数列求和测试题练习题

合集下载

数列求和专题训练(含参考答案)

数列求和专题训练(含参考答案)

数列求和基础巩固组1.数列112,314,518,7116,…,(2n-1)+12n ,…的前n 项和S n 的值等于( )A.n 2+1-12n B.2n 2-n+1-12n C.n 2+1-12n -1D.n 2-n+1-12n2.在数列{a n }中,a 1=-60,a n+1=a n +3,则|a 1|+|a 2|+…+|a 30|=( ) A.-495 B.765 C.1 080 D.3 1053.已知数列{a n }的前n 项和S n 满足S n +S m =S n+m ,其中m ,n 为正整数,且a 1=1,则a 10等于( )A.1B.9C.10D.554.已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n+1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 018等于( ) A.√2 018-1 B.√2 018+1 C.√2 019-1D.√2 019+15.已知数列{a n }中,a n =2n +1,则1a 2-a 1+1a 3-a 2+…+1a n+1-a n=( )A.1+12nB.1-2nC.1-12nD.1+2n〚6.设数列{a n }的前n 项和为S n ,a 1=2,若S n+1=n+2n S n ,则数列{1a n a n+1}的前2 018项和为 .7.已知等差数列{a n }满足:a 5=11,a 2+a 6=18. (1)求数列{a n }的通项公式;(2)若b n =a n +2n ,求数列{b n }的前n 项和S n .综合提升组8.如果数列1,1+2,1+2+4,…,1+2+22+…+2n-1,…的前n 项和S n >1 020,那么n 的最小值是( ) A.7B.8C.9D.109.(2017山东烟台模拟)已知数列{a n}中,a1=1,且a n+1=a n2a n+1,若b n=a n a n+1,则数列{b n}的前n项和S n为()A.2n2n+1B.n 2n+1C.2n 2n-1D.2n-12n+1〚10.(2017福建龙岩一模)已知S n为数列{a n}的前n项和,对n∈N*都有S n=1-a n,若b n=log2a n,则1b1b2+1 23+…+1n n+1=.11.(2017广西模拟)已知数列{a n}的前n项和为S n,且S n=32a n-1(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=2log3a n2+1,求1b1b2+1b2b3+…+1b n-1b n.创新应用组12.(2017全国Ⅰ,理12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是() A.440 B.330 C.220 D.110 〚参考答案数列求和1.A该数列的通项公式为a n=(2n-1)+,则S n=[1+3+5+…+(2n-1)]+=n2+1-.2.B由a1=-60,a n+1=a n+3可得a n=3n-63,则a21=0,|a1|+|a2|+…+|a30|=-(a1+a2+…+a20)+(a21+…+a30)=S30-2S20=765,故选B.3.A∵S n+S m=S n+m,a1=1,∴S1=1.可令m=1,得S n+1=S n+1,∴S n+1-S n=1,即当n≥1时,a n+1=1,∴a10=1.4.C由f(4)=2,可得4a=2,解得a=,则f(x)=.∴a n=,S2 018=a1+a2+a3+…+a2 018=()+()+()+…+()=-1.5.C a n+1-a n=2n+1+1-(2n+1)=2n+1-2n=2n,所以+…++…+=1-=1-.6.∵S n+1=S n,∴.又a1=2,∴当n≥2时,S n=·…··S1=·…·×2=n(n+1).当n=1时也成立,∴S n=n(n+1).∴当n≥2时,a n=S n-S n-1=n(n+1)-n(n-1)=2n.当n=1时,a1=2也成立,所以a n=2n.∴.则数列的前2 018项和=.7.解 (1)设{a n}的首项为a1,公差为d.由a5=11,a2+a6=18,得解得a1=3,d=2,所以a n=2n+1.(2)由a n=2n+1得b n=2n+1+2n,则S n=[3+5+7+…+(2n+1)]+(21+22+23+…+2n)=n2+2n+=n2+2n+2n+1-2.8.D a n=1+2+22+…+2n-1=2n-1.∴S n=(21-1)+(22-1)+…+(2n-1)=(21+22+…+2n)-n=2n+1-n-2,∴S9=1 013<1 020,S10=2 036>1 020,∴使S n>1 020的n的最小值是10.9.B由a n+1=,得+2,∴数列是以1为首项,2为公差的等差数列,∴=2n-1,又b n=a n a n+1,∴b n=,∴S n=,故选B.10.对n∈N*都有S n=1-a n,当n=1时,a1=1-a1,解得a1=.当n≥2时,a n=S n-S n-1=1-a n-(1-a n-1),化为a n=a n-1.∴数列{a n}是等比数列,公比为,首项为.∴a n=.∴b n=log2a n=-n.∴.则+…++…+=1-.11.解 (1)当n=1时,a1=a1-1,∴a1=2.当n≥2时,∵S n=a n-1,①S n-1=a n-1-1(n≥2),②∴①-②得a n=,即a n=3a n-1,∴数列{a n}是首项为2,公比为3的等比数列,∴a n=2·3n-1.(2)由(1)得b n=2log3+1=2n-1,∴+…++…+=+…+.12.A设数列的首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推,设第n组的项数为n,则前n组的项数和为.第n组的和为=2n-1,前n组总共的和为-n=2n+1-2-n.由题意,N>100,令>100,得n≥14且n∈N*,即N出现在第13组之后.若要使最小整数N满足:N>100且前N项和为2的整数幂,则S N-应与-2-n互为相反数,即2k-1=2+n(k∈N*,n≥14),所以k=log2(n+3),解得n=29,k=5.所以N=+5=440,故选A.。

数列的求和方法试题

数列的求和方法试题

222247()(3,30)135723A 2 B 4 3 C 3 D 3 4 2{},,0,7,A 12 B 12n n n n n n n n n n n n a n S d S a S n +++++=++++++<=数列的求和试题命题人:叶导一、选择题每题分共分、等差数列求和:…( )、、、、、已知等差数列中它的前项和为公差且则取得最小正数时的值是( )、、或221213 C 24 D 25213 ,,>(41)2A 7 B 8 C 9 D 10log (4)4,2014(5)n n n nnn n n n a n S S n a n n n a S a a n ---=+≤⎧=⎨-≥⎩、、、已知数列它的前项和为则满足不等式的最小正整数的值是( )、、、、、已知数列则它的前项和为014222A 1 B 1log 3 C 3log 3 D 5log 3 1315,,||(2)410A 7B 8C 9D 106()n n n a n S S n n n =++-=-<+( )、、、、、已知数列它的前项和为则满足不等式的最小正整数的值是( )、、、、、文100100,A 17 B 18 C 19 D 20(),A 12 B 13 C 14 D 157n n n n a n S S a n S S ==已知数列它的前项和为则的整数部分为( )、、、、理已知数列它的前项和为则的整数部分为( )、、、、、在公比不242223242422222223242242221{},,2,4A B 22 C 22 D 228n n n n n n n n n n n n n n n n n n n n n n n n n n n a n S n S n S S S S S S S S S S S S S S S S S S S S S S S S =+=++=++=+为的等比数列中它的前项和为前项和前项和之间的关系式正确的是( )、、、、、已知数4 5 6 7 11112,,,(20)(1)2{}A B C D299{},,,52215n n n nnn n n n n n n n n n nS n a n S b n a n n b b b b b a a a a n S na k S k S ++-+==++⋅==->+列它的前项和为设则数列中数值最大的一项是( )、、、、、已知数列满足设它的前项和为则使不等式恒成立的最小正整数A 21 B 22 C 23 D 24的值是( )、、、、112122110{}1,,,(21)7119(1)(2)(3)(4) 4.25A 1 B 2 C 3 D 4(3,30)11n n n n nn n n n n n n a a a n S a S a a S S na S +++==-<<+<+≤、已知数列满足设它的前项和为则下列命题正确的个数是( );;;、、、、二、填空题每题分共分、一群学生排成一个正方形2,10,20,12{}2(1),{}413(),()(1)(2)(0)(1)42()(1),{}14{}n n n n n n xn x n n n a n S a n T f x a f n f n f n f f f n f n a n S a =+-===-+-+-++++++++阵图最里面一层的每条边上有人最外面一层的每条边上有人则这个方阵的总人数为( )、已知数列的前项和则数列的前项和( )、设函数……则数列的前项和为( )、已知数列的前2111,,(1),2{}123415,,567891011121314151616121,1221,12221,122221,122222117(){1,4,7,10,}n n n n n n n n m n S n a a b n a a b n T n n S m S +===+=项和设则数列的前项和( )、如图正整数排成金字塔形则前行中每一行最中间的数之和为( )、数列…的前项和为( )、文已知等差数列…的前项和与等比数列20211{1,2,4,8,}200,(,)(){1,4,7,10,}{64,32,16,8,}125,(,)518{}20(1)19{}1,(2n m n m n m n nn n nn T S T m n m S n T S T m n S n n a a a a n ++≤+≤+==…的前项和满足则实数对的个数为( )理已知等差数列…的前项和与等比数列…的前项和满足则实数对的个数为( )、已知数列的前和的整数部分是( )、已知数列满足2*,,1)200(),n n n n n S a kS S k k N k +-+<∈设它的前项和为若不等式恒成立则的最大值是( )1122216520{},,1,,{}222,25n n n n n n n n n a a n a a a a a n S S a n +++-+===+->、在数列中设数列的前项和为则满足不等式的最小正整数的值为( )133(6,10,12,60)21{},,1,3,1,,.222cos 2,cos 4,,cos 2.2sin (cos 2cos 4cos 2cos 2cos 4cos 2n n n n n a n S a a q S a n S a x x nx n S x x x n S x x nx =≠=>+++=+++=三、解答题前三题各分中间三题各分最后一题分共分、已知等比数列的前项和为公比且对于任意的正整数都有求的取值范围、指出张明同学的错误并改正:求数列...的前项和...解: (2)212131212)2sin (sin 3sin )(sin 5sin 3)[sin(21)sin(21)]2sin sin(21)sin .2sin (2)23{}.(1)(3)24{},,0,0.(1)(2),,,.n n n n x xx x x x n x n x xn x x xn n S n n a n S a n kn S S k S S S -+-+++--=+-=+++=-+><…、求数列的前项和、已知数列的前项和为且求实数的取值范围;指出…中数值最大的一项11211(1)25{}1,,.(1)(1){}410(2)(),().234526{},1,.(1){}(2)()1,(1(nnn n n n n nn n nn n n n na a a a n S n a na n nS S n n a a a a n S a a S S +++==++><++==≤<<、已知数列满足设它的前项和为求数列的通项公式;文求证:理求证:、在数列中设它的前项和为求数列的通项公式;求证:文理文理211111)27{},1,2(2).(1){}12(2)(2),,.22322n n n n n n n n n n n n S a a a a n n a a a nb n n S S n ---≤-≤-==+≥=-≥>+、在数列中求数列的通项公式;设它的前项和为求证:22222233111111()()4(2)1253(3)11336,12,13,14,324(1)(2)(2)1100(101)9915,16,17()70,()16,187,197,208.3812133(21)0.0,n n n BCBCC B BDCCBn n n n n n n n n nS a a a q a q a q a q q a ++-+-+++++--=⇔++=⇔--=≠参考答案一、文理二、、、、、、、、文理、、、三、、因为所以211210,1().21[1()](1)2113132[1()],1(),113224221()2331,(1,).134[1()]42422,sin 0.(1),.2sin (c (2),nn n n n n n n q q q q a a q a S q a a x k x x k S n x x k S πππ--==-=---===-->≤--≤--->≥=+∞--⋅====≠=解得或舍去因为所以故的取值范围是、错误原因:当时分母没有意义正解:当时当时222os 2cos 4cos 2)2sin (sin 3sin )(sin 5sin 3)[sin(21)sin(21)]2sin ()sin(21)sin .,.sin(21)sin 2sin ()2sin (2)441231(1)(3)(1)(43n x x nx xx x x x n x n x xn x k n x x S n x x x x k x n n n n n n n n n ππ+++-+-+++--==⎧+-⎪==+-⎨≠⎪⎩+++==+++++++……综上所述、因为1111(),3)2131111111111111()22435461121311111525().22323122(2)(3)n n n S n n n n n n n n n n n n n n =+-++=+-+-+-++-+-+--+++++=++--=+-++++所以…22221213224(1),(12)(12)(1)(21)(1)(1)(321).6263250250,0,,9.3270325(2)(),9,38,0,09,0,0.n n n n n a n kn S n k n n n n kn n n n k n k S S k k a n kn n n k k n n k a n n k a n =-+=-+++++++++++--=-+=->⎧><<<⎨-<⎩=-+=--<<≤-<>≥-><、由得……由得解得因为所以当时;当时所以当8212112222213243122221122228,.(1)1125(1)1(1).(1)(1)21324312,3,4,,,1234,1,(1)(21)1236n n n n n n n n n n n n S S n a n n n a n n a n a a a n a nn n n a a a a a a a a n n a a a n n n n n a +++-=++=⇔=++⇔-=++++--=-=-=-=-=++++=++=++++=时中数值最大的一项为、…累加得…因为所以…6,.(1)(21)61211(2)()6(),(1)(21)(23)(21)21231111111146()6().355721233232364848()(1)(21)(44)(42)(45)(41)1112(),12(4145n n n n n a n n a n n n n n n nS n n n n a n n n n n n S n n =++=>=-++++++>-+-++-=-=++++==<++++++=-<++得文因为所以…理因为所以111111)59913414511481012().5455(45)45n n n n n n n -+-++-++=-=<+++…2112222211222111111126(1)2 2.21111{}2,1,2 1.10,0,(2)()2),nn nn n n n nn nn n nnna aa aa a a a ana a aa a a aa nS+++++=⇔=⇔=+⇔-=+==-=>=>===<=-≥、所以数列是公差为的等差数列首项所以因为由所以文理所以11111, 1.()1 1.n nnnnnna a SaSaS≤+-+++-=+=≤=≤==>=->+-+=-==<=-<+++…因为所以文因为所以…又因为所以…1.()1111nnnnnn SaSaS=-<<==>=≥+=+==<=≤+=+所以对于任意的正整数理因为…所以又因为所以,11,1).nnn SS+≤≤+≤-≤所以对于任意的正整数221212212127(1),,,2[(1)(1)],2(4)(22).1140, 4.2206462[(1)4(1)6].{46}2,n n n n n n n A B C a An Bn C a A n B n C a a An B A n A B C A A B A B A B C C a n n a n n a n n a ---+++=+-+-+=++-+-+==⎧⎧⎪⎪-==⎨⎨⎪⎪-+==⎩⎩+++=+-+-+++++、待定系数使即由已知得解得于是可知数列是公比为的等比数列首项211222221312121223331222222211232314612,46122,324 6.23(2),,,,,22222222222223123.1,,2222222222{}n n n n n n n n n n n n n n n n n n n n n n a n n a n n a a a a a a a a n n b a a a n n a b -+----++=+++=⋅=⋅---=-=-=-=-=-=+++==++++所以得由可知…累加得…将代入得…即数列的前12222123246466.2221246121382(46)(223)6.2232232(223)2121121()1,0,2232255012(),0,1382(46)(223)0223n n n n n nn n n nn n a n n n n n S n n n n n n n S n n n I n S nII n k S n n n n +⋅---++===-++⋅-+++-=--=+++⋅=-=-=>+=->⋅-+++>+项和当时显然成立;假设时成立即成立12223211,1382[(1)4(1)6)[2(1)23)]2(46)(223)(611)(225)2253610,12(1)0,1,.2(1)231212,0,.223223n n n n n k n n n n n n n n n n n n n S n k n n nS n S n n ++=+⋅-++++++>+++-+++=+++>+->=+++->>++.那么当时所以成立这就是说当时不等式也成立综上所述对于任意的正整数都成立即成立。

数列求和习题及答案.docx

数列求和习题及答案.docx

§数列求和( : 45分 分: 100分)一、 ( 每小 7分,共 35 分 )*11.在等比数列 {a n } (n ∈ N ) 中,若 a 1= 1, a 4= 8, 数列的前10 和 ()A . 2- 18B . 2- 192 2 C . 2-110D . 2-111222.若数列 {a n } 的通 公式a n =2n + 2n - 1, 数列 {a n } 的前 n 和 ()n2 n + 12A . 2 + n -1B . 2 + n - 1C . 2n +1+ n 2- 2D . 2n + n - 23.已知等比数列 {an } 的各 均 不等于 1 的正数, 数列 {b } 足 b = lga ,b = 18,b = 12,nnn36数列 {b n } 的前 n 和的最大 等于 ( )A . 126B . 130C . 132D . 1344.数列 {a } 的通 公式n - 1 ·(4 n - 3) , 它的前 100 之和 S等于 ()n a = ( - 1)n100A . 200B .- 200C . 400D .- 4005.数列 1·n , 2(n -1),3(n-2) ,⋯, n ·1的和 ( )n(n + 1)(n + 2) n(n + 1)(2n + 1) n(n + 2)(n + 3)n(n + 1)(n + 2)二、填空 ( 每小 6 分,共 24 分 )6.等比数列 {a } 的前 n 和 n2 22S =2 - 1, a+ a +⋯+ a= ________.n n12n7.已知数列 {a } 的通 a与前 n 和 S之 足关系式S = 2- 3a , a = __________.nnnnnn8.已知等比数列 {a } 中, a 1= 3,a 4= 81,若数列 {b} 足 b =log 3a , 数列的前 nnnnn1b bn + 1n 和 S = ________.n9. 关于 x 的不等式 x 2- x<2nx (n ∈ N * ) 的解集中整数的个数a n ,数列 {a n } 的前 n 和S n , S 100 的 ________.三、解答 ( 共 41 分 )10. (13 分 ) 已知数列 nn和, 于任意的*{a } 的各 均 正数, S 其前 nn ∈N 足关系式2S n = 3a n -3. (1) 求数列 {a } 的通 公式;n(2) 数列 {b} 的通 公式是 b =1 ,前 n 和 T ,求 : 于任意的nnnlog 3a n ·log 3a n + 1正数 n , 有 T n <1.} 足 a + a + a = 28,且 a + 2 是 a , a 的等差11. (14 分) 已知 增的等比数列 {an23432 4中.(1)求数列 {a n} 的通公式;(2) 若 b n= a n log 1n+1成立的最小正整数n 的.a n,S n= b1+b2+⋯+b n,求使S n+ n·2 >50212. (14 分 ) 已知等差数列 {a} 的首 a = 1,公差 d>0,且第二、第五、第十四分n1是一个等比数列的第二、第三、第四.(1)求数列 {a n} 的通公式;n1*n n,是否存在最大的整数t ,使得任意(2)b=n(a n+3) (n ∈N) ,S = b1+b2+⋯+ bn t成立?若存在,求出t ;若不存在,明理由.的 n 均有 S >36答案1 n7.1 3 n-18.n1006. 3(4- 1) 2 4+ 1n2S= 3a-3,10. (1)n n( n≥2) .解由已知得n n- 32S-1= 3a-1故2(S n-S n-1) =2a n= 3a n- 3a n-1,即 a n= 3a n-1 (n ≥2) .故数列 {a n} 等比数列,且公比q= 3.又当 n= 1 , 2a1= 3a1- 3,∴ a1=3. ∴ a n= 3n.(2) 明1∵ b n=n( n+ 1)=1-1.n n+1∴ T n= b1+b2+⋯+ b n111+⋯+11= 1-+-3-n+122n1= 1-n+1<1.11 解 (1) 此等比数列a1,a1q, a1q2, a1q3,⋯,其中 a1≠0, q≠ 0.11213= 28,①由意知: a q+ a q + a qa1q+ a1q3= 2(a 1q2+ 2) .②②× 7-①得 6a 13121q -15a q+ 6a q=0,1即2q2- 5q+ 2= 0,解得 q= 2 或 q= .2∵等比数列 {a n} 增,∴ a1= 2, q=2,∴ a n= 2n.n(2) 由 (1) 得 b n=- n·2,2 n.∴ S = b +b +⋯+ b =- (1 ×2+2×2 +⋯+ n ·2)n 12nn2nT =1×2+2×2 +⋯+ n ·2,③23n + 12T n =1×2+2×2+⋯+ n ·2 . ④由③-④,得-n2 +⋯+ nn + 1T =1×2+1×21·2 - n ·2n +1n + 1n +1= 2 - 2- n ·2 = (1- n) ·2 - 2,∴- T n =- ( n -1) ·2n +1- 2.∴ S n =- ( n -1) ·2n +1- 2.n +1要使 S n +n ·2>50 成立,n + 1n +1>50,即 n即- (n -1) ·2 - 2+n ·22 >26.45x是 增函数,∵2= 16<26,2 = 32>26,且 y = 2 ∴ 足条件的 n 的最小 5.12 解 (1)由 意得 (a 1+ d)(a 1+ 13d) = (a 1 + 4d) 2,整理得 2a 1d = d 2.∵ a 1= 1,解得 d =2, d = 0( 舍 ) .∴ a n = 2n - 1 (n ∈N * ) .(2)b n =1= 1 = 1 1 1n ( a n +3) + 1) 2 n - n + 1 ,2n ( n∴ S = b +b +⋯+ b nn 1 21 1 1 111= 21- 2 + 2- 3+ n-n +111=2(n= 21-n + 1+ 1) .nt假 存在整数 t 足 S n >36 成立,n + 1 -2(n =2(1+ 1)>0,又 S n +1- S n = 2(n + 2)n + 1) n + 2)(n∴数列 {S n } 是 增的.1t 1∴ S 1= 4 S n 的最小 ,故 36<4,即 t<9.又∵ t ∈Z ,∴适合条件的 t 的最大 8.。

高中数学数列求和专项练习题(错位相减、裂项相消、倒序相加)

高中数学数列求和专项练习题(错位相减、裂项相消、倒序相加)

高中数学数列求和专项练习题(错位相减、裂项相消、倒序相加法)一、单选题(本大题共1小题,共5.0分)1.已知函数f(x)满足f(x)+f(1−x)=2,a n=f(0)+f(1n )+f(2n)+⋯+f(n−1n)+f(1)(n∈N∗),则数列{a n}的通项公式为()A. a n=n−1B. a n=nC. a n=n+1D. a n=n2第II卷(非选择题)二、解答题(本大题共18小题,共216.0分)2.已知公差不为零的等差数列{a n}中,a3=7,且a1,a4,a13成等比数列.(1)求数列{a n}的通项公式;(2)记数列{a n·2n}的前n项和为S n,求S n.3.设数列{a n}的前n项和为S n,已知a1=1,a n+1=n+2nS n(n∈N∗).(1)证明:数列{S nn}是等比数列;(2)求数列{S n}的前n项和T n.4.已知等比数列{a n}的前n项和为S n,且a n是S n与2的等差中项,等差数列{b n}中,b1=2,点P(b n,b n+1)在一次函数y=x+2的图象上.(1)求数列{a n},{b n}的通项a n和b n;(2)设c n=a n⋅b n,求数列{c n}的前n项和T n.5.已知等比数列{a n}的前n项和为S n,a n>0且a1a3=36,a3+a4=9(a1+a2).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若S n+1=3b n,求数列{b n}及数列{a n b n}的前n项和T n..6.已知正项数列{a n}的前n项和为S n,√S n是1与(a n+1)2的等比中项.4(1)求证:数列{a n}是等差数列;(2)若b n=a n,数列{b n}的前n项和为T n,求T n.2n7.数列{a n}满足:a1+a2+a3+⋯+a n=12(3n−1).(1)求{a n}的通项公式;(2)若数列{b n}满足a n=3a n b n,求{b n}的前n项和T n.8.已知数列{a n}的前n项和S n,且2a n=2+S n.(1)求数列{a n}的通项公式;(2)若b n=(2n−1)a n,求数列{b n}的前n项和T n.9.设等差数列{a n}的前n项和为S n,若S9=81,a3+a5=14.(1)求数列{a n}的通项公式;(2)设b n=1a n a n+1,若{b n}的前n项和为T n,证明:T n<12.10.等差数列{a n}中,a3=4,a5+a8=15.(1)求数列{a n}的通项公式;(2)设b n=1(n+2)a n ,数列{b n}的前n项和为S n,求证:S n<12;(3)设c n=a n×4 a n,求数列{c n}的前n项和T n.11.已知数列{a n}的前n项和为S n,且S n=n2+n,(1)求数列{a n}的通项公式;(2)令b n=1a n+1a n,求数列{b n}的前n项和.12.已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求数列{a n}的通项公式;}的前n项和T n.(2)设b n=log2a n,求数列{1b n⋅b n+113.已知{a n}是等差数列,满足a1=1,a4=13,数列{b n}的前n项和S n=2n+1−2.(1)求数列{a n}、{b n}的通项公式;(2)设c n=b n+4,求数列{c n}的前n项和T n.a n a n+1(a n+n).14.已知数列{a n}满足:a1=2,a n+1=n+1n(1)设b n=a n,证明:数列{b n}是等差数列;n}的前n项和T n.(2)求数列{1a n15. 已知数列{a n }的前n 项和为S n 满足2S n =4a n −a 2(n ∈N ∗),且a 1,a 2,a 3−1成等差数列.(1)求数列{a n }的通项公式; (2)设b n =1(log2a 2n )(log 2a 2n+2),{b n }的前n 项和为T n ,对任意n ∈N ∗,T n >m23恒成立,求m 的取值范围.16. 已知等差数列{a n }满足:a 3=7,a 5+a 7=26.{a n }的前n 项和为S n .(Ⅰ)求a n 及S n ; (Ⅱ)令b n =1an2−1(n ∈N+),求数列{b n }的前n 项和T n .17. 已知函数y =a x (a >0,且a ≠1)在[2,4]上的最大值与最小值之和为20,记f(x)=x a x +√2.(1)求a 的值;(2)求证:f(x)+f(1−x)为定值;(3)求f(12021)+f(22021)+⋯+f(20202021)的值.18.已知函数f(x)=14x+m(m>0),当x1,x2∈R且x1+x2=1时,总有f(x1)+f(x2)=12.(1)求m的值;(2)设数列{a n}满足a n=f(0)+f(1n )+f(2n)+⋯+f(n−1n)+f(1),求数列{a n}的前n项和S n.19.已知函数f(x)=3x+√3.(1)求证:f(x)+f(1−x)为定值;(2)利用课本中推导等差数列的前n项和公式的方法,求值:f(−100)+f(−99)+⋯+f(0)+⋯+f(100)+f(101).答案和解析1.【答案】C【解析】 【分析】本题考查了数列“倒序相加”求和,属于中档题. 由f(x)+f(1−x)=2,a n =f(0)+f(1n )+⋯+f(n−1n)+f(1),“倒序相加”即可得出. 【解答】解:∵f(x)+f(1−x)=2, a n =f(0)+f(1n )+⋯+f(n−1n)+f(1),∴a n =f(1)+f(n−1n )+⋯+f(1n )+f(0),∴2a n =[f(0)+f(1)]+[f(1n )+f(n−1n)]+⋯+[f(1)+f(0)]=2(n +1),∴a n =n +1. 故选C .2.【答案】解:(1)设等差数列{a n }的公差为d(d ≠0),由a 3=7,且a 1,a 4,a 13成等比数列,得{a 1+2d =7(a 1+3d)2=a 1(a 1+12d),解得a 1=3,d =2. ∴a n =3+2(n −1)=2n +1; (2)∵a n ⋅2n =(2n +1)⋅2n ,∴数列{a n ⋅2n }的前n 项和S n =3⋅21+5⋅22+⋯+(2n +1)⋅2n , 2S n =3⋅22+5⋅23+⋯+(2n −1)⋅2n +(2n +1)⋅2n+1, ∴−S n =6+23+24+⋯+2n+1−(2n +1)⋅2n+1=6+8(1−2n−1)1−2−(2n +1)⋅2n+1,∴S n =2−(1−2n)×2n+1.【解析】本题考查等差数列的通项公式与等比数列的性质,考查错位相减法求数列的前(1)设等差数列{a n}的公差为d(d≠0),由已知列关于首项与公差的方程组,得首项与公差,代入等差数列的通项公式得答案;(2)直接利用错位相减法求数列{a n⋅2n}的前n项和S n.3.【答案】(1)证明:由a n+1=n+2nS n,及a n+1=S n+1−S n,得S n+1−S n=n+2nS n,整理,得nS n+1=2(n+1)S n,∴S n+1n+1=2⋅S nn,又S11=1,∴{S nn}是以1为首项,2为公比的等比列;(2)解:由(1),得S nn=2n−1,∴S n=n⋅2n−1(n∈N∗).∴T n=1×20+2×21+3×22+⋯+n⋅2n−1,①2T n=1×21+2×22+⋯+(n−1)⋅2n−1+n⋅2n,②由②−①,得T n=−(1+2+22+⋯+2n−1)+n⋅2n=−1−2n1−2+n⋅2n=(n−1)⋅2n+1.【解析】本题考查等比数列的定义和通项公式及求和公式的运用,考查数列的求和方法:错位相减法,考查化简整理的运算能力,属于中档题.(1)运用数列的递推式:a n+1=S n+1−S n,代入整理,结合等比数列的定义即可得证;(2)运用等比数列的通项公式,可得S n=n⋅2n−1(n∈N∗).再由数列的求和方法:错位相减法,结合等比数列的求和公式,计算即可得到所求和.4.【答案】解:(1)在数列{b n}中,b1=2,点P(b n, b n+1)在直线y=x+2上.得:b n+1=b n+2,且b1=2,故数列{b n}为等差数列,所以b n=2+2(n−1)=2n;由2a n=S n+2...①得2a n−1=S n−1+2...②(n≥2);将两式相减得:2a n−2a n−1=S n−S n−1;∴a n=2a n−1(n≥2),又∵2a1=S1+2=a1+2,∴a1=2,∴a n=2n;(2)由c n=a n b n=n2n+1,得:T n=1⋅22+2⋅23+3⋅24+⋅⋅⋅+(n−1)⋅2n+n⋅2n+1...①2T n=1⋅23+2⋅24+⋅⋅⋅⋅⋅⋅+(n−1)⋅2n+1+n⋅2n+2...②①−②得,−T n=22+23+24+⋅⋅⋅+2n+1−n⋅2n+2=4−2n+21−2−n⋅2n+2=(1−n)⋅2n+2−4,所以T n=(n−1)2n+2+4.【解析】本题考查了等差数列,等比数列的通项公式,考查了数列求和,属于中档题.(1)根据条件,将点的坐标代入直线方程可得数列为等差数列,则通项公式可知,由等比数列的性质可得数列{a n}为等比数列,则通项公式可得;(2)由错位相减法求和即可.5.【答案】解:(Ⅰ)由题意得:a3+a4=9(a1+a2),可得(a1+a2)q2=9(a1+a2),q2=9,由a n>0,可得q=3,由a1a3=36,可得a1a1q2=36,可得a1=2,∴a n=2×3n−1(n∈N∗);(Ⅱ)由a n=2×3n−1,可得S n=a1(1−q n)1−q =2(3n−1)3−1=3n−1,由S n+1=3b n,可得3n−1+1=3b n,可得b n=n,可得{a n b n}的通项公式:a n b n=2n×3n−1,可得:T n=2×30+2×2×31+2×3×32+...+2×(n−1)×3n−2+2×n×3n−1①,3T n=2×31+2×2×32+2×3×33+...+2×(n−1)×3n−1+2×n×3n②,①−②得:−2T n=2+2×3(3n−1−1)3−1−2×n×3n =2+3n−3−2n×3n=(1−2n)×3n−1,可得T n=(2n−1)×3n2+12.【解析】本题考查等比数列的通项公式与求和公式,错位相减法求和,考查运算化简的能力,属于中档题.(Ⅰ)由a n>0且a1a3=36,a3+a4=9(a1+a2),利用等比数列通项公式求得a1和q即可;(Ⅱ)由S n+1=3b n利用等比数列求和公式可得b n,再由错位相减法可得T n.6.【答案】(1)证明:由于√S n是14与(a n+1)2的等比中项,故S n=14(a n+1)2,n=1时,a1=14(a1+1)2,得a1=1,n=2时,a1+a2=14(a2+1)2,解得a2=3或−1(舍),所以a2−a1=2;当n≥2时,S n−1=14(a n−1+1)2,∴a n=S n−S n−1=14(a n2−a n−12+2a n−2a n−1),(a n+a n−1)(a n−a n−1−2)=0∵a n>0,∴a n−a n−1−2=0即a n−a n−1=2,故{a n }是等差数列;(2)解:数列{a n }为等差数列,首项a 1=1,公差d =2, ∴a n =2n −1, b n =2n−12n,T n =12+322+523+...+2n −12n.① 12T n =122+323+524+...+2n −12n+1.② ①−②:12T n =2×(12+122+123+...+12n )−2n−12n+1−12=2×12(1−12n )1−12−2n−12n+1−12=32−2n+32n+1,求得:T n =3−2n+32n.【解析】本题考查等比数列的性质及等差数列的通项公式,以及错位相减法求和,属于中档题.(1)由已知的√S n 是14与(a n +1)2的等比中项,可得S n =14(a n +1)2,利用作差法可得a n −a n−1=2,即可由等差数列的定义得证;(2)先由(1)的结论,由等差数列的通项公式可求a n ,即可求b n ,由通项可知应该用错位相减法进行求和.7.【答案】解:(1)S n =a 1+a 2+a 3+⋯+a n ,a 1+a 2+a 3+⋯+a n =12(3n −1), n =1时,a 1=1,n ≥2时,a n =S n −S n−1=3n−1,对n =1也成立, ∴a n =3n−1,n ∈N ∗;(2)由a n=3a n b n,所以b n=(n−1)(13)n−1,T n=b1+b2+⋯+b n=13+2×(13)2+⋯+(n−1)(13)n−1 ①,1 3T n=(13)2+2×(13)3+⋯+(n−2)(13)n−1+(n−1)(13)n ②, ①− ②得23T n=13+(13)2+⋯+(13)n−1−(n−1)(13)n,2 3T n=13[1−(13)n−1]1−(13)−(n−1)(13)n,∴T n=34−(2n+14)(13)n−1.【解析】本题考查数列的递推式的运用,考查数列的通项公式和数列的错位相减法求和,化简运算能力,属于中档题.(1)运用数列的递推式,化简可得所求通项公式;(2)求得b n=(n−1)(13)n−1,由数列的错位相减法求和,结合等比数列的求和公式,可得所求和.8.【答案】解:(1)∵数列{a n}的前n项和S n,且2a n=2+S n.∴n=1时,2a1=2+a1,解得a1=2,n≥2时,a n=S n−S n−1=(2a n−2)−(2a n−1−2)=2a n−2a n−1,∴a n=2a n−1.∴{a n}是首项为2,公比为2的等比数列,∴数列{a n}的通项公式a n=2n.(2)b n=(2n−1)a n=(2n−1)⋅2n,∴数列{b n}的前n项和:T n=1×2+3×22+5×23+⋯+(2n−1)×2n,①2T n=1×22+3×23+5×24+⋯+(2n−1)×2n+1,②①−②得:−T n=2+22+23+24+⋯+2n−(2n−1)×2n+1=2(1−2n)1−2−(2n−1)×2n+1=2n+1−2−(2n−1)×2n+1,∴T n=(2n−2)×2n+1+2.【解析】(1)由数列{a n}的前n项和S n,且2a n=2+S n.当n=1时,求出a1=2,n≥2时,a n=S n−S n−1=(2a n−2)−(2a n−1−2)=2a n−2a n−1,求出a n=2a n−1.从而{a n}是首项为2,公比为2的等比数列,由此能求出数列{a n}的通项公式.(2)由b n=(2n−1)a n=(2n−1)⋅2n,利用错位相减法能求出数列{b n}的前n项和.本题考查数列通项公式、前n项和公式的求法,考查等比数列、等差中项、错位相减法等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.9.【答案】解:(1)设等差数列{a n}的公差为d,由S9=9a5=81,得a5=9,又由a3+a5=14,得a3=5,由上可得等差数列{a n}的公差d=2,∴a n=a3+(n−3)d=2n−1;(2)证明:由题意得,b n=1a n a n+1=1(2n−1)(2n+1)=12(12n−1−12n+1).所以T n=12(1−13+13−15+⋯+12n−1−12n+1)=12(1−12n+1)<12.【解析】本题考查了等差数列的通项公式、性质及其求和公式、裂项相消法求和的知识点,考查了推理能力与计算能力,属于较难题.(1)利用等差数列的通项公式、性质及其求和公式即可得出;(2)由题意得,b n=1a n a n+1=1(2n−1)(2n+1)=12(12n−1−12n+1),利用裂项相消法求和即可得出T n=12(1−12n+1),从而得证.10.【答案】(1)解:设等差数列{a n}的公差为d,∵a3=4,a5+a8=15.∴a1+2d=4,2a1+11d=15,解得a1=2,d=1.∴a n=2+(n−1)=n+1.(2)证明:由(1)可得:a n=n+1.b n=1(n+2)a n =1(n+1)(n+2)=1n+1−1n+2,∴数列{b n}的前n项和为S n=12−13+13−14+⋯+1n+1−1n+2=12−1n+2<12.(3)解:c n=a n×4 a n=(n+1)⋅4n+1.∴数列{c n}的前n项和T n=2×42+3×43+4×44+⋯+(n+1)⋅4n+1,4T n=2×43+3×44+⋯+n⋅4n+1+(n+1)⋅4n+2,∴−3T n=2×42+43+44+⋯+4n+1−(n+1)⋅4n+2=16+16(4n−1)4−1−(n+1)⋅4n+2,解得:T n=(3n+2)⋅4n+2−329.【解析】(1)设等差数列{a n}的公差为d,由a3=4,a5+a8=15.可得a1+2d=4,2a1+ 11d=15,解出即可得出.(2)由(1)可得:a n=n+1.b n=1(n+2)a n =1n+1−1n+2,利用裂项求和方法即可得出.(3)c n=a n×4 a n=(n+1)⋅4n+1.利用错位相减法即可得出.本题考查了等差数列与等比数列的通项公式与求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.11.【答案】解:(1)S n=n2+n,可得n=1时,a1=S1=2,n≥2时,a n=S n−S n−1=n2+n−(n−1)2−(n−1)=2n,对n=1也成立,则a n=2n;(2)b n=1a n+1a n =12n⋅2(n+1)=14(1n−1n+1),可得数列{b n}的前n项和为14(1−12+12−13+⋯+1n−1n+1)=14(1−1n+1)=n4n+4.【解析】本题考查数列的递推式的运用,考查数列的裂项相消求和,属于基础题.(1)运用数列的递推式:n=1时,a1=S1,n≥2时,a n=S n−S n−1,计算可得所求通项公式;(2)求得b n=1a n+1a n =12n⋅2(n+1)=14(1n−1n+1),由数列的裂项相消求和可得所求和.12.【答案】解:(1)设等比数列{a n}的公比为q,(q>0),由已知:a1=2,a3=2a2+16,∴2q2=4q+16,即q2−2q−8=0,∴q =4或q =−2(舍去),∴a n =a 1q n−1=2×4n−1=22n−1;(2)由(1)知:b n =log 2a n =log 222n−1=2n −1, ∴1bn ⋅b n+1=1(2n−1)(2n+1)=12(12n−1−12n+1),T n =1b 1⋅b 2+1b 2⋅b 3+⋅⋅⋅+1b n ⋅b n+1=12(1−13+13−15+⋯+12n −1−12n +1) =12(1−12n+1)=n2n+1 .【解析】本题考查等比数列的通项公式及裂项相消法求和的问题,考查对数的运算性质. (1)设等比数列的公比,由已知列式求得公比,则通项公式可求;(2)把(1)中求得的{a n }的通项公式代入b n =log 2a n ,得到b n ,利用裂项相消法求出结果即可.13.【答案】解:(1)设等差数列{a n }公差为d ,因为a 4=a 1+3d ,,a 1=1所以d =4,所以a n =a 1+(n −1)d =1+(n −1)×4 ∴a n =4n −3; 由S n =2n+1−2,当n ⩾2时,b n =S n −S n−1=2n , n =1时,b 1=2对上式也成立, ∴b n =2n . (2)c n =b n +4an a n+1=2n +4(4n−3)(4n+1)=2n +(14n−3−14n+1),T n =21+22+23+...+2n +(1−15)+(15−19)+⋯+(14n −3−14n +1)=2(1−2n )1−2+(1−15)+(15−19)+⋯+(14n −3−14n +1)=2n+1−2+(1−14n+1)=2n+1−4n+24n+1.【解析】本题考查等差数列的通项公式及求和公式,考查方程思想的运用能力及裂项相消法求和的能力,属于中档题.(1)由题意及等差数列的通项公式联立方程解得公差,即可得数列{a n};利用递推数列当n⩾2时,b n=S n−S n−1=2n,验证n=1时即可得到{b n}的通项公式;(2)首先利用分组求和法进行转化,再利用等比数列公式求和以及裂项相消法求和可得答案.14.【答案】(1)证明:由a n+1=n+1n (a n+n),可得a n+1n+1=a nn+1,所以a n+1n+1−a nn=1,由于b n=a nn,可得b n+1−b n=1,又b1=a1=2,所以{b n}为首项为2,公差为1的等差数列.(2)由(1)可知为{b n}等差数列.所以b n=n+1(n∈N∗),可得a nn=n+1,所以a n=n(n+1),所以1a n =1n(n+1)=1n−1n+1,则T n=1a1+1a2+1a3+⋯+1a n=(1−12)+(12−13)+(13−14)+⋯+(1n−1n+1)=1−1n+1=n n+1所以数列{1an }的前n项和T n=nn+1【解析】本题考查了等差数列的判定与证明,等差数列的通项公式,以及裂项相消求和,考查了推理能力与计算能力,属于基础题.(1)将条件变形得a n+1n+1=a nn+1,再代入b n=a nn即可;(2)根据数列{b n}是等差数列可求出数列{1a n}的通项公式,再利用裂项相消法求和.15.【答案】解:(1)由题意得2S1=4a1−a2⇒a2=2a1 ①,∵数列{a n}的前n项和为S n满足2S n=4a n−a2(n∈N∗),∴2S3=4a3−a2⇒a3=2a2 ②,∵a1,a2,a3−1成等差数列,∴2a2=a1+a3−1 ③,由 ① ② ③可得a1=1,a2=2,∴2S n=4a n−2,∴2S n−1=4a n−1−2(n ≥2),∴a n =2a n−1(n ≥2),∴数列{a n }是首项为1,公比为2的等比数列, ∴数列{a n }的通项公式为a n =2n−1. (2)∵b n =1(log2a 2n )(log 2a 2n+2)=1(2n−1)(2n+1)=12(12n−1−12n+1), ∴{b n }的前n 项和T n =12[(1−13)+(13−15)+⋯+(12n−1−12n+1)] =12(1−12n+1),∴{T n }是单调递增数列, ∴T n ≥T 1=13, ∵对任意n ∈N ∗,T n >m23恒成立,∴13>m23⇒m <233,故m 的取值范围为(−∞,233).【解析】本题考查了等差数列的性质、等比数列的通项公式、裂项相消法的相关知识,属于中档题.(1)由题意得2S n =4a n −2,再推导得数列{a n }是首项为1,公比为2的等比数列,即可得{a n }通项公式;(2)由裂项相消法求得T n ,求其最值即可得答案.16.【答案】解:(1)设等差数列{a n }的首项为a 1,公差为d .因为a 3=7,a 5+a 7=26, 所以{a 1+2d =72a 1+10d =26, 解得{a 1=3d =2,所以a n=3+2(n−1)=2n+1,S n=3n+n(n−1)2×2=n2+2n.(2)由(1)知a n=2n+1,所以=14(1n−1n+1),所以T n=14·(1−12+12−13+⋯+1n−1n+1)=14(1−1n+1)=n4(n+1),即数列{b n}的前n项和T n=n4(n+1).【解析】本题考查等差数列的通项公式,等差数列的求和,裂项相消法,考查运算化简的能力,属于中档题.(1)首先设首项为a1,公差为d,根据已知条件列出a1和d的方程组,求解后可得前n项和和通项公式;(2)根据(1)得b n,把b n变成两项的差,用裂项相消法求和.17.【答案】解:(1)函数y=a x(a>0且a≠1)在[2,4]上的最大值与最小值之和为20,而函数y=a x(a>0且a≠1)在[2,4]上单调递增或单调递减,∴a2+a4=20,得a2=4,或a2=−5(舍去),∴a=2;(2)证明:由(1)知,a=2,∴f(x)=x2x+√2,∴f(x)+f(1−x)=x2x+√21−x21−x+√2=2x 2x +√222+√2×2x =2x 2x +√2√2√2+2x =1;(3)由(2)知,f(x)+f(1−x)=1.∵12021+20202021=1,22021+20192021=1,…,10102021+10112021=1, ∴f(12021)+f(22021)+⋯+f(20202021) =[f(12021)+f(20202021)]+[f(22021)+f(20192021)]+⋯+[f(10102021)+f(10112021)] =1010.【解析】本题考查了指数函数的单调性及其应用,利用指数运算性质化简求值,倒序相加的求和思想,考查了学生的计算能力,培养了学生分析问题与解决问题的能力.(1)因为函数y =a x (a >0且a ≠1)在[2,4]上单调递增或单调递减,所以最大值和最小值一定取到端点处,列方程即可解得a 值;(2)利用指数运算性质,代入函数解析式即可化简证明;(3)注意到和式中的自变量的特点,利用(2)的结论,将所求分组求和即可得到结果.18.【答案】解:(1)令x 1=x 2=12,得f(12)=14=12+m ,解得m =2. (2)由a n =f(0)+f(1n )+f(2n )+...+f(n−1n )+f(1), 得a n =f(1)=f(n−1n )+...+f(1n)+f(0), 两式相加,得2a n =[f(0)+f(1)]+[f(1n )+f(n−1n )]+...+[f(1)+f(0)]=12(n +1), 所以a n =14(n +1),显然数列{a n }是等差数列,所以S n =n[12+14(n+1)]2=18n 2+38n .【解析】【分析】本题主要指数函数以及数列的倒序相加法求通项,考查学生分析问题解决问题的能力,属于中档题.(1)利用指数函数代入数值计算即可;(2)利用倒序相加法求通项,在利用等差数列公式求和.19.【答案】(1)证明:因为f(x)=3x+√3.f(x)+f(1−x)=3x+√3+31−x+√3=3x+√3x3+3x⋅√3=x√33+3x⋅√3=√33,所以f(x)+f(1−x)为定值√33.(2)解:设f(−100)+f(−99)+⋯+f(0)+⋯+f(100)+f(101)=M,①f(101)+f(100)+⋯+f(0)+⋯+f(−99)+f(−100)=M,②,将①②两式左右两边分别相加可得[f(−100)+f(101)]+[f(−99)+f(100)]+⋯+[f(101)+f(−100)]=2M,因为f(x)+f(1−x)=√33.所以2M=√33+√33+⋯+√33=√33×202=202√33.故原式=12⋅202√33=101√33.即f(−100)+f(−99)+⋯+f(0)+⋯+f(100)+f(101)=101√33.【解析】本题考查函数的解析式的应用,函数值的求法,倒序相加求和,考查计算能力与推理能力,属于中档题.(1)利用函数的解析式直接求解即可.(2)利用倒序相加求和的方法化简求解即可.。

高三数学数列求和练习题

高三数学数列求和练习题

高三数学数列求和练习题假设有一位名叫小明的高三学生,他正在备战数学考试。

最近,他对数列的求和问题感到十分困惑,因此他向老师请教,老师给了他以下一些练习题。

下面,我们来一起解决这些题目,帮助小明理解数列求和的方法。

练习题一:等差数列求和已知等差数列的首项为a₁,公差为d,请计算这个等差数列的前n 项和Sn。

1. a₁ = 3,d = 2,n = 102. a₁ = -2,d = 4,n = 153. a₁ = 0,d = -3,n = 8解答:对于等差数列来说,可以使用求和公式Sn = n(a₁ + an)/2来计算前n项和。

其中,an表示等差数列的第n项。

1. a₁ = 3,d = 2,n = 10根据公式,代入数据计算得到:Sn = 10(3 + a₁ + 2(n-1))/2= 10(3 + 3 + 2(10-1))/2= 10(6 + 18)/2= 10(24)/2= 1202. a₁ = -2,d = 4,n = 15代入数据计算得到:Sn = 15(-2 + a₁ + 4(15-1))/2= 15(-2 + -2 + 4(14))/2= 15(-4 + 56)/2= 15(52)/2= 3903. a₁ = 0,d = -3,n = 8代入数据计算得到:Sn = 8(0 + a₁ + -3(8-1))/2= 8(0 + 0 + -3(7))/2= 8(0 - 21)/2= 8(-21)/2= -84练习题二:等比数列求和已知等比数列的首项为a₁,公比为q,请计算这个等比数列的前n 项和Sn。

2. a₁ = 4,q = -2,n = 63. a₁ = -6,q = 0.5,n = 7解答:对于等比数列来说,可以使用求和公式Sn = a₁(1 - q^n)/(1 - q)来计算前n项和。

1. a₁ = 2,q = 3,n = 5根据公式,代入数据计算得到:Sn = 2(1 - 3^5)/(1 - 3)= 2(1 - 243)/(-2)= 2(-242)/(-2)= 2422. a₁ = 4,q = -2,n = 6代入数据计算得到:Sn = 4(1 - (-2)^6)/(1 - (-2))= 4(1 - 64)/3= 4(-63)/3= -84代入数据计算得到:Sn = -6(1 - 0.5^7)/(1 - 0.5)= -6(1 - 0.0078125)/0.5= -6(0.9921875)/0.5= -11.859375通过解答以上练习题,我们可以得出结论:数列求和可以通过特定的公式来计算,对于等差数列可以使用Sn = n(a₁ + an)/2,对于等比数列可以使用Sn = a₁(1 - q^n)/(1 - q)。

(完整版)数列求和习题及答案

(完整版)数列求和习题及答案

(完整版)数列求和习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN§6.4 数列求和(时间:45分钟 满分:100分)一、选择题(每小题7分,共35分)1.在等比数列{a n } (n ∈N *)中,若a 1=1,a 4=18,则该数列的前10项和为( )A .2-128 B .2-129 C .2-1210D .2-12112.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为( )A .2n +n 2-1B .2n +1+n 2-1 C .2n +1+n 2-2D .2n +n -23.已知等比数列{a n }的各项均为不等于1的正数,数列{b n }满足b n =lg a n ,b 3=18,b 6=12,则数列{b n }的前n 项和的最大值等于( ) A .126B .130C .132D .1344.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A .200B .-200C .400D .-4005.数列1·n ,2(n -1),3(n -2),…,n·1的和为( )A.16n(n +1)(n +2)B.16n(n +1)(2n +1)C.13n(n +2)(n +3)D.13n(n +1)(n +2) 二、填空题(每小题6分,共24分)6.等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n =________.7.已知数列{a n }的通项a n 与前n 项和S n 之间满足关系式S n =2-3a n ,则a n =__________.8.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n项和S n =________.9.设关于x 的不等式x 2-x<2nx (n ∈N *)的解集中整数的个数为a n ,数列{a n }的前n 项和为S n ,则S 100的值为________. 三、解答题(共41分)10.(13分)已知数列{a n }的各项均为正数,S n 为其前n 项和,对于任意的n ∈N *满足关系式2S n =3a n -3.(1)求数列{a n }的通项公式;(2)设数列{b n }的通项公式是b n =1log 3a n ·log 3a n +1,前n 项和为T n ,求证:对于任意的正数n ,总有T n <1.11.(14分)已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n·2n +1>50成立的最小正整数n 的值.12.(14分)已知等差数列{a n }的首项a 1=1,公差d>0,且第二项、第五项、第十四项分别是一个等比数列的第二项、第三项、第四项. (1)求数列{a n }的通项公式;(2)设b n =1n (a n +3) (n ∈N *),S n =b 1+b 2+…+b n ,是否存在最大的整数t ,使得对任意的n 均有S n >t36总成立?若存在,求出t ;若不存在,请说明理由.答案 1.B 2.C 3.C4.B5.A6. 13(4n -1)7. 12⎝ ⎛⎭⎪⎫34n -18.n n +19.10 10010. (1)解 由已知得⎩⎪⎨⎪⎧2S n =3a n -3,2S n -1=3a n -1-3(n ≥2).故2(S n -S n -1)=2a n =3a n -3a n -1,即a n =3a n -1 (n ≥2). 故数列{a n }为等比数列,且公比q =3.又当n =1时,2a 1=3a 1-3,∴a 1=3.∴a n =3n . (2)证明 ∵b n =1n (n +1)=1n -1n +1.∴T n =b 1+b 2+…+b n=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=1-1n +1<1.11解 (1)设此等比数列为a 1,a 1q ,a 1q 2,a 1q 3,…,其中a 1≠0,q ≠0.由题意知:a 1q +a 1q 2+a 1q 3=28, ① a 1q +a 1q 3=2(a 1q 2+2).②②×7-①得6a 1q 3-15a 1q 2+6a 1q =0, 即2q 2-5q +2=0,解得q =2或q =12.∵等比数列{a n }单调递增,∴a 1=2,q =2,∴a n =2n . (2)由(1)得b n =-n·2n ,∴S n =b 1+b 2+…+b n =-(1×2+2×22+…+n·2n ).设T n =1×2+2×22+…+n·2n ,③ 则2T n =1×22+2×23+…+n·2n +1.④由③-④,得-T n =1×2+1×22+…+1·2n -n·2n +1 =2n +1-2-n·2n +1=(1-n)·2n +1-2, ∴-T n =-(n -1)·2n +1-2.∴S n =-(n -1)·2n +1-2.要使S n +n·2n +1>50成立,即-(n -1)·2n +1-2+n·2n +1>50,即2n >26.∵24=16<26,25=32>26,且y =2x 是单调递增函数, ∴满足条件的n 的最小值为5.12解 (1)由题意得(a 1+d)(a 1+13d)=(a 1+4d)2,整理得2a 1d =d 2.∵a 1=1,解得d =2,d =0(舍). ∴a n =2n -1 (n ∈N *).(2)b n =1n (a n +3)=12n (n +1)=12⎝⎛⎭⎫1n -1n +1,∴S n =b 1+b 2+…+b n=12⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫1n -1n +1 =12⎝⎛⎭⎫1-1n +1=n 2(n +1).假设存在整数t 满足S n >t36总成立,又S n +1-S n =n +12(n +2)-n 2(n +1)=12(n +2)(n +1)>0,∴数列{S n }是单调递增的.∴S 1=14为S n 的最小值,故t 36<14,即t<9. 又∵t ∈Z ,∴适合条件的t 的最大值为8.。

优秀的数列求和单元测试题

优秀的数列求和单元测试题

数列求和单元测试题(一)选择题: 1. 已知数列: 211⨯,321⨯,431⨯,…, )1(1+n n ,…,则其前n 项的和n S 为( ) A.n 11+ B.n 11- C.12++n n D.1+n n2. 数列 ,,,,132a a a 的前n 项的和n S =( ) A.aa n--11 B.aa n ---111C.⎪⎩⎪⎨⎧=≠--)1()1(11n n a aa nD.⎪⎩⎪⎨⎧=≠---)1()1(111n n a a a n 3. 数列9,99,999,…的前n 项和是( ) A.n n+-)110(910 B.110-n C.)110(910-nD.n n --)110(910 4. 数列 ,1614,813,412,211⨯⨯⨯⨯的前n 项和是( )A.12212+--n n nB.n n n 22121---C.n n n 21)2(212-++D.1211)1(21--++n n n5. 数列)2141211()41211()211(11-+++++++++++=n n S =( )A.n n2B.1212-+n nC.12122-+-n nD.121--n n(二)填空题:6. 1-2+3-4+…+99-100的值是 ;1+3+3+…+81的值是 .7. 数列{n}的前n 项和是 . 8. 数列}{n a 的通项为nn a n ++=11,则100S = .9.3211⨯⨯+4321⨯⨯+5431⨯⨯+…+ )2)(1(1++n n n =.10. 已知某数列的通项公式为12-=n n a ,则2047是这个数列的( ) A.第10项 B.第11项 C.第12项 D.第13项11. 已知数列,,32,3,6,3 那么6是这个数列的( )A.第10项B.第11项C.第12项D.第13项12. 已知n n n a a a a a -===++1221,6,3,那么5a 的值是( )A.3B.6C.-3D.-613. 已知数列}{n a 满足na n a a 3log ,1211==+,则5a 的值是( )A.3log 42B.3log 52C.42)3(logD.52)3(log 14. (97高职)数列}{n a 的前n 项和)1(+=n n S n ,则它的第n 项n a 是( )A.nB.n(n+1)C.2nD.n 215. 已知数列}{n a 的通项公式为n a n 351-=,那么数列}{n a 的前n 项和nS 达到最大值时n=( )A.15B.18C.16或17D.19(二)填空题: 16. 数列1,41-,91,161-,x,361-,…中,x= . 17. 数列7,77,777,7777,77777,…的一个通项公式是 .18. 已知数列}{n a 的前n 项和12+=n S n ,则它的第n 项n a = . 19. 已知数列}{n a 的前n 项和1322+-=n n S n ,那么1054a a a +++ =.(三)解答题:20、已知数列}{n a 的前n 项和n S ,求数列}{n a 的通项公式: (1) n S n n 1)1(+-=; (2)322++=n n S n .21、已知数列}{n a 的前n 项和pn n S n +=2,数列}{n b 的前n 项和n n T n 232-=,若1010b a =,求p 的值.22、已知数列}{n a 的前n 项和1322++=n n S n ,求n a .23、写出下列数列的一个通项公式,使它的前4项分别是下面各列数:(1)1,3,5,7; (2)1,3,6,10;(3)31,1,59,38; (4)21,49-,625,849-.24、求数列1-a ,22-a ,33-a ,…,n a n -,…的前n 项的和.25、求数列)1(-a ,)1(22-a ,)1(33-a ,…,)1(-n a n ,…的前n 项的和.26、求数列)1(-a ,)1(22-a ,)1(33-a ,…,)1(-n a n ,…的前n 项的和.27、已知数列 ,3211,,3211,211,11n+++++++,求该数列的前n 项和.。

数列求和专项练习(含答案)

数列求和专项练习(含答案)

数列求和专项练习1.在等差数列{}n a 中,已知34151296=+++a a a a ,求前20项之和。

2.已知等差数列{}n a 的公差是正数,且,4,126473-=+-=a a a a 求它的前20项之和。

3.等差数列{}n a 的前n 项和S n =m ,前m 项和S m =n (m>n ),求前m+n 项和S n+m4.设y x ≠,且两数列y a a a x ,,,,321和4321b y b b x b ,,,,,均为等差数列,求1243a a b b --5.在等差数列{}n a 中,前n 项和S n ,前m 项和为S m ,且S m =S n , n m ≠,求S n+m6.在等差数列{}n a 中,已知1791,25S S a ==,问数列前多少项为最大,并求出最大值。

7.求数列的通项公式:(1){}n a 中,23,211+==+n n a a a(2){}n a 中,023,5,21221=+-==++n n n a a a a a9.求证:对于等比数列前n 项和S n 有)(32222n n n n n S S S S S +=+10. 已知数列{}n a 中,前n 项和为S n ,并且有1),(241*1=∈+=+a N n a S n n (1)设),(2*1N n a a b n n n ∈-=+求证{}n b 是等比数列;(2)设),(2*N n a c nn ∈=求证{}n b 是等差数列;11.设数列满足,(Ⅰ)求数列的通项公式:(Ⅱ)令,求数列的前n 项和.【规范解答】(Ⅰ)由已知,当时,而,满足上述公式,所以的通项公式为. (Ⅱ)由可知,①从而 ②①②得{}n a 12a ={}n a n n b na ={}n b n S 1n ≥[]111211()()()n n n n n a a a a a a a a ++-=-+-++-+21232(1)13(222)22n n n --+-=++++=12a ={}n a 212n n a -=212n n n b na n -==•35211222322n n n s -=•+•+•++•23572121222322n n n s +=•+•+•++•-3521212(12)22222n n n n s -+-=++++-•即 12.已知数列{}n a 的前n 项和*∈+=N n nn S n ,22. (1)求数列{}n a 的通项公式;(2)设()n nan a b n 12-+=,求数列{}n b 的前n 2项和.【答案】(1) n a n = (2) 21222n n T n +=+-13.已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式;211(31)229n n S n +⎡⎤=-+⎣⎦(Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .(Ⅰ)由题设可知83241=⋅=⋅a a a a ,又941=+a a , 可解的⎩⎨⎧==8141a a 或⎩⎨⎧==1841a a (舍去)由314q a a =得公比2=q ,故1112--==n n n qa a . (Ⅰ)1221211)1(1-=--=--=n n n n q q a S 又1111111n n n n n n n n n n a S S b S S S S S S +++++-===-所以1113221211111...1111...++-=⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+++=n n nn n S S S S S S S S b b b T12111--=+n .14. 设数列{}n a 的前n 项和为n S .已知233nn S =+.(I )求{}n a 的通项公式;(II )若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T . 【解析】所以,13,1,3,1,n n n a n -=⎧=⎨>⎩1363623n n +=-⨯ ,又1T 适合此式.13631243nnn T +=-⨯ 15.知等差数列满足:,,的前n 项和为.(1)求及;(2)令(n N *),求数列的前n 项和. 【命题立意】本题考查等差数列的通项公式与前n 项和公式的应用、裂项法求数列的和,考查了考生的逻辑推理、等价变形和运算求解能力.【思路点拨】(1)设出首项和公差,根据已知条件构造方程组可求出首项和公差,进而求出求及;(2)由(1)求出的通项公式,再根据通项的特点选择求和的方法.【规范解答】(1)设等差数列的公差为d ,因为,,所以有,解得, 所以;==. (2)由(1)知,所以b n ===, 所以==,即数列的前n 项和=.{}n a 37a =5726a a +={}n a n S n a n S n b =211n a -∈{}n b n T n a nS n b {}n a 37a =5726a a +=112721026a d a d +=⎧⎨+=⎩13,2a d ==321)=2n+1n a n =+-(n S n(n-1)3n+22⨯2n +2n 2n+1n a =211n a -21=2n+1)1-(114n(n+1)⋅111(-)4n n+1⋅n T 111111(1-+++-)4223n n+1⋅-11(1-)=4n+1⋅n4(n+1){}n b n T n4(n+1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列求和 测试题 A 级 基础题1.数列{1+2n -1}的前n 项和S n =________.2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=________. 3.数列112,314,518,7116,…的前n 项和S n =________. 4.已知数列{a n }的通项公式是a n =1n +n +1,若前n 项和为10,则项数n =________.5.数列{a n },{b n }都是等差数列,a 1=5,b 1=7,且a 20+b 20=60.则{a n +b n }的前20项的和为________.6.等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n =________.7.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和S n =________.二、解答题(每小题15分,共45分) 8.已知{a n }为等差数列,且a 3=-6,a 6=0. (1)求{a n }的通项公式;(2)若等比数列{b n }满足b 1=-8,b 2=a 1+a 2+a 3,求{b n }的前n 项和公式.9.设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .10.已知首项不为零的数列{a n }的前n 项和为S n ,若对任意的r ,t ∈N *,都有 S r S t =⎝ ⎛⎭⎪⎫r t 2.(1)判断{a n }是否是等差数列,并证明你的结论;(2)若a 1=1,b 1=1,数列{b n }的第n 项是数列{a n }的第b n -1项(n ≥2),求b n ; (3)求和T n =a 1b 1+a 2b 2+…+a n b n .B 级 创新题1.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为________.2.若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为________. 3.数列1,11+2,11+2+3,…的前n 项和S n =________. 4.在等比数列{a n }中,a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.5.已知S n 是等差数列{a n }的前n 项和,且S 11=35+S 6,则S 17的值为________. 6.等差数列{a n }的公差不为零,a 4=7,a 1,a 2,a 5成等比数列,数列{T n }满足条件T n =a 2+a 4+a 8+…+a 2n ,则T n =________.7.设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=21,a 5+b 3=13.(1)求{a n },{b n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和S n .8.在各项均为正数的等比数列{a n }中,已知a 2=2a 1+3,且3a 2,a 4,5a 3成等差数列.(1)求数列{a n }的通项公式;(2)设b n =log 3a n ,求数列{a n b n }的前n 项和S n . 参考答案 A 组1. 解析 S n =n +1-2n1-2=n +2n -1.答案 n +2n -12. 解析 设b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15. 答案 153. 解析 由题意知已知数列的通项为a n =2n -1+12n ,则S n =n (1+2n -1)2+12⎝ ⎛⎭⎪⎫1-12n 1-12=n 2+1-12n . 答案 n 2+1-12n 4. 解析 ∵a n =1n +n +1=n +1-n ,∴S n =a 1+a 2+…+a n =(2-1)+(3-2)+…+(n +1-n )=n +1-1.令n +1-1=10,得n =120.答案 1205. 解析 由题意知{a n +b n }也为等差数列,所以{a n +b n }的前20项和为: S 20=20(a 1+b 1+a 20+b 20)2=20×(5+7+60)2=720.答案 7206. 解析 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1-(2n -1-1)=2n -1,又∵a 1=1适合上式.∴a n =2n -1,∴a 2n =4n -1.∴数列{a 2n }是以a 21=1为首项,以4为公比的等比数列.∴a 21+a 22+…+a 2n =1·(1-4n )1-4=13(4n -1). 答案 13(4n-1)7. 解析 设等比数列{a n }的公比为q ,则a 4a 1=q 3=27,解得q =3.所以a n =a 1q n -1=3×3n -1=3n ,故b n =log 3a n =n ,所以1b n b n +1=1n (n +1)=1n -1n +1.则数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和为1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.答案nn +18. 解 (1)设等差数列{a n }的公差为d . 因为a 3=-6,a 6=0,所以⎩⎨⎧a 1+2d =-6,a 1+5d =0.解得a 1=-10,d =2.所以a n =-10+(n -1)·2=2n -12. (2)设等比数列{b n }的公比为q . 因为b 2=a 1+a 2+a 3=-24,b 1=-8,所以-8q =-24,即q =3.所以{b n }的前n 项和公式为S n =b 1(1-q n )1-q=4(1-3n ).9. 解 (1)设q 为等比数列{a n }的公比,则由a 1=2,a 3=a 2+4得2q 2=2q +4,即q 2-q -2=0,解得q =2或q =-1(舍去),因此q =2. 所以{a n }的通项为a n =2·2n -1=2n (n ∈N *) (2)S n =2(1-2n )1-2+n ×1+n (n -1)2×2=2n +1+n 2-2.10. 解 (1){a n }是等差数列. 证明如下:因为a 1=S 1≠0,令t =1,r =n ,则由S r S t =⎝ ⎛⎭⎪⎫r t 2,得S nS 1=n 2,即S n =a 1n 2,所以当n ≥2时,a n =S n -S n -1=(2n -1)a 1,且n =1时此式也成立,所以a n +1-a n =2a 1(n ∈N *),即{a n }是以a 1为首项,2a 1为公差的等差数列. (2)当a 1=1时,由(1)知a n =a 1(2n -1)=2n -1, 依题意,当n ≥2时,b n =ab n -1=2b n -1-1, 所以b n -1=2(b n -1-1),又b 1-1=2,所以{b n -1}是以2为首项,2为公比的等比数列,所以b n -1 =2·2n -1,即b n =2n +1.(3)因为a n b n =(2n -1)(2n +1)=(2n -1)·2n +(2n -1)T n =[1·2+3·22+…+(2n -1)·2n ]+[1+3+…+(2n -1)],即T n =[1·2+3·22+…+(2n -1)·2n ]+n 2,①2T n =[1·22+3·23+…+(2n -1)·2n +1]+2n 2,② ②-①,得T n =(2n -3)·2n +1+n 2+6. B 组1. 解析 设数列{a n }的公比为q .由题意可知q ≠1,且9(1-q 3)1-q =1-q 61-q,解得q=2,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公比的等比数列,由求和公式可得S 5=3116.答案 3116 2. 解析a n =2n -1,设b n =1a n a n +1=⎝ ⎛⎭⎪⎫122n -1,则T n =b 1+b 2+…+b n =12+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫122n -1=12⎝⎛⎭⎪⎫1-14n 1-14=23⎝ ⎛⎭⎪⎫1-14n . 答案 23⎝ ⎛⎭⎪⎫1-14n3. 解析 由于数列的通项a n =11+2+3+…+n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1, ∴S n =2⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1= 2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1.答案 2n n +14. 解析 ∵a 4a 1=q 3=-8,∴q =-2.∴|a 1|+|a 2|+…+|a n |=12(1-2n )1-2=2n -1-12.答案 -2 2n -1-125. 解析 因S 11=35+S 6,得11a 1+11×102d =35+6a 1+6×52d ,即a 1+8d =7,所以S 17=17a 1+17×162d =17(a 1+8d )=17×7=119. 答案 1196. 解析 设{a n }的公差为d ≠0,由a 1,a 2,a 5成等比数列,得a 22=a 1a 5,即(7-2d )2=(7-3d )(7+d ) 所以d =2或d =0(舍去). 所以a n =7+(n -4)×2=2n -1.又a 2n =2·2n -1=2n +1-1,故T n =(22-1)+(23-1)+(24-1)+…+(2n +1-1) =(22+23+…+2n +1)-n =2n +2-n -4. 答案 2n +2-n -47. 解 (1)设{a n }的公差为d ,{b n }的公比为q ,则依题意有q >0且⎩⎨⎧ 1+2d +q 4=21,1+4d +q 2=13,解得⎩⎨⎧d =2,q =2.所以a n =1+(n -1)d =2n -1,b n =q n -1=2n -1. (2)a n b n=2n -12n -1,S n =1+321+522+…+2n -32n -2+2n -12n -1,①2S n =2+3+52+…+2n -32n -3+2n -12n -2.②②-①,得S n =2+2+22+222+…+22n -2-2n -12n -1=2+2×⎝ ⎛⎭⎪⎫1+12+122+…+12n -2-2n -12n -1=2+2×1-12n -11-12-2n -12n -1=6-2n +32n -1. 8. 解 (1)设{a n }公比为q ,由题意,得q >0,且⎩⎨⎧a 2=2a 1+3,3a 2+5a 3=2a 4,即⎩⎨⎧a 1(q -2)=3,2q 2-5q -3=0. 解得⎩⎨⎧a 1=3,q =3或⎩⎪⎨⎪⎧a 1=-65,q =-12(舍去).所以数列{a n }的通项公式为a n =3·3n -1=3n ,n ∈N *.(2)由(1)可得b n =log 3a n =n ,所以a n b n =n ·3n . 所以S n =1·3+2·32+3·33+…+n ·3n . 所以3S n =1·32+2·33+3·34+…+n ·3n +1两式相减,得2S n =-3-(32+33+…+3n )+n ·3n +1 =-(3+32+33+…+3n )+n ·3n +1 =-3(1-3n )1-3+n ·3n +1=3+(2n -1)·3n +12.所以数列{a n b n }的前n 项和为S n =3+(2n -1)·3n +14.。

相关文档
最新文档