)求出y与x的函数关系式;(3)当面条的横截面积是1.6mm2时,求面条的总长度.【分析】(1)根据函数图象可得点P的实际意义;(2)根据反比例函数图象经过点(4,32),利用待定系数法即可求出y与x的函数关系式;(3)把x=1.6代入函数解析式,计算即可求出总长度y的值.解:(1)由图象知,点P的实际意义是:当面条的横截面积是4mm2时,面条的总长度是32m;(2)设y与x的函数关系式为y=,∵反比例函数图象经过点(4,32),∴=32,解得k=128,∴y与x的函数关系式是y=(x>0);(3)当x=1.6时,y==80.答:面条的总长度是80m.22.△ABC三边长分别为,AB=2,BC=,AC=.(1)请在方格内画出△ABC,使它的顶点都在格点上;(2)求△ABC的面积;(3)求最短边上的高.【分析】(1)根据△ABC三边长AB=2,BC=,AC=,即可在方格内画出△ABC,使它的顶点都在格点上;(2)根据(1)中所画图形,即可求△ABC的面积;(3)根据AB=2,BC=,AC=的长,可得BC最短,即可求最短边上的高.解:(1)如图所示:△ABC即为所求;(2)如图,S△ABC=5×4﹣×4﹣1×3﹣3×5=7,∴△ABC的面积是7;(3)∵<2<,∴BC是最短边,作AH⊥BC,交CB延长线于点H,∵S△ABC=BC•AH,∴AH===.答:最短边上的高为.23.如图,正方形ABCD的对角线AC、BD相交于点O,将BD向两个方向延长,分别至点E和点F,且使BE=DF.(1)判断四边形AECF的形状,并证明你的猜想;(2)若AB=3,BE=3,求四边形AECF的周长.【分析】(1)根据正方形的性质和菱形的判定解答即可;(2)根据正方形和菱形的性质以及勾股定理解答即可.【解答】(1)证明:∵正方形ABCD的对角线AC,BD相交于点O,∴OA=OC,OB=OD,AC⊥BD.∵BE=DF,∴OB+BE=OD+DF,即OE=OF.∴四边形AECF是平行四边形.∵AC⊥EF,∴四边形AECF是菱形.(2)∵四边形ABCD是正方形,∴AO=AC,BO=BD,AC=BD,AC⊥BD,∴AO=BO,∠AOB=90°.在直角△AOB中,由勾股定理知:AB==3,∴AO=BO=3.∴EO=OB+BE=6.在△AOE中,∠AOE=90°,AE===3.∵四边形AECF是菱形,∴AE=EC=CF=AF.∴四边形AECF的周长=4AE=12.∴四边形AECF的周长是12.24.张老师到一家文具店给该校学生购买笔记本,文具店规定一次购买500本及以上,可享受8折优惠.若该校学生每人购买一本,不能享受8折优惠,需要付款3876元.张老师想了想发现多买114本后,不仅可以享受8折优惠,而且同样只要付3876元.该校学生有多少人?【分析】设该校学生有x人,根据题意可得等量关系:每本的单价×0.8=,根据等量关系列出方程,再解即可.解:设该校学生有x人,由题意得:×0.8=,解得:x=456,经检验:x=456是原方程的解,∵x=456<500,x+114=570>500,∴x=456符合题意,答:该校学生有456人.25.如图,四边形AOBC是矩形,反比例函数y=(k>0)在第一象限内的图象与矩形AOBC的边AC、BC分别交于点M、N(点M、点N不与点C重合).(1)=1;(2)若BN═BC,且四边形MONC的面积为9,求反比例函数的表达式;(3)判断与的关系,并说明理由.【分析】(1)由题意得,S△AOM=S△BON=|k|,因此=1,(2)由BN═BC,可得S△BON=S△ONC,再根据四边形MONC的面积为9,进而得到|k|=×,求出k的值,检验即可.(3)设出矩形的长、宽,表示点M、N的坐标,进而求出与的值,得出结论.解:(1)∵点M、N在反比例函数的图象上,且四边形OABC是矩形,∴S△AOM=S△BON=|k|,∴=1,故答案为:1;(2)连接AC,∵四边形OABC是矩形,∴S△AOC=S△BOC,又∵S△AOM=S△BON=|k|,∴S△ONC=S△OMC=S四边形MONC=,∵BN═BC,∴S△BON=S△ONC,即:|k|=×,解得,k=3或k=﹣3(舍去),∴反比例函数的关系式为y=;(3)=;设AC=a,BC=b,则M(,b),N(a,),∴=,=,∴=;。

2019-2020学年江苏省常州市教育学会高二下学期期末数学试卷 (解析版)

2019-2020学年江苏省常州市教育学会高二下学期期末数学试卷 (解析版)

2019-2020学年江苏常州市教育学会高二第二学期期末数学试卷一、选择题(共8小题).1.从5名男生和4名女生中,选出男女各1名学生主持某次活动,不同的选法种数为()A.9B.10C.20D.402.若=6,则n的值为()A.4B.5C.6D.73.同时抛掷一颗红骰子和一颗蓝骰子,观察向上的点数,记“红骰子向上的点数为奇数”为事件A,“两颗骰子的点数之积为奇数”为事件B,则P(B|A)=()A.B.C.D.4.某年级有6个班级,3位数学教师,每位教师任教2个班级,则不同分法共有()种.A.15B.45C.90D.5405.函数f(x)=的大致图象是()A.B.C.D.6.对某同学7次考试的数学成绩x和物理成绩y进行分析,下面是该生7次考试的成绩.数学888311792108100112物理949110896104101106发现他的物理成绩y与数学成绩x是线性相关的,利用最小二乘法得到线性回归方程为,若该生的数学成绩达到130分,估计他的物理成绩大约是()A.114.5B.115C.115.5D.1167.已知函数f(x)=ax3+3x+1的极大值与极小值的差为4,则实数a的值为()A.﹣1B.﹣C.D.18.我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉三角形”.若将这些数字依次排列构成数列1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…,则此数列的第2020项为()A.C B.C C.C D.C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.下列求导数运算不正确的是()A.(sin x)′=﹣cos x B.(log2x)′=C.()′=D.(e2x+1)′=2e2x+110.已知在某市的一次学情检测中,学生的数学成绩X服从正态分布N(105,100),其中90分为及格线,120分为优秀线,下列说法正确的是()附:随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=0.6826,P(μ﹣2σ<ξ<μ+2σ)=0.9544,P(μ﹣3σ<ξ<μ+3σ)=0.9974.A.该市学生数学成绩的期望为105B.该市学生数学成绩的标准差为100C.该市学生数学成绩及格率超过0.99D.该市学生数学成绩不及格的人数和优秀的人数大致相等11.已知复数,其中i是虚数单位,则以下说法正确的是()A.复数z的实部为3B.复数z的虚部为2iC.复数z的模为D.复数z的共轭复数=﹣3+2i12.由0,1,2,3,4,5,6,7,8,9这10个数字组成无重复数字的五位数,其中偶数的个数是()A.A+A•A•AB.A+A(A﹣A)C.A﹣A+A(A﹣A)D.A﹣A﹣A(A﹣A)三、填空题:本题共4小题,每小题5分,共20分.13.已知的展开式中第5项与第7项的二项式系数相等,则展开式中常数项为.14.有一个活动小组有6名男生和4名女生,从中任选3名学生,至多选中2名男生的概率为.15.已知函数f(x)=e x+alnx,若曲线y=f(x)在x=1处的切线方程为y=x+b,则a+b =.16.已知随机变量X的分布列如表所示.X﹣101P a b c 若a=2b=3c,则E(X)为;若,D(X)的最大值为.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知z=(m2﹣8m+15)+(m2﹣5m+6)i,其中i是虚数单位,m为实数.(1)当z为纯虚数时,求m的值;(2)当复数z•i在复平面内对应的点位于第二象限时,求m的取值范围.18.江苏省从2021年开始,高考取消文理分科,实行“3+1+2“的模式,其中的“1“表示每位学生必须从物理、历史中选择一个科目且只能选择一个科目.某校为了解高一年级学生对“1”的选课情况,随机抽取了100名学生进行问卷调查,如表是根据调查结果得到的2×2列联表.性别选择物理选择历史总计男生50b m女生c20 40总计100(1)求m,b,c的值;(2)请你依据该列联表判断是否有99.5%的把握认为选择科目与性别有关?说明你的理由.附:对于2×2列联表类1类2合计类A a b a+b类B c d c+d合计a+c b+d a+b+c+d有,其中n=a+b+c+d.P(K2>x0)0.1000.0500.0250.0100.0050.001 x0 2.706 3.841 5.024 6.6357.87910.828 19.已知函数f(x)=﹣(m+1)x+mlnx,m∈R.(1)若m=﹣1,求函数f(x)在区间[,e]上的最小值;(2)若m>0,求函数f(x)的单调增区间.20.已知(1+x)n=a0+a1x+a2x2+…+a n x n,n∈N*.(1)当n=7时,求a1+a3+a5+a7的值;(2)求a0+3a1+5a2+…+(2n+1)a n.21.常州别称龙城,是一座有着3200多年历史的文化古城,常州既有春秋淹城、天宁寺等名胜古迹,又有中华恐龙园、嬉戏谷等游乐景点,每年都有大量游客来常州参观旅游.为合理配置旅游资源,管理部门对首次来中华恐龙园游览的游客进行了问卷调查,据统计,其中的人计划只游览中华恐龙园,另外的人计划既游览中华恐龙园又参观天宁寺,每位游客若只游览中华恐龙园,得1分;若既游览中华恐龙园又参观天宁寺,得2分.假设每位首次来中华恐龙园游览的游客均按照计划进行,且是否参观天宁寺相互独立,视频率为概率.(1)有2名首次来中华恐龙园游览的游客是拼车到常州的,求“这2名游客都是既游览中华恐龙园又参观天宁寺”的概率;(2)从首次来中华恐龙园游览的游客中随机抽取3人,记这3人的合计得分为X,求X 的概率分布和数学期望.22.已知函数f(x)=(x+a)e x+b,a,b∈R.(1)若a=1,求关于x的不等式f(x)>f(0)的解集;(2)若b=e a+1,讨论函数f(x)的零点个数.参考答案一、选择题(共8小题).1.从5名男生和4名女生中,选出男女各1名学生主持某次活动,不同的选法种数为()A.9B.10C.20D.40【分析】根据题意,分别计算“从5名男生中任选1人”和“从4名女生中任选1人”的选法,由分步计数原理计算可得答案.解:根据题意,共有5名男生和4名女生,从5名男生中任选1人,有C51=5种选法;从4名女生中任选1人,有C41=4种选法,则有5×4=20种选法;故选:C.2.若=6,则n的值为()A.4B.5C.6D.7【分析】直接利用排列与组合数公式,进行化简计算即可.解:,∴,化简得n﹣2=3,解得n=5.故选:B.3.同时抛掷一颗红骰子和一颗蓝骰子,观察向上的点数,记“红骰子向上的点数为奇数”为事件A,“两颗骰子的点数之积为奇数”为事件B,则P(B|A)=()A.B.C.D.【分析】计算P(A),P(AB),再根据条件概率公式计算P(B|A).解:P(A)=,若事件A,B同时发生,则蓝色骰子向上点数为偶数,故P(AB)==,∴P(B|A)==,故选:A.4.某年级有6个班级,3位数学教师,每位教师任教2个班级,则不同分法共有()种.A.15B.45C.90D.540【分析】根据题意,依次分析3名教师的任教班级的数目,由分步计数原理计算可得答案.解:根据题意,对于第一名教师:可以在6个班级任选2个,有C62=15选法;对于第二名教师:可以在剩下的4个班级任选2个,有C42=6选法;对于第二名教师:教剩下的2个班级,有C22=1选法;则有15×6=90种不同的选法;故选:C.5.函数f(x)=的大致图象是()A.B.C.D.【分析】利用导函数研究其单调性,结合特殊点即可选出答案.解:函数f(x)==;当x=﹣2和x=0时,函数y=0,可知图象与x轴有两个交点,排除B;f′(x)=,令f′(x)=0,可得x=;∴(﹣∞,)函数f(x)递减,(,)函数f(x)递增,(,+∞)递减,故选:A.6.对某同学7次考试的数学成绩x和物理成绩y进行分析,下面是该生7次考试的成绩.数学888311792108100112物理949110896104101106发现他的物理成绩y与数学成绩x是线性相关的,利用最小二乘法得到线性回归方程为,若该生的数学成绩达到130分,估计他的物理成绩大约是()A.114.5B.115C.115.5D.116【分析】利用已知条件求出样本中心坐标,代入回归直线方程,求出a,然后求解即可.解:由题意可知==100,==100,因为回归直线经过样本中心,所以100=0.5×100+a,解得a=50,线性回归方程为,该生的数学成绩达到130分,估计他的物理成绩大约是:0.5×130+50=115.故选:B.7.已知函数f(x)=ax3+3x+1的极大值与极小值的差为4,则实数a的值为()A.﹣1B.﹣C.D.1【分析】求出函数的导数,根据函数的单调性求出函数的极值,得到关于a的方程,解出即可.解:f′(x)=3ax2+3=3(ax2+1),结合题意得a<0,令f′(x)>0,解得:﹣<x<,令f′(x)<0,解得:x>或x<﹣,故f(x)在(﹣∞,﹣)递减,在(﹣,)递增,在(,+∞)递减,∴f(x)极大值=f()=1+2,f(x)极小值=f(﹣)=1﹣2,由题意f(x)极大值﹣f(x)极小值=f()﹣f(﹣)=1+2﹣1+2=4=4,解得:a=﹣1,故选:A.8.我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉三角形”.若将这些数字依次排列构成数列1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…,则此数列的第2020项为()A.C B.C C.C D.C【分析】直接利用二项式定理,组合数,等差数列的前n项和公式的应用求出结果.解:由“杨辉三角”可知第一行一个数,第二行2个数,…,第n行n个数.所以前n行有个数.当n=63时,.所以第2020项是第64行的第4个数,即为.故选:A.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.下列求导数运算不正确的是()A.(sin x)′=﹣cos x B.(log2x)′=C.()′=D.(e2x+1)′=2e2x+1【分析】根据基本初等函数的导数公式和导数运算公式及符合函数导数公式即可判断.解:(sin x)′=cos x,(log2x)′=,()′=,(e2x+1)′=e2x+1•(2x+1)′=2e2x+1,故选:ABC.10.已知在某市的一次学情检测中,学生的数学成绩X服从正态分布N(105,100),其中90分为及格线,120分为优秀线,下列说法正确的是()附:随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=0.6826,P(μ﹣2σ<ξ<μ+2σ)=0.9544,P(μ﹣3σ<ξ<μ+3σ)=0.9974.A.该市学生数学成绩的期望为105B.该市学生数学成绩的标准差为100C.该市学生数学成绩及格率超过0.99D.该市学生数学成绩不及格的人数和优秀的人数大致相等【分析】由已知可得A正确,B错误;求出该市学生数学成绩的及格率判断C;由正态分布曲线的对称性判断D.解:由题意,正态分布曲线的对称轴为x=105,σ=10.∴该市学生数学成绩的期望为105,故A正确;该市学生数学成绩的标准差为10,故B错误;∵P(85<X<125)=0.9544,∴P(X≤85)=P(X≥125)=[1﹣P(P(85<X<125)]=(1﹣0.9544)=0.0228,则P(X<90)>0.0228,P(X≥90)<0.9772<0.99,故C错误;由正态分布曲线的对称性可知,P(X<90)=P(X>120),可知该市学生数学成绩不及格的人数和优秀的人数大致相等,故D正确.故选:AD.11.已知复数,其中i是虚数单位,则以下说法正确的是()A.复数z的实部为3B.复数z的虚部为2iC.复数z的模为D.复数z的共轭复数=﹣3+2i【分析】利用复数代数形式的乘除运算化简,然后逐一核对四个选项得答案.解:∵=,∴复数z的实部为3,虚部为2,|z|=,.∴说法正确的是AC.故选:AC.12.由0,1,2,3,4,5,6,7,8,9这10个数字组成无重复数字的五位数,其中偶数的个数是()A.A+A•A•AB.A+A(A﹣A)C.A﹣A+A(A﹣A)D.A﹣A﹣A(A﹣A)【分析】解法1,分2种情况讨论:①,0在个位,在剩下的9个数字中任选4个,安排在前4位,②,2、4、6、8在个位,万位有A81种情况,在剩下的8个数字中任选3个,安排在中间的3个数位,由加法原理可得A正确;解法2,分2种情况讨论:①,0在个位,在剩下的9个数字中任选4个,安排在前4位,②由间接法分析2、4、6、8在个位的情况数目,由加法原理可得B正确;解法3,利用间接法分析可得D正确,C错误;综合即可得答案.解:根据题意,解法1,分2种情况讨论:①,0在个位,在剩下的9个数字中任选4个,安排在前4位,有A94种情况,②,2、4、6、8在个位,万位有A81种情况,在剩下的8个数字中任选3个,安排在中间的3个数位,有A83种情况,此时有A41A81A83种情况,则可以有A94+A41A81A83个五位偶数,A正确;解法2,分2种情况讨论:①,0在个位,在剩下的9个数字中任选4个,安排在前4位,有A94种情况,②,2、4、6、8在个位,在剩下的9个数字中任选4个,安排在前4位,有A94种情况,其中0在首位的有A83种情况,则此时有A41(A94﹣A83)种情况,则可以有A94+A41(A94﹣A83)个五位偶数,B正确;解法3,由排除法分析:在10个数字中任选5个,进行全排列,有A105种情况,其中0在首位的有A94种情况,五位数是奇数,即1、3、5、7、9在个位有A51A94种情况,0在首位且1、3、5、7、9在个位有A51A83种情况,则可以有A﹣A﹣A(A﹣A)五位偶数;故D正确,C错误;故选:ABD.三、填空题:本题共4小题,每小题5分,共20分.13.已知的展开式中第5项与第7项的二项式系数相等,则展开式中常数项为45.【分析】写出展开式的通项公式,令第7项和第5项的系数相同,算出n的值,以此算出常数项.解:因为的展开式的通项公式为:T r+1=•(x2)n﹣r•()r=•x;根据题意第7项和第5项的二项式系数相等,则n=10,令2×10﹣r=0⇒r=8,所以常数项为==45.故答案为:45.14.有一个活动小组有6名男生和4名女生,从中任选3名学生,至多选中2名男生的概率为.【分析】根据概率公式和排列组合的知识即可求出.解:由题意可得至多选中2名男生的概率为=,故答案为:.15.已知函数f(x)=e x+alnx,若曲线y=f(x)在x=1处的切线方程为y=x+b,则a+b =0.【分析】求导数,利用曲线y=f(x)在点(1,f(1))处的切线方程为y=x+b,结合切点在曲线上,也在切线上,可求a、b的值;解:∵f(x)=e x+alnx,∴f′(x)=e x+,由题设f'(1)=e+a,∴a+e=1,所以a=1﹣e,f(1)=e,又切点为(1,e)在切线y=x+b上,∴e=1+b.可得b=e﹣1,所以a+b=1﹣e+e﹣1=0.故答案为:0.16.已知随机变量X的分布列如表所示.X﹣101P a b c 若a=2b=3c,则E(X)为﹣;若,D(X)的最大值为.【分析】结合分布列的性质,根据a=2b=3c,求出a,b,c然后求解期望,利用b的值,得到a+c的值,求出方差,然后求解最大值.解:由题意可知:.解得b=,a=,c=,∴E(X)=+0×=,若,则a+c=,所以E(X)=﹣1×a+0×+1×()=.D(X)=a(﹣1﹣+2a)2+(0﹣+2a)2+()(1﹣+2a)2=,当a=时,函数取得最大值,最大值为.故答案为:;.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知z=(m2﹣8m+15)+(m2﹣5m+6)i,其中i是虚数单位,m为实数.(1)当z为纯虚数时,求m的值;(2)当复数z•i在复平面内对应的点位于第二象限时,求m的取值范围.【分析】(1)直接由实部为0且虚部不为0列式求解m值;(2)利用复数代数形式的乘除运算化简z•i,再由实部小于0且虚部大于0联立不等式组求解.解:(1)∵z为纯虚数,∴,解得m=5;(2)∵z•i=﹣(m2﹣5m+6)+(m2﹣8m+15)i在复平面内对应的点位于第二象限,∴,解得m<2或m>5.∴m的取值范围是(﹣∞,2)∪(5,+∞).18.江苏省从2021年开始,高考取消文理分科,实行“3+1+2“的模式,其中的“1“表示每位学生必须从物理、历史中选择一个科目且只能选择一个科目.某校为了解高一年级学生对“1”的选课情况,随机抽取了100名学生进行问卷调查,如表是根据调查结果得到的2×2列联表.性别选择物理选择历史总计男生50b m女生c20 40总计7030100(1)求m,b,c的值;(2)请你依据该列联表判断是否有99.5%的把握认为选择科目与性别有关?说明你的理由.附:对于2×2列联表类1类2合计类A a b a+b类B c d c+d合计a+c b+d a+b+c+d有,其中n=a+b+c+d.P(K2>x0)0.1000.0500.0250.0100.0050.001 x0 2.706 3.841 5.024 6.6357.87910.828【分析】(1)根据随机抽取的100名学生中女生、男生人数,计算m、b和c的值;(2)根据题目所给的数据得到列联表,计算K2,对照附表得出结论.解:(1)随机抽取的100名学生中,女生为40人,男生为100﹣40=60(人);所以m=60,b=60﹣50=10,c=40﹣20=20;(2)根据题目所给的数据,得到的2×2列联表如下;性别选择物理选择历史总计男生501060女生2020 40总计7030100由表中数据,计算K2=≈12.698>7.879,所以有99.5%的把握认为选择科目与性别有关.19.已知函数f(x)=﹣(m+1)x+mlnx,m∈R.(1)若m=﹣1,求函数f(x)在区间[,e]上的最小值;(2)若m>0,求函数f(x)的单调增区间.【分析】(1)把m=﹣1代入后对函数求导,然后结合导数可求函数的单调性,进而可求函数的最值;(2)由已知导数结合导数与单调性的关系对m进行分类讨论,进而可求.解:(1)m=﹣1时,f(x)=,,x,易得,当x∈()时,f′(x)<0,函数单调递减,当x∈(1,e)时,f′(x)>0,函数单调递增,故当x=1时,函数取得极小值也是最小值f(1)=,(2)=,x>0,①当m=1时,f′(x)≥0恒成立,则函数f(x)在(0,+∞)上单调递增,②当m>1时,由f′(x)>0可得,x>m或x<1,由f′(x)<0可得1<x<m,故函数的当m>1时,由f′(x)>0可得,x>m或x<1,故函数的单调递增区间(m,+∞),(0,1),单调递减区间(1,m),③当0<m<1时,由f′(x)>0可得,x>1或x<m,故函数的单调递增区间(1,+∞),(0,m).20.已知(1+x)n=a0+a1x+a2x2+…+a n x n,n∈N*.(1)当n=7时,求a1+a3+a5+a7的值;(2)求a0+3a1+5a2+…+(2n+1)a n.【分析】(1)分别令x=1,x=﹣1,即可求出a1+a3+a5+a7=64.(2)记S=a0+3a1+5a2+…+(2i+1)a i+…+(2n+1)a n,利用倒序相加法可得求出2S=(2n+2)(a0+a1+a2+…+a n),问题得以解决.解:(1)当n=7时,(1+x)7=a0+a1x+a2x2+…+a7x7,令x=1,则27=a0+a1+a2+…+a7,①,令x=﹣1,则0=a0﹣a1+a2+…﹣a7,②,①﹣②可得,27=2(a1+a3+a5+a7),即a1+a3+a5+a7=64.(2)由题意可得a i=∁n i,可得a i=a n﹣i,i=0,1,2,3,…,n,记S=a0+3a1+5a2+…+(2i+1)a i+…+(2n+1)a n,则S=(2n+1)a0+(2n﹣1)a1+(2n﹣3)a2+…+[2(n﹣i)+1]a i+…+5a2+3a1+a0,=(2n+1)a0+(2n﹣1)a1+(2n﹣3)a2+…+[2(n﹣i)+1]a i+…+a n,∴2S=(2n+2)(a0+a1+a2+…+a n),令x=1,可得a0+a1+a2+…+a n=2n,∴a0+3a1+5a2+…+(2n+1)a n=(n+1)2n.21.常州别称龙城,是一座有着3200多年历史的文化古城,常州既有春秋淹城、天宁寺等名胜古迹,又有中华恐龙园、嬉戏谷等游乐景点,每年都有大量游客来常州参观旅游.为合理配置旅游资源,管理部门对首次来中华恐龙园游览的游客进行了问卷调查,据统计,其中的人计划只游览中华恐龙园,另外的人计划既游览中华恐龙园又参观天宁寺,每位游客若只游览中华恐龙园,得1分;若既游览中华恐龙园又参观天宁寺,得2分.假设每位首次来中华恐龙园游览的游客均按照计划进行,且是否参观天宁寺相互独立,视频率为概率.(1)有2名首次来中华恐龙园游览的游客是拼车到常州的,求“这2名游客都是既游览中华恐龙园又参观天宁寺”的概率;(2)从首次来中华恐龙园游览的游客中随机抽取3人,记这3人的合计得分为X,求X 的概率分布和数学期望.【分析】(1)直接利用相互独立事件的概率公式的应用求出结果.(2)首先利用超几何分布求出分布列,进一步求出数学期望.解:(1)由题意得:每位游客只游览中华恐龙园的概率为,既游览中华恐龙园又参观天宁寺的概率为,记两位游客中“既游览中华恐龙园又参观天宁寺”为事件A:则P(A)=.另一位游客“既游览中华恐龙园又参观天宁寺”为事件B:则P(B)=.所以“这2名游客都是既游览中华恐龙园又参观天宁寺”为事件AB,则P(AB)=P(A)P(B)=.(2)随机变量X的取值可能为3,4,5,6,所以,,,.所以X的分布列为:X3456P故:E(X)=.22.已知函数f(x)=(x+a)e x+b,a,b∈一、选择题.(1)若a=1,求关于x的不等式f(x)>f(0)的解集;(2)若b=e a+1,讨论函数f(x)的零点个数.【分析】(1)代入a的值,求出函数的导数,解关于导函数的不等式,求出函数的单调区间,求出不等式的解集即可;(2)求出函数的导数,得到函数的单调区间,求出函数的极小值,通过讨论a的范围,确定函数的零点个数即可.解:(1)a=1时,f(x)=(x+1)e x+b,f′(x)=(x+2)e x,x>﹣2时,f′(x)>0,f(x)在(﹣2,+∞)递增,由f(x)>f(0)得x>0,x≤﹣2时,(x+1)e x<0,此时f(x)<b<1+b=f(0),则f(x)>f(0)无解;综上,不等式f(x)>f(0)的解集为(0,+∞);(2)b=e a+1时,f(x)=(x+a)e x+e a+1,f′(x)=(x+a+1)e x,令f′(x)=0,解得:x=﹣a﹣1,x,f′(x),f(x)的变化如下表:x(﹣∞,﹣a﹣1)﹣a﹣1(﹣a﹣1,+∞)f′(x)﹣0+f(x)递减极小值递增∴当x=﹣a﹣1时,函数f(x)的极小值是f(﹣a﹣1)=﹣e﹣a﹣1+e a+1,①当f(﹣a﹣1)>0即a>﹣1时,对任意x∈R,都有f(x)≥f(﹣a﹣1)>0恒成立,从而函数f(x)无零点,②当f(﹣a﹣1)=0即a=﹣1时,对任意x∈R,都有f(x)≥f(﹣a﹣1)≥0恒成立,(当且仅当x=0时,f(x)=0),从而函数f(x)的零点个数为1,③当f(﹣a﹣1)<0即a<﹣1时,在区间[﹣a﹣1,﹣a]上,函数f(x)的图象是连续不间断的一条曲线,期中f(﹣a﹣1)<0,f(﹣a)=e a+1>0,函数f(x)在区间[﹣a﹣1,+∞)递增,故函数f(x)在区间(﹣a﹣1,+∞)的零点个数为1,在区间[4a,﹣a﹣1]上,函数f(x)的图象是连续不间断的一条曲线,其中f(﹣a﹣1)<0,f(4a)=5ae4a+e a+1=e a(5ae3a+e),记h(t)=te3t,t<﹣1,h′(t)=e3t(3t+1)<0,故h(t)在区间(﹣∞,﹣1]递减,由a<﹣1得h(a)>h(﹣1)=﹣e﹣3,即ae3a>﹣e﹣3,故f(4a)>e a(﹣5e﹣3+e)>0,又函数f(x)在(﹣∞,﹣a﹣1]递减,所以函数f(x)在区间(﹣∞,﹣a﹣1)上的零点个数为1,从而函数f(x)的零点个数为2,综上a>﹣1时,函数f(x)无零点,a=﹣1时,函数f(x)有1个零点,a<﹣1时,函数f(x)有2个零点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档