三角形的高中线角平分线学案
第2课时 《三角形的高、中线、角平分线》导学案

A B C A B C第2课时 三角形的高、中线、角平分线学习目标:1、 我能理解三角形的高、中线、角平分线;2、 我能掌握三角形高、中线、角平分线的作法;3、 我能应用三角形的高、中线、角平分线的性质。
一、三角形的高1、在下列图形中,分别作出点A 到BC 的垂线段。
2、在上面图形中,分别连接AB 、AC ,得到△ABC ,是否影响过点A 作BC 的垂线段? 。
由此,我认为在△ABC 中过一个顶点作对边的垂线段时,三角形中另外两边可 ,从而使图形变得简单。
3、三角形高的定义:在△ABC 中,过顶点A 与它所对的边BC 画垂线,垂足为D ,所得线段AD 叫做△ABC 的边BC 上的高。
①根据定义,我认为:三角形边上的高,实质就是过这条边所对的顶点作这条边的 。
②根据定义,我认为:三角形每条边上都有 ,共有 条。
③根据前面2个小题,我认为:作三角形的高时,有些边可以“视而不见”,使图形简化。
还知道:三角形的高可以在三角形 (如1题中左图),可以是三角形的 (如1题中中图),也可以是在三角形的 (如1题中右图)4、 画出下列三角形所有的高,并根据图形填空。
AB 边上的高是 ,EF 边上的高是 , DF 边上的高是 ,DE 边上的高是 , PN 边上的高是 ,MN 边上的高是 , MP 边上的高是 。
学法解法指导作了垂线段后,我能想到它在证明题中的格式: ∵AD ⊥BC (已知)∴ =900(垂线定义) 或:∵ =900(已知) ∴AD ⊥BC (垂线定义)从这个定义可以看出,它是描述BC 边上的高,我也可以描述AB 、AC 边上的高。
左边三图,实质是三角形按角分成的三种类型,分别是 。
我也能按边分类,再画出它每条边上的高:ABCC BAFE D P N M二、三角形的中线:1、三角形中线定义:连接△ABC 的顶点与它所对的边BC 的中点D ,所得线段AD 叫做△ABC 的边BC 上的中线。
①根据定义,我可以得到作中线的方法:第一步:用刻度尺度量出一边长,找到它的 ; 第二步:连接这边的中点与相对的顶点。
三角形的高、中线、角平分线教案

三角形的高、中线、角平分线教案第一章:三角形的高1.1 教学目标了解三角形高的概念学会计算三角形的高能够应用三角形高解决实际问题1.2 教学内容三角形高的定义三角形高的计算方法三角形高的应用实例1.3 教学步骤1.3.1 导入引入三角形高的概念,通过实物演示或图片展示三角形高的含义。
1.3.2 新课讲解讲解三角形高的定义,解释三角形高的作用和意义。
演示如何计算三角形的高,通过几何画图软件或实物模型进行展示。
1.3.3 实例分析提供一些实际问题,让学生应用三角形高的知识解决,如计算三角形面积等。
1.3.4 练习与讨论学生进行一些相关的练习题,巩固对三角形高的理解和计算能力。
学生分组讨论,分享解题方法和经验。
1.4 教学评估第二章:三角形的中线2.1 教学目标了解三角形中线的概念学会计算三角形的中线能够应用三角形中线解决实际问题2.2 教学内容三角形中线的定义三角形中线的计算方法三角形中线的应用实例2.3 教学步骤2.3.1 导入引入三角形中线的概念,通过实物演示或图片展示三角形中线的含义。
2.3.2 新课讲解讲解三角形中线的定义,解释三角形中线的作用和意义。
演示如何计算三角形的中线,通过几何画图软件或实物模型进行展示。
2.3.3 实例分析提供一些实际问题,让学生应用三角形中线的知识解决,如计算三角形的面积等。
2.3.4 练习与讨论学生进行一些相关的练习题,巩固对三角形中线的理解和计算能力。
学生分组讨论,分享解题方法和经验。
2.4 教学评估第三章:三角形的角平分线3.1 教学目标了解三角形角平分线的概念学会计算三角形的角平分线能够应用三角形角平分线解决实际问题3.2 教学内容三角形角平分线的定义三角形角平分线的计算方法三角形角平分线的应用实例3.3 教学步骤3.3.1 导入引入三角形角平分线的概念,通过实物演示或图片展示三角形角平分线的含义。
3.3.2 新课讲解讲解三角形角平分线的定义,解释三角形角平分线的作用和意义。
三角形的高,中线,角平分线教案

三角形的高,中线,角平分线教案三角形的高、中线和角平分线教案第一节:三角形的高三角形的高是从一个顶点到对边所引的垂线段,也是三角形内一边的垂直平分线。
一个三角形可以有三条高。
1. 三角形的三条高相交于一个点,称为垂心。
2. 垂心离三角形三个顶点的距离相等,即垂心到三个顶点的距离相等。
三、求解方法:1. 已知三角形的底边和高,可以求出面积。
2. 已知三角形的两边和夹角,可以求出高。
第二节:三角形的中线三角形的中线是从三角形的一个顶点到对边中点的线段,也是三角形内一边的垂直平分线。
一个三角形可以有三条中线。
1. 三角形的三条中线相交于一个点,称为重心。
2. 重心离三角形三个顶点的距离比重心到对边中点的距离大。
三、求解方法:1. 已知三角形的底边和中线,可以求出面积。
2. 已知三角形的两边和夹角,可以求出中线。
第三节:三角形的角平分线三角形的角平分线是从一个角的顶点到对边的平分线。
一个三角形可以有三条角平分线。
1. 三角形的三条角平分线相交于一个点,称为内心。
2. 内心到三角形三边的距离相等,即内心到三个边的距离相等。
三、求解方法:1. 已知三角形的两边和夹角,可以求出角平分线。
2. 已知三角形的内心到三个顶点的距离,可以求出内心的位置。
通过本节课的学习,我们了解了三角形的高、中线和角平分线的定义、性质以及求解方法。
这些知识可以帮助我们更好地理解和解决与三角形相关的问题。
希望同学们能够通过课后的练习和巩固,熟练掌握这些概念和方法,为以后的学习打下坚实的基础。
八年级数学上册《三角形的高中线和角平分线》教案、教学设计

三、教学重难点和教学设想
(一)教学重难点
1.理解和掌握三角形高、中线和角平分线的定义及其性质,能够准确识别和运用这些概念解决相关问题。
-重难点:三角形高、中线和角平分线性质的深入理解和应用。
八年级数学上册《三角形的高中线和角平分线》教案、教学设计
一、教学目标
(一)知识与技能
1.理解三角形的高、中线和角平分线的定义,能够准确地识别和画出这些重要线段。
-掌握在三角形中,从一个顶点向对边作垂线,这条垂线与对边的交点与顶点之间的线段称为三角形的高。
-理解中线是连接三角形一个顶点与对边中点的线段,且三角形有三条中线。
(四)课堂练习
在这一环节中,教师将设计不同难度的练习题,让学生巩固所学知识,提高解决问题的能力。
1.基础练习:设计一些基础题,让学生运用三角形高、中线和角平分线的性质解决问题,巩固基本概念。
2.提高练习:设计一些具有一定难度的题目,让学生在解决问题的过程中,提高逻辑推理和证明能力。
3.实际应用:结合生活情境,设计实际问题,让学生运用所学知识解决,体会数学的应用价值。
2.实践操作,深化理解:
-提供丰富的实践材料,如三角板、量角器、直尺等,让学生在操作中探索三角形高、中线和角平分线的性质。
-鼓励学生通过画图、测量、折叠等手段,亲身体验和验证几何定理。
3.分层教学,因材施教:
-根据学生的认知水平和能力差异,设计不同难度的教学活动,让每个学生都能在原有基础上得到提高。
-推荐相关阅读材料,拓宽学生的知识视野,激发他们对数学的热爱。
四、教学内容与过程
三角形的高、中线、角平分线教案

三角形的高、中线、角平分线教案第一章:三角形的基本概念1.1 三角形的定义引导学生回顾三角形的基本概念,理解三角形的三个顶点和三条边的特点。
强调三角形是由三条线段组成的图形,任意两边之和大于第三边。
1.2 三角形的分类介绍等边三角形、等腰三角形和一般三角形的特征。
引导学生通过观察边长和角度来判断三角形的类型。
第二章:三角形的高2.1 三角形的高的概念解释三角形的高是指从一个顶点垂直于对边的线段。
强调三角形的高是线段,而不是线段的长度。
2.2 三角形高的画法引导学生如何从一个顶点画出垂直于对边的线段,即高的画法。
演示和练习如何准确地画出三角形的高。
2.3 三角形高的性质介绍三角形高的性质,如三角形有三条高,每条高都垂直于对边。
引导学生通过几何画图软件或实物操作来验证高的性质。
第三章:三角形的中线3.1 三角形的中线的概念解释三角形的中线是指从一个顶点将对边平分的线段。
强调三角形的中线是线段,而不是线段的长度。
3.2 三角形中线的画法引导学生如何从一个顶点画出将对边平分的线段,即中线的画法。
演示和练习如何准确地画出三角形的中线。
3.3 三角形中线的性质介绍三角形中线的性质,如三角形有三条中线,每条中线将对边平分。
引导学生通过几何画图软件或实物操作来验证中线的性质。
第四章:三角形的角平分线4.1 三角形的角平分线的概念解释三角形的角平分线是指从一个顶点将相邻两个角的角平分的线段。
强调三角形的角平分线是线段,而不是线段的长度。
4.2 三角形角平分线的画法引导学生如何从一个顶点画出将相邻两个角的角平分的线段,即角平分线的画法。
演示和练习如何准确地画出三角形的角平分线。
4.3 三角形角平分线的性质介绍三角形角平分线的性质,如三角形有三条角平分线,每条角平分线将相邻两个角的角平分。
引导学生通过几何画图软件或实物操作来验证角平分线的性质。
第五章:三角形的高、中线、角平分线的综合应用5.1 三角形的高、中线、角平分线的联系与区别引导学生理解三角形的高、中线、角平分线之间的关系和区别。
人教版八年级数学上册11.1.2《三角形的高、中线与角平分线》教学设计

人教版八年级数学上册11.1.2《三角形的高、中线与角平分线》教学设计一. 教材分析《三角形的高、中线与角平分线》是人教版八年级数学上册第11.1.2节的内容。
本节主要介绍了三角形的高、中线与角平分线的概念及其性质。
通过学习,学生能够理解三角形的高、中线与角平分线的定义,掌握它们之间的关系,并能运用它们解决实际问题。
本节内容是学生进一步学习三角形和其他几何图形的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析学生在学习本节内容前,已经学习了三角形的性质、角的度量等基础知识,对几何图形的认识有一定的基础。
但是,对于三角形的高、中线与角平分线的概念和性质,学生可能还不够熟悉。
因此,在教学过程中,需要通过实例和练习,帮助学生理解和掌握这些概念和性质。
三. 教学目标1.了解三角形的高、中线与角平分线的概念及其性质。
2.能够运用三角形的高、中线与角平分线解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.三角形的高、中线与角平分线的概念及其性质。
2.运用三角形的高、中线与角平分线解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和探究,激发学生的学习兴趣和积极性。
2.利用几何画板和实物模型,直观展示三角形的高、中线与角平分线的性质,帮助学生理解和掌握。
3.通过练习和问题解决,巩固所学知识,提高学生的应用能力。
六. 教学准备1.准备几何画板和实物模型,用于展示三角形的高、中线与角平分线的性质。
2.准备相关的练习题和实际问题,用于巩固和应用所学知识。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾三角形的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)利用几何画板和实物模型,展示三角形的高、中线与角平分线的定义和性质。
引导学生观察和思考,引导学生总结出三角形的高、中线与角平分线的性质。
3.操练(10分钟)让学生分组合作,利用几何画板和实物模型,进行三角形的高、中线与角平分线的操作练习。
三角形的高、中线和角平分线教案

三角形的高、中线和角平分线教案一、教学目标:1. 让学生理解三角形的高、中线和角平分线的概念。
2. 让学生掌握三角形的高、中线和角平分线的性质。
3. 培养学生运用三角形的高、中线和角平分线解决问题的能力。
二、教学内容:1. 三角形的高:从三角形的顶点向对边作垂线,顶点到垂足之间的线段叫做三角形的高。
2. 三角形的中线:连接三角形的一个顶点和它对边中点的线段叫做三角形的中线。
3. 三角形的角平分线:从三角形的一个顶点出发,把这个顶点的角平分成两个相等的角的射线叫做这个角的角平分线。
三、教学重点与难点:1. 教学重点:三角形的高、中线和角平分线的概念及性质。
2. 教学难点:三角形的高、中线和角平分线的画法及运用。
四、教学方法:1. 采用直观演示法,让学生通过观察和动手操作,理解三角形的高、中线和角平分线的概念。
2. 采用讲解法,引导学生掌握三角形的高、中线和角平分线的性质。
3. 采用练习法,让学生在实践中运用三角形的高、中线和角平分线解决问题。
五、教学过程:1. 导入:通过复习平面几何的基本知识,引导学生进入本节课的学习。
2. 三角形的高:讲解三角形的高的概念,让学生通过动手操作,画出三角形的高,并观察高的性质。
3. 三角形的中线:讲解三角形的中线的概念,让学生通过动手操作,画出三角形的中线,并观察中线的性质。
4. 三角形的角平分线:讲解三角形的角平分线概念,让学生通过动手操作,画出角的角平分线,并观察角平分线的性质。
5. 巩固练习:布置一些有关三角形的高、中线和角平分线的练习题,让学生在实践中运用所学知识。
7. 作业布置:布置一些有关三角形的高、中线和角平分线的家庭作业,巩固所学知识。
六、教学拓展:1. 探讨三角形的高、中线和角平分线在实际问题中的应用,如在几何图形的切割、拼接等方面。
2. 引导学生思考:在三角形中,高、中线和角平分线之间有何联系?七、课堂互动:1. 提问:三角形的高、中线和角平分线有何区别和联系?2. 学生互相讨论,分享各自的想法和观点。
《三角形的高、中线、角平分线》优秀教案

用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商
业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得
侵犯本网站及相关权利人地合法权利 . 除此以外,将本文任何内容或服务用
于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬 . Zzz6ZB2Ltk
Users may use the contents or services of this article for
AB=2 ,BD=,AE=
1
.
2
5.如图 2, AD , BE, CF 是 Δ ABC地三条角平分线,则∠ 1= ,
1
∠ 3=
,
2
∠ ACB=2.
A
F
E
A F 12 E
B
D
C
B
3 D
4
C
图1
图2
6.如图
3,
1
BD=
BC,则
BC边上地中线为
______,△ ABD地面积 =地面积.
2
图 3图 4 7.如图 4,△ ABC中,高 CD、 BE、AF 相交于点 O,则△ BOC?地三条高分别为线段 . 8.如图 5,在△ ABC中, D、 E 分别是 BC、AD地中点, S△ABC =4cm2,则 S△ABE = .
personal study, research or appreciation, and other non-commercial
or non-profit purposes, but at the same time, they shall abide by the
provisions of copyright law and other relevant laws, and shall not
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.1.2三角形的高,中线,角平分线
【学习目标】
1.认识并会画出三角形的高线,利用其解决相关问题;
2.认识并会画出三角形的中线,利用其解决相关问题;
3.认识并会画出三角形的角平分线,利用其解决相关问题; 【学习重点】
认识三角形的高线、中线与角平分线,并会画出图形 【学习难点】
画出三角形的高线、中线与角平分线. 【学习过程】 一、创设情境
1、三角形按边分可分为什么?按角分可分为什么?
2、下列长度的三个线段能否组成三角形?
(1)3,6,8 (2)1,2,3 (3)6,8,2
二、自主探究
自学课本65页三角形的高、中线、角平分线并完成下列各题: (1)三角形的高线
1、作出下列三角形三边上的高:
2、上面第1图中,AD 是△ABC 的边BC 上的高,则∠ADC=∠ = °
归纳总结:(1)三角形的三条高线所在的直线相交于 点;(2)锐角
三角形的三条高相交于三角形的 ;(3)钝角三角形的三条高所在直线相交于三角形的 ;(4)直角三角形的三条高相交三角形的 ;(5)交点我们叫做三角形的垂心。
巩固应用:
如图所示,画△ABC 的一边上的高,下列画法正确的是( ).
A C
B A C
B
(2)三角形的中线
1、 作出下列三角形三边上的中线
2、AD 是△ABC 的边BC 上的中线,则有BD = =
2
1
, 归纳总结:(1)三角形的三条中线相交于 点;(2)锐角三角形的三
条中线相交于三角形的 ;(3)钝角三角形的三条中线相交于三角形的 ;(4)直角三角形的三条中线相交于三角形的 ;(5)交点我们叫做三角形的重心。
巩固应用:
如图,D 、E 是边AC 的三等分点,图中有 个三角形,BD 是三角形 中 边上的中线,BE 是三角形 中________上的中线;
(3)三角形的角平分线
1、作出下列三角形三角的角平分线:
2、AD 是△ABC 中∠BAC 的角平分线,则∠BAD=∠ =
归纳总结:(1)三角形的三条角平分线相交于 点;(2)锐角三角形
的三条角平分线相交三角形的 ;(3)钝角三角形的三条角平分线相交三角形的 ;(4)直角三角形的三条角平分线相交三角形的 ;(5)交点我们叫做三角形的内心。
巩固应用:如图,已知∠1=
2
1
∠BAC ,∠2 =∠3,则∠BAC 的平分线为 ,∠ABC 的平分线为
.
A C
B A
C
B
A C
B A
C B
归纳总结:三角形的高、中线、角平分线都是一条线段。
三、巩固拓展
1.课本69页第4题。
2.三角形的角平分线是().
A.直线 B.射线 C.线段 D.以上都不对
3.下列说法:①三角形的角平分线、中线、高线都是线段;•②直角三角形只有一条高线;③三角形的中线可能在三角形的外部;④
三角形的高线都在三角形的内部,并且相交于一点,其中说
法正确的有().
A.1个 B.2个 C.3个 D.4个
4.如图,AD是△ABC的高,AE是△ABC的角平分线,AF是△ABC
的中线,写出图中所有相等的角和相等的线段。
5.在△ABC中,AB=AC,AC边上的中线BD把三角形的周长
分为12cm和15cm两部分,求三角形各边的长.
6.课本70页第8题
四、知识点归纳
三角形的高、中线、角平分线。
【课堂检测】
1.以下说法错误的是()
A.三角形的三条高一定在三角形内部交于一点
B.三角形的三条中线一定在三角形内部交于一点
C.三角形的三条角平分线一定在三角形内部交于一点
D.三角形的三条高可能相交于外部一点
2.如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,•那么这个三角形是()
A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定
3.如图1,BD=1
2
BC,则BC边上的中线为______,△ABD的面积=_____
A
C
B D
E
F
A
B C
的面积.
(1) (2) (3)
4.如图2,△ABC中,高CD、BE、AF相交于点O,则△BOC•的三条高分
别为线段________.
5.下列图形中具有稳定性的是()
A.梯形 B.菱形 C.三角形 D.正方形
6.如图3,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,求△ABD•
与△ACD的周长之差.
7.如图,∠BAD=∠CAD,AD⊥BC,垂足为点D,且BD=CD.•可知哪些线段
是哪个三角形的角平分线、中线或高?
8.如图5,在等腰三角形ABC 中,AB=AC ,一腰上的中线BD 将这个等腰三角形的周长分为15和6两部分,求该等腰三角形的腰长及底边长.
9.有一块三角形优良品种试验基地,如图所示,•由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择(画图说明).
10.如图,在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,求S △ABE .
11.如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 上的高,•且CD 、BE 交于一点P ,若∠A=50°,则∠BPC 的度数是( ) A .150° B .130° C .120° D .100°
12.(1)如图AD 是△ABC 的角平分线,DE ∥AB ,DF ∥AC ,EF 交AD 于点O .请问:DO 是△DEF 的角平分线吗?如果是,请给予证明;如果不是,请说明理由.
(2)若将结论与AD 是△ABC 的角平分线、DE ∥AB 、DF ∥AC 中的任一条件交换,•所得命题正确吗?
13.要使四边形木架(用4根木条钉成)不变形,至少要再钉上几根木条?
五边形木架和六边形木架呢?n边形木架呢?
【学习反思】
本节课我得收获:____________________________________________________________。
还要解决的问题:____________________________________________________________。