苏科版八年级数学上册 第1章 全等三角形 1.1全等图形 教案
苏科版八年级数学上册《1章 全等三角形 1.3 探索三角形全等的条件 “HL”》公开课教案_17

11.3探索三角形全等的条件⑸学习目标⒈理解“HL”的条件,并运用“HL”判别两个直角三角形全等;⒉了解特殊与一般的关系,培养辩证的思维方法;⒊要求学生学会文字语言、符号语言和图形语言的表达和相互转化.学习重点、难点理解“HL”的条件,并运用“HL”判别两个直角三角形全等教学过程一、设置情景,探索问题1、复习:(1)、判定两个三角形全等方法,,,,。
(2)、有两条直角边对应相等的两个直角三角形全等吗?理由是什么?(3)、有一个锐角和斜边对应相等的两个直角三角形全等吗?理由是什么?情境1:试用尺规作出满足下列条件的三角形.⑴∠B=30°,AB=5cm,AC=3cm;(追问:所作的三角形为什么不一定全等?)⑵∠B=30°,AB=5cm,AC=2.5cm;(追问:所作的三角形全等吗?)情境2:先准备一张等腰三角形纸片ABC(AB=AC),将它沿底边上的高AD对折.让学生猜测:高两侧的部分能否完全重合?(如图11.3-5-3)为什么?情境3:两个直角三角形全等的条件有哪些?与你的同伴交流交流.问题1:“SSA”和“AAA”不能作为三角形全等的判定,你能举出反例吗?问题2:既然直角三角形是特殊的三角形,那么它是否也有特殊的全等条件呢?2、归纳总结:对两个直角三角形,如果斜边和一条直角对应相等,那么这两个直角三角形全等.简写为“斜边、直角边”或“HL”.⑵如何正确进行文字语言、符号语言和图形语言的相互转化.二、小试牛刀:1.已知:如图,△ABC 中,AB =AC ,AD 是高,则______≌______,依据是______.BD =______,∠BAD =______.2.如图,∠C =∠D =90°,请你再添加一个条件,使△ABD ≌ △BAC ,并在添加的条件后的( )内写出判定全等的依据.(1) ( )(2) ( )(3) ( )(4) ( )三、例题教学例1.如图,AB =AE ,BC =ED ,∠B =∠E ,AF ⊥CD ,F 为垂足,求证:CF =DF .例2、已知:如图,AD ⊥DB ,BC ⊥CA ,AC 、BD 相交于点O ,且AC=BD.⑴试说明:OD=OC .⑵在图中,你还能得到哪些结论?四、体会·交流1.“HL”定理是:有________相等的两个_____三角形全等.2.在应用“HL”定理时,必须先得出两个_____三角形,然后证明___________对应相等.这节课你有什么收获,还有什么疑惑?与你的同伴进行交流.。
最新最全苏科版数学八年级上册全册教学课件

B
C
E
F
1.3 探索三角形全等的条件(1)
讨论交流:
1.当两个三角形的1对边或角相等时,它们全等吗? 2.当两个三角形的2对边或角分别相等时,它们全 等吗? 3.当两个三角形的3对边或角分别相等时,它们全 等吗?
1.3 探索三角形全等的条件(1)
探索活动:
(一)如图,每人用一张长方形纸片剪一个直角三 角形,怎样剪才能使剪下的所有直角三角形都能够重 合?
C
E
F
对应角 对应边 表示两个三角形全等时,通常把 对应顶点的字母写在对应的位置上.
对应顶点
如:△BCA≌ △EFD.
1.2 全等三角形
A
D
F C E B ∵△ABC ≌ △DEF (已知), ∴AB=DE,BC=EF,AC=DF
(全等三角形的对应边相等),
∴ ∠A=∠D,∠B=∠E,∠C =∠F (全等三角形的对应角相等).
C
E
F
1.3 探索三角形全等的条件(1)
新知应用:
例1 如图,AB =AD,∠BAC =∠DAC. 求证:△ABC ≌ △ADC.
D
证明:在△ABC和△ADC中, AB= AD(已知) , ∠BAC=∠DAC (已知), A AC=AC(公共边), ∴ △ABC ≌ △ADC(SAS).
作法:
图形:
aa
b b
1.作∠MAN =∠α.
2.在射线AM、AN上分别
作线段AB=a,AC=b .
3.连接BC,
△ABC就是所求作的三角形.
1.3 探索三角形全等的条件(1)
提炼归纳:
基本事实: 两边及其夹角分别相等的两个三角形全等(简写成 “边角边”或“SAS”) .
1.2 全等三角形 课件 苏科版数学八年级上册

例 1 如图1.2-1,△ABD≌△CDB,∠ABD=∠CDB,写 出这两个三角形中的对应边和对应角.
解题秘方:根据全等三角形的表示方法,结合图 形的位置特征确定对应边和对应角. 解:BD和DB、AD和CB、AB和CD是对应边; ∠ A 和 ∠ C 、 ∠ ABD 和 ∠ CDB 、 ∠ ADB 和 ∠CBD是对应角.
第1章 全等三角形 1.2 全等三角形
全等三角形 全等三角形的性质
小名作业本上画的三角形被墨迹污染了,她想画一 个与原来完全一样的三角形,她该怎么办?请你帮助小 名想一个办法,并说明你的理由?
注意:与原来完全一样的三角形,即是与原来三角形 全等的三角形.
知识点 1 全等三角形
1. 全等三角形的相关概念 (1)全等三角形的定义: 两个能完全重合的三角形叫做全等三角形. (2)全等三角形的对应元素: ① 对应顶点:全等三角形中,能够重合的顶点; ② 对应边:全等三角形中,能够重合的边; ③ 对应角:全等三角形中,能够重合的角.
解题秘方:由全等三角形的性质知AB=FD,由等式的基 本性质可得AD=FB,所以要求FB 的长,只需求AD 的长.
解:∵△ABC≌△FDE,∴ AB=FD. ∴ AB-DB=FD-BD,即AD=FB. ∵ AB=8 cm,BD=6 cm, ∴ AD=AB-DB=8-6=2(cm). ∴ FB=AD=2 cm.
2. 全等三角形的表示方法 全等用符号“≌”表示,读
作“全等于”. 表示两个三角形全等时,通常把对应
顶点的字母写在对应的位置上.
A
F
B
CD
E
△ABC≌△FDE
Байду номын сангаас
对应边、对应角是两个全等三角形中对应 的两条边、对应的两个角;对边、对角是同一 个三角形中的边和角,“对边”是指三角形中 某个角所对的边,“对角”是指三角形中某条 边所对的角.
苏科版八年级数学上册全等三角形课件

预习导学
思考 (1)图中的两个三角形全等吗?若全等,如何用符号 表示这两个三角形全等?
(2)全等三角形有几组对应顶点、有几组对应边、有几组对 应角?
(3)对应边之间有什么数量关系呢?对应角呢? 答:(1)图中的两个三角形全等,记作“△ABC≌△A'B'C'”, 读作“△ABC全等于△A'B'C'”.表示两个三角形全等时,通常把 对应顶点的字母写在对应的位置上.
合作探究
(2)已知BC=7,AD=5,求AF的长. 解:(2)∵△ABD≌△CFD,∴AD=DC=5,BD=DF.∵BC =7,∴BD=BC-CD=7-5=2,∴AF=AD-DF=5-2=3. 方法归纳交流 通过全等三角形证明垂直的基本思路是根 据“全等三角形对应角相等”,再结合“相等且 互补 的两
预习导学
归纳总结 只改变图形的 位置 ,而不改变其形状、大小
的变换叫做全等变换,常见的全等变换有 平移、
翻折、
三种情势.
旋转
预习导学
已知图中的两个三角形全等,则∠1等于 60° .
合作探究
判定两直线平行 1.如图,点A,B,C,D在同一条直线上,
△ACE≌△DBF,求证:CE∥BF,AE∥DF.
◎难点:能够用图形运动的方法辨认复杂图形中的全等三角 形.
预习导学
在上节课我们学习了全等图形,想一想全等图形具有怎样 的性质?那么能完全重合的两个三角形具有哪些性质呢?这节 课我们就来探讨全等三角形的性质.
预习导学
·导学建议· 回忆旧知,唤醒学生的记忆,从而导入新课. (准备直尺、白纸)
苏科版初中八年级数学上册第一章《全等三角形》PPT课件

C
BC=EF,
CA=FD,
∴ △ABC ≌△ DEF(SSS).
E
F
1.3 探索三角形全等的条件(6)
二、自主探究
如果一个三角形三边的长度确定,那么这个三角 形的形状和大小就完全确定.三角形的这个性质叫做 三角形的稳定性.
1.3 探索三角形全等的条件(6)
三、知识应用
1.下列图形中,哪两个三角形全等?
分别以点C、 D为圆心,大 于为半12 径CD作的弧长, 两弧在 ∠AOB的内部 交于点M.
画射线OM 作射线OM
C
M
D
∴射线OM就是所求作的图形.
1.3 探索三角形全等的条件(7)
3.证 请对你的作法进行证明. 证明:在△MOC和△MOD中,
OC=OD,
4.用 用直尺和圆规完成以下作图:OM=OM,
四、尝试练习
1.已知:如图,AB=CD,AD=CB,
求证:∠B=∠D.
D
C 证明:连结AC,
在△ABC 和△CDA中,
A
B
AB=CD(已知),
BC=DA(已知),
AC=CA(公共边),
∴ △ABC≌△CDA(SSS),
∴∠B=∠D .
1.3 探索三角形全等的条件(6)
四、尝试练习
2.如图,AC、BD相交于点O,且AB=DC, AC=BD.求证:∠A=∠D.
1.3 探索三角形全等的条件(1)
探索活动:
(二)如图,△ABC与△DEF、 △MNP能完全重合
吗?
A
1.5
45
B
3
D
1.5 60
M
3
E C
F
3
N
45
苏科版-数学-八年级上册-1.1 全等图形 教案 (2)

全等图形教学目标【知识与能力】1.认识全等图形,理解全等图形的概念与特征;2.能欣赏有关的图案,并能指出其中的全等图形.【过程与方法】通过抽象出全等图形的概念的过程,提高抽象能力.【情感态度价值观】体会数学来源于生活,体会全等图形的美.教学重难点【教学重点】全等图形的概念和特征,认识全等图形.【教学难点】在众多类似的图形中找出全等图形.教学过程一、创设情境我们生活在丰富的图形世界,图形美化了我们的生活,我们曾走进图形世界进行研究、探索,今天我们将再次走进图形世界。
(结合课本6-7页)平移这一组几何图片中你们又发现什么?作用:通过观察、对比、分析,让学生对全等图形有一印象深刻的感性认识。
二、新知探索1.请你说说全等图形的含义?全等图形:能够完全重合的图形叫做全等图形。
(简介全等多边形)2.刚才老师已经给大家出示几组全等图形,下面大家以小组为单位讨论这样两个问题:(1)你能说出生活中全等图形的例子吗?(2)观察下面两组图形,他们是不是全等图形?为什么?全等图形的性质:全等图形的形状相同、大小相同。
说明:1.能够完全重合的图形叫全等图形。
形状和大小相同是全等图形的特征。
因此要判断图形是否全等,应根据全等图形的定义或特征。
2.找出全等图形的方法:每一个图案其实是把一个基本的图形经过若干次旋转、平移、翻折而成的。
拓展思考:(1)全等图形的周长、面积有怎样的关系?——相等(2)全等图形有没有什么不同的地方?——位置(3)全等图形若是多边形,你能得到什么结论?——对应边相等,对应角相等动手操作:1.动手操作书第7页。
图形1中小鱼经过怎样的变换得到的?——由第1个图形向右平移7格得到的图形2中小鱼经过怎样的变换得到的?——由第1个图形沿对称轴翻折得到的问题3中小鱼经过怎样的变换得到的?——由第1个图形绕图中两个图形的公共点按逆时针旋转90度得到的。
2.把正方形分成四个全等的图形,请设计三种图案.三、课堂小结通过学习,正确认识全等图形,理解全等图形的概念与特征;掌握全等图形识别方法。
苏教版八年级数学第一章:全等图形自主学习五步索引教学案

1.1 全等图形一、教学目标:1、会说出什么样的图形是全等图形。
2、理解全等图形的基本特征,掌握全等图形的识别方法。
二、教学重难点:重点:理解全等图形的基本特征,掌握全等图形的识别方法。
难点:是全等图形的识别。
三、自主学习1、能够完全的图形叫做全等图形。
2、两个全等图形,他们的和都相同。
3、用不同的方法把正方形分割成两个全等图形。
四、合作探究1、创设情境(1)、见课本图,我们生活中还见过类似的图案吗?举例说明。
(2)、大家看下面一组几何图形,观察它们的特点?(哪些是全等的,哪些不是全等的)2、全等图形的定义和特征分别是什么?定义:特征:3、实践应用:(见课本)(1)、议一议(2)、做一做(在课本上完成)4、拓展提高沿着图的虚线,分别把下面的图形划分为两个全等图形(至少找出两种方法),并与同伴进行交流.(分组、讨论、展示)5、小结:五、达标巩固1、你能把图中的这个平行四边形分成两个全等的图形吗?能分成四个全等的图形吗?2、把图中的等边三角形分成2个、3个、4个全等图形。
3、提出问题:如图4,做四个全等的小“L”型纸片,将它们拼成一个与大“L”型全等的图案。
你还能拼出什么图形?1.2 全等三角形一、 教学目标:1.知道三角形全等的意义,能正确找出全等三角形对应顶点、对应角、和对应边。
会用符号表示两个三角形全等。
2.能说出全等三角形的对应角相等、对应边相等的性质。
3.经历三角形平移、翻折、旋转变换的过程,了解用图形变换识别全等三角形的方法。
4.能进行简单的说理和计算。
二、 教学重难点:教学重点:全等三角形的性质。
教学难点:全等三角形对应元素的确定方法。
三、 自主学习:1、两个能够 的三角形是全等 三角形。
表示全等的符号是2、在表示两个全等三角形时,要把对应顶点的字母写在 上。
3全等三角形的对应 相等,对应 相等. 4、在图中的一副七巧板中,试找出全等的三角形.5、图中的2个三角形全等,则可记为△ABC ≌△F______,其中点A 的对应顶点是_______,边BC 的对应边是______,∠ACB 的对应角是_______.四、 合作探究 (一)、情境创设( 见课本)(二)探究活动1、会用符号表示两个三角形全等问题2:这两个三角形的形状如何?大小怎样?(教师板书给出全等三角形的定义、符号表示、读法和写法;给出对应边、对应角、对应顶点的概念,并强调对应顶点写在对应位置上。
(苏科版)八年级数学上册《1.1全等图形》ppt课件

八年级(上册)
1.1
全等图形
1.1 全等图形
欣赏
能完全重合的图形叫做 全等图形
学科网
1.1 全等图形
观察下面两组图形,它们是不是全等图形?为什么?
如果两个图形全等,那么它们的
和
都相同.
1.1 全等图形
交流 找出下列图形中的全等图形.
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
1.1 全等图形
拓展
你能把图中的等边三角形分成两个全等的三 角形吗?三个、四个、六个呢?
1.1 图形的全等
找出下列各组中的全等图形。
( 1)
A
B
C
D
1.1 图形的全等
找出下列各组中的全等图形。
( 2)
A
B
C
D
下列说法是否正确,并简要说明理由: (1) 边长相等的正方形都是全等图形;
(2) 同一面中华人民共和国国旗上,4个小
(10)
(11)
1.1 全等图形
尝试 1.找出图中的全等图形.
观察下面各图中的全等图形,思考:第二个图 形是由第一个图形怎样变换得到的?并按照同 样的方法分别画出第3个、第4个图形。
用不同的方法沿着网络线把4×4的 正方形分割成两个全等的图形。
我们看看下面的几种划分方法,与你的划分方 法对比一下,看看自己是如何划分的。
五角星都是全等图形. (3) 面积相等的两个三角形是全等三角形
(4)
两个全等三角形的面积相等
(5) 半径相等的两个圆是全等图形 (6)能完全重合的图形是全等图形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八数(上)
1.1全等图形
【教学目标】
1.认识全等图形,理解全等图形的概念与特征.
2.理解全等图形的基本特征,掌握全等图形的识别方法.
3.让学生在操作、交流中经历平移、翻折、旋转等全等变换的过程,提高识图的
能力.
【教学重点】
理解全等图形的概念与特征.
【教学难点】
理解全等图形的基本特征,掌握全等图形的识别方法.
自学
一、导入:观察下列各组中的图形有怎样的关系?
二、示标:
1.认识全等图形,理解全等图形的概念与特征.
2.理解全等图形的基本特征,掌握全等图形的识别方法.
3.让学生在操作、交流中经历平移、翻折、旋转等全等变换的过程,感受图形的变化。
三、导学:
1.这些图案有哪些共同特征?你还能举出类似这样的生活实例吗?
2.观察下面两组图形,它们是不是全等图形?为什么?
3.两个图形全等,可以由其中一个图形得到另一个图形吗?
四、自学
五、交流
沿网格线把教参9页中的每个图形分割成两个全等图形.
找出下列图形中的全等图形.
你能说明全等的理由吗?
精讲
一、知识点精讲:
1.全等图形
(1)全等图形中不止两个,有时三个、四个,甚至多个。只要它们能够重合,就是
全等图形,但至少是两个。
(2)全等图形必须是能够互相重合的,否则不是全等图形。
2. 全等图形的识别方法
两个图形全等,它们的形状、大小相同.
3.全等图形的位置变换
一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即
平移、翻折、旋转前后的图形全等,反之一个图形经过平移、翻折、旋转后得到另
一个图形,前后两个图形是全等图形。
二、例题精讲:
例1:找出图中的全等图形
(1) (2) (3) (5) (8) (4) (9) (6) (10) (12) (11) (13) (7)
(14)
例2:你能把图中的等边三角形分成两个全等的三角形吗?三个、
四个、六个呢?
演练:
一、课堂练习
二、完成当堂练习题