中考数学专题复习第二讲:实数的运算

合集下载

初三数学总复习实数及其运算

初三数学总复习实数及其运算
数轴的性质
数轴是一个连续的、双向的、有顺序的直线,它具有原点、正方向和单位长度 等基本性质。在数轴上,每一个点都对应一个唯一的实数,反之亦然。
02
实数的运算
加法与减法
总结词
理解加法与减法的概念,掌握运算规则
详细描述
加法与减法是实数的基本运算,理解加法与减法的概念是学习实数的基础。加法是指将两个数合并成一个数的运 算,减法是指从一个数中减去另一个数的运算。在运算过程中,应遵循加法和减法的运算法则,即同号数相加或 相减,取相同的符号;异号数相加或相减,取绝对值较大数的符号。
实数的基本性质
实数的加法性质
实数的加法满足交换律和结合律 ,即a+b=b+a和 (a+b)+c=a+(b+c)。
实数的乘法性质
实数的乘法满足交换律、结合律 和分配律,即a*b=b*a、 (a*b)*c=a*(b*c)和 (a+b)*c=a*c+b*c。
实数与数轴
实数与数轴的关系
实数可以与数轴上的点一一对应,即每一个实数都可以在数轴上找到一个唯一 的点来表示,反之亦然。
02
03
04
实数的概念
理解实数的定义,包括有理数 和无理数,以及实数在数轴上 的表示。
实数的运算
掌握实数的四则运算(加、减 、乘、除)和乘方运算,理解 运算的优先级和运算律。
平方根和立方根
理解平方根和立方根的概念, 掌握求平方根和立方根的方法 。
绝对值
理解绝对值的定义,掌握求绝 对值的方法。
练习题解析与解答
数学问题中的实数
总述
在数学问题中,实数可以用来表示未知数、参数或系数等,是解决代数、几何等复杂问题的关键。实 数的性质和运算规则为数学研究提供了基础。

中考数学复习最新课件 实数的运算

中考数学复习最新课件 实数的运算
如图3-1为手的示意图,在各个手指间标 记字母A,B,C,D.请你按图中箭头所指方向(即 A→B→C→D→C→B→A→B→C→…的方式)从A开始数连 续的正整数1,2,3,4,…,当数到12时,对应的字母
是 B ;当字母C第201次出现时,恰好数到的数是603;
当字母C第2n+1次出现时(n为正整数),恰好数到的数是 6n+3(用含n的代数式表示).
代数式叫做单项式.
数字因数
单项式的系数:单项式中的
叫做单项式的
系数.
单项式的次数:一个单项式中,所有字母的指数的 和叫做这个单项式的次数.
多 项 式:几个单项式相加组成的代数式叫做多项 式.
多项式的次数:一个多项式中,次数最高项的次数 叫做这个多项式的
次数.
2.整式的加减运算
同 类 项:所含字母相同,并且相同字母的指数也 相同的项叫做同
掉后,括号里的各
项的符号都不变号.
(2)括号前面是“-”号,把括号和它
前面的“-”号去掉
后,括号里的各项
的符号都要改变符号.
3.幂的运算法则
同底数幂乘法:同底数幂相乘,底数不变,指数相
加a,m即+nam·an = (m,n都是整数).
幂 的 乘 方:幂的乘方,底数不变,指数相乘,即
(am =
,(n都是整数).
在an 中,a叫做 底,数n叫做 指数 .
零指数幂:a0=1(a≠0).
负整数指数幂:a-n=1 (a≠0),n为正整数. (1)注意:实数的运算顺序:先算乘方,开方,再算乘 除,最后算加减;如果有括号先算括号里的,同级运算从 左至右依次进行; (2)易错点:零指数、负整数指数的意义,防止错误:
3
遇到绝对值,一般要先去掉绝对值符号,再进行计算.

中考数学复习讲义课件 第1单元 第2讲 实数的运算

中考数学复习讲义课件 第1单元 第2讲 实数的运算
为相反数; 平方根 数 x 叫做 a 的平方 记作± a
(2)0 的平方根是 0 ; 根或二次方根
(3)负数没有平方根
若正数 x 的平方等 算术平 于 a,即 x2=a,那
记作 a 方根 么正数 x 叫做 a 的
算术平方根 若 x3=a,那么 x 叫 立方根 做 a 的立方根或三 记作3 a 次方根
20170-|1- 2|+(13)-1+2cos45°.
解:原式=1-
2+1+3+2×
2 2
=5.
8.(2016·达州)计算:
8-(-2016)0+|-3|-4cos45°.
解:原大小常用 B,KB,MB,GB 等作为单位,其中 1GB=210MB,
(1)0 的算术平方根是 0 ; (2)双重非负性: ①被开方数 a ≥ 0; ②式子 a ≥ 0 (1)正数的立方根是正数; (2)负数的立方根是负数; (3)0 的立方根是 0
1.16 的平方根是 ±4 ,算术平方根是 4 ; 16的算术平方根是 2 . 2.8 的立方根是 2 ,-8 的立方根是 -2 .
4.除法 (1)两数相除,同号得正,异号得负,并把绝对值相除. (2)除以一个不为 0 的数等于乘这个数的倒数. (3)0 除以任何一个不等于 0 的数,都得 0 .
5.乘方 (1)求 n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.在 an 中,a 叫 做底数,n 叫做指数. (2)正数的任何次幂得正;负数的奇次幂得负,负数的偶次幂得正;0 的正整 数次幂得 0 .
C.3
D.±3
实数的混合运算(必考) 3.(2021·达州)计算: -12+(π-2021)0+2sin60°-|1- 3|. 解:原式=-1+1+2× 23-( 3-1) =-1+1+ 3- 3+1 =1.

2013-2014中考数学专题复习学生版第二讲 实数的运算

2013-2014中考数学专题复习学生版第二讲  实数的运算

第二讲实数的运算【重点考点例析】考点一:实数的大小比较。

A.6个B.5个C.4个D.3个点评:本题主要考查了无理数的估算和数轴,根据数轴的特点,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.对应训练1.(2013•内江)下列四个实数中,绝对值最小的数是()A.-5 B.C.1 D.4考点二:估算无理数的大小A.1与2之间B.2与3之间C.3与4之间D.4与5之间点评:此题主要考查了根式的计算和估算无理数的大小,解题需掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.对应训练考点三:有关绝对值的运算例3 (2013•咸宁)在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a-b|=2013,且AO=2BO,则a+b的值为-671.点评:本题考查了数轴、绝对值以及两点间的距离.根据已知条件得到a<0<b是解题的关键.对应训练.考点四:实数的混合运算。

点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负零指数幂、负指数幂、特殊角的三角函数值、绝对值等考点的运算.对应训练考点五:实数中的规律探索。

例5 (2013•永州)我们知道,一元二次方程x2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“i”,使其满足i2=-1(即方程x2=-1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=-1,i3=i2•i=(-1)•i=-i,i4=(i2)2=(-1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n•i=(i4)n•i=i,同理可得i4n+2=-1,i4n+3=-i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013的值为()A.0 B.1 C.-1 D.i点评:本题考查了实数的运算,解答本题的关键是计算出前面几个数的值,发现规律,求出一个循环内的和再计算,有一定难度.对应训练【聚焦山东中考】A.- B.- C.-2 D.-1A.5B.-5C.6D.-63.(2013•日照)计算-22+3的结果是()A.7 B.5 C.-1 D.-5 4.(2013•聊城)(-2)3的相反数是()A.-6 B.8 C.- 16D.165.(2013•菏泽)如果a的倒数是-1,那么a2013等于()A.1 B.-1 C.2013 D.-2013 【备考真题过关】一、选择题1.(2013•广州)比0大的数是()A.-1 B.-12C.0 D.12.(2013•重庆)在-2,0,1,-4这四个数中,最大的数是()A.-4 B.-2 C.0 D.1 3.(2013•天津)计算(-3)+(-9)的结果等于()A.12 B.-12 C.6 D.-6 4.(2013•河北)气温由-1℃上升2℃后是()A.-1℃B.1℃C.2℃D.3℃5.(2013•自贡)与-3的差为0的数是()A.3 B.-3 C.13D.-136.(2013•温州)计算:(-2)×3的结果是()A.-6 B.-1 C.1 D.6 7.(2013•厦门)下列计算正确的是()A.-1+2=1 B.-1-1=0 C.(-1)2=-1 D.-12=1 8.(2013•南京)计算:12-7×(-4)+8÷(-2)的结果是()A.-1 B.1 C.D.710.(2013•南京)设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④B.②③C.①②④D.①③④二、填空题...20.(2013•天河区一模)我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:(101)2=1×22+0×21+1×20=4+0+1=5;(1011)2=1×23+0×22+1×21+1×20=11按此方式,将二进制(1101)2换算成十进制数的结果是13.三、解答题。

【中考必备】最新中考数学试题分类解析 专题2 实数的运算

【中考必备】最新中考数学试题分类解析 专题2 实数的运算

2012年全国中考数学试题分类解析汇编(159套63专题)专题2:实数的运算一、选择题1. (2012山西省2分)计算:﹣2﹣5的结果是【 】 A . ﹣7 B . ﹣3C . 3D . 7【答案】A 。

【考点】有理数的加法。

【分析】根据有理数的加法运算法则计算即可:﹣2﹣5=﹣(2+5)=﹣7。

故选A 。

2. (2012广东佛山3分)与2÷3÷4运算结果相同的是【 】A .4÷2÷3B .2÷(3×4)C .2÷(4÷2)D .3÷2÷4【答案】B 。

【考点】有理数的乘除运算。

【分析】根据连除的性质可得:2÷3÷4=2÷(3×4)。

故选B 。

3. (2012广东梅州3分)012⎛⎫-- ⎪⎝⎭=【 】A .﹣2B .2C .1D .﹣1 【答案】D 。

【考点】零指数幂。

【分析】根据任何非0数的0次幂等于1解答即可:01=12⎛⎫--- ⎪⎝⎭。

故选D 。

4. (2012广东肇庆3分)计算 23+- 的结果是【 】A .1B .1-C . 5D . 5- 【答案】B 。

【考点】有理数的加法。

【分析】根据有理数的加法运算法则计算即可得解:-3+2=-(3-2)=-1。

故选B 。

5. (2012浙江杭州3分)计算(2﹣3)+(﹣1)的结果是【 】 A .﹣2 B .0 C .1 D .2 【答案】A 。

【考点】有理数的加减混合运算。

【分析】根据有理数的加减混合运算的法则进行计算即可得解:(2﹣3)+(﹣1)=﹣1+(﹣1)=﹣2。

故选A 。

6. (2012浙江嘉兴、舟山4分)(﹣2)0等于【 】 A . 1 B . 2 C . 0 D . ﹣2【答案】A 。

【考点】零指数幂。

【分析】根据不等于0的数的零次幂为0的定义,直接得出结果:(﹣2)0=1。

故选A 。

中考复习专题第2讲实数的运算

中考复习专题第2讲实数的运算

第二讲 实数的运算【基础知识回顾】1、乘方:(-a ) 2n +1 = (-a ) 2n =2、运算定律:加法交换律:a+b=加法结合律:(a+b)+c=乘法交换律:ab=乘法结合律:(ab )c=分配律: (a+b )c=3、零指数、负整数指数幂。

0a = (a≠0) a -p = (a≠0)【提醒:1、实数的混合运算在中考考查时经常与0指数、负指数、绝对值、锐角三角函数等放在一起,计算时要注意运算顺序和运算性质。

2、注意底数为分数的负指数运算的结果,如:(31)-1= 】 4、比较两个有理数的大小,除可以用数轴按照 的原则进行比较以外,,还有 比较法、 比较法等,两个负数 大的反而小。

5、如果几个非负数的和为零,则这几个非负数都为 。

【提醒:比较实数大小的方法有很多,根据题目所给的实数的类型或形可以式灵活选用。

22的大小,可以先确定10和65的取值范围。

】【重点考点例析】考点一:实数的大小比较。

例1 实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .6个B .5个C .4个 D .3个考点二:估算无理数的大小考点三:有关绝对值的运算考点五:实数中的规律探索。

例5 观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=___.【聚焦中考】1. 4的算术平方根是( )A .2B .-2C .±2D .162.下列计算错误的是( )A .=B .236x x x ⋅=C .-2+|-2|=0D .()23-=19 3.将一组数⋅⋅⋅;²²²若(1,4),(2,3),则这组数中最大的有理数位置记为( )4【备考真题过关】一、选择题5.若()³(-2)=1,则括号内填一个实数应该是()A.12B.2 C.-2D.-12二、填空题。

中考数学 第2讲 实数的运算及大小比较

中考数学 第2讲 实数的运算及大小比较

第2讲实数的运算及大小比较考点1平方根、算术平方根、立方根名称定义性质平方根如果x2=a(a≥0),那么这个数x就叫做a的平方根.记作±a.正数的平方根有两个,它们互为①;③没有平方根;0的平方根是② .算术平方根如果x2=a(x>0),那么这个正数x就叫做a的算术平方根.记作a.0的算术平方根是④ .立方根若x3=a,则x叫做a的立方根,记作3a.正数有一个⑤立方根;0的立方根是0;负数有一个⑥立方根.考点2实数的大小比较代数比较规则正数⑦,负数⑧,正数大于一切负数;两个正数,绝对值大的较大;两个负数,绝对值大的反而⑨ .几何比较规则在数轴上表示的两个数,左边的数总是⑩右边的数.考点3实数的运算内容运算法则加法法则、减法法则、乘法法则、除法法则、乘方与开方等.特别地,a0=⑪ (其中a≠0),a-p=⑫ (其中p为正整数,a≠0).运算律交换律、结合律、分配律.运算性质有理数一切运算性质和运算律都适应于实数运算.运算顺序先算乘方、开方,再算⑬,最后算⑭,有括号的要先算⑮的,若没有括号,在同一级运算中,要从左到右进行运算.1.比较实数的大小可直接利用法则进行比较,还可以采用作差法、倒数法及估算法,也可借助数轴进行比较.2.实数混合运算时,根据每个算式的结构特征,选择适当的方法,灵活运用运算律,就会收到事半功倍的效果.命题点1 平方根、算术平方根、立方根例1 (2014·东营) 81的平方根是( )A.±3B.3C.±9D.9方法归纳:解此类题需要先将原数化简,再根据平方根与算术平方根的概念、关系及符号的表示,并在此基础上正确运算.1.(2014·陕西)4的算术平方根是( )A.-2B.2C.-12D.122.(2013·资阳)16的平方根是( )A.4B.±4C.8D.±83.(2014·威海)若a3=-8,则a的绝对值是( )A.2B.-2C.12D.-124.(2013·宁波)实数-8的立方根是 .5.(2014·河南)计算:327-|-2|= . 命题点2 实数的大小比较例2 (2014·南昌模拟)51212.(填“>”“<”或“=”)方法归纳:比较实数的大小除了基本的“正数负数”原则和方法外,还可采用作差法,倒数法,估算法,也可借助数轴进行比较.1.(2014·菏泽)比-1大的数是( )A.-3B.-109C.0D.-12.(2014·益阳)四个实数-2,0,-2,1中,最大的实数是( )A.-2B.0C.-2D.13.(2015·苏州模拟)如图所示,是数a,b在数轴上的位置,下列判断正确的是( )A.a<0B.a>1C.b<-1D.b>-14.(2014·重庆A卷)2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是-4 ℃、5 ℃、6 ℃、-8 ℃,当时这四个城市中,气温最低的是( )A.北京B.上海C.重庆D.宁夏命题点3 实数的运算例3 (2014·泸州)计算:12-4sin60°+(π+2)0+(12)-2.【思路点拨】先将代数式中的各部分化简,再进行有理数的加减. 【解答】方法归纳:解答本题的关键是掌握零指数幂a0=1(a≠0)、负整数指数幂a-n=1na(a≠0,n是正整数)、算术平方根和乘方的意义.正确运用整数指数幂的运算法则进行计算,不要出现(12)-2= - (12)2这样的错误.1.(2014·荆门)若( )×(-2)=1,则括号内填一个实数应该是( )A.12B.2C.-2D.-122.(2014·菏泽)下列计算中,正确的是( ) A.a 3·a 2=a6B.(π-3.14)0=1 C.(13)-1=-3 D.9=±3 3.(2014·十堰)计算4+(π-2)0-(12)-1= . 4.(2014·重庆A 卷)计算4+(-3)2-2 0140×|-4|+(16)-1.5.(2014·长沙)计算:(-1)2 014+38-(13)-1+2sin45°.1.(2014·江西)下列四个数中,最小的数是( ) A.-12B.0C.-2D.2 2.(2014·枣庄)2的算术平方根是( )A.±2B.2C.±4D.4 3.(2014·潍坊)()321-的立方根是( )A.-1B.0C.1D.±1 4.(2014·德州)下列计算正确的是( )A.(-3)2=-9B.327=3C.-(-2)0=1 D.|-3|= -35.(2014·绍兴)比较-3,1,-2的大小,正确的是( )A.-3<-2<1B.-2<-3<1C.1<-2<-3D.1<-3<-26.(2014·重庆B 卷)某地连续四天每天的平均气温分别是:1℃,-1℃,0℃,2℃,则平均气温中最低的是(A ) A.-1℃ B.0℃ C.1℃ D.2℃7.(2014·宁波)杨梅开始采摘了!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图.则这4筐杨梅的总质量是( )A.19.7千克B.19.9千克C.20.1千克D.20.3千克 8.(2013·宜昌)实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A.a+b =0B.b <aC.ab >0D.|b|<|a|9.(2014·徐州)点A 、B 、C 在同一条数轴上,其中A 、B 表示的数分别为-3、1.若BC=2,则AC 等于( )A.3B.2C.3或5D.2或610.(2014·梅州)4的平方根是 .11.(2014·陕西)计算(-13)-2= .12.(2014·滨州)计算:-3×2+(-2)2-5= .13.(2014·资阳)计算:38+(2-1)0= .14.(2013·西双版纳)若a=-78,b=-58,则a、b的大小关系是a b(填“>”“<”或“=”).15.(2013·杭州)把7的平方根和立方根按从小到大的顺序排列为 .16.(2014·梅州)计算:(π-1)0+|2-2|-(13)-1+8.17.(2014·南充)计算:(2014-1)0-(3-2)+3tan30°+(13)-1.18.(2014·内江)计算:2tan60°-|3-2|-27+(13)-1.19.(2015·南充模拟)如图一只蚂蚁从A点沿数轴向右直爬2个单位到达点B,点A表示-2,设点B所表示的数为m.(1)求m的值;(2)求|m-1|+(m+2 014)0的值.20.如图所示,数轴上表示2,5的对应点分别为C、B,点C是AB的中点,则点A表示的数是( )555521.(2013·泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2 187,….解答下列问题:3+32+33+34+…+32 013的末尾数字是( )A.0B.1C.3D.722.(2013·常德)小明在做数学题时,发现下面有趣的结果:3-2=18+7-6-5=415+14+13-12-11-10=924+23+22+21-20-19-18-17=16……根据以上规律可知第100行左起第一个数是 .23.(2013·黄石)在计数制中,通常我们使用的是“十进位制”,即“逢十进一”.而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制的比较如下表:十进位制0 1 2 3 4 5 6 …二进制0 1 10 11 100 101 110 …请将二进位制10101010(二)写成十进位制数为 .参考答案考点解读①相反数②负数③0 ④0 ⑤正的⑥负的⑦大于⑧小于⑨小⑩小于⑪1 ⑫1pa⑬乘除⑭加减⑮括号内各个击破例1A题组训练 1.B 2.B 3.A 4.-2 5.1例2 >题组训练 1.C 2.D 3.C 4.D例3 原式=23-4×3+1+(2-1)-2=23-23+1+22=1+4=5.题组训练 1.D 2.B 3.14.原式=2+9-1×4+6=13.5.原式=1+2-3+2×22=1.整合集训1.C2.B3.C4.B5.A6.A7.C8.D9.D10.±211.912.-713.314.<15.7377 16.原式22217.原式3+2+3×3333+3=6.18.原式=+3=1.19.(1)∵蚂蚁从点A向右爬2个单位到达点B,∴点B所表示的数比点A所表示的数大2.∵点A表示B所表示的数为m,∴(2)原式020.C 21.C22.10 200提示:第n行第一个数为:(n+1)2-1.23.170提示:10101010(二)=1×27+0×26+1×25+0×24+1×23+0×22+1×2=128+32+8+2=170.。

中考数学专题目实数的运算

中考数学专题目实数的运算

中考数学专题目实数的运算日月桃李文化教育中考总复习姓名:日期:年月日第二讲实数的运算➢课前考点突破【考点1】平方根、算术平方根、立方根1.开方定义:如果a2且a≥0,那么x=;如果x=3,那么x= .ax=2.正数有个平方根,它们互为;0的平方根是;负数平方根.3.符号a只有当时有意义;如果a有意义,那么包含两个非负性质:a 0;a 0.4.正数的立方根是数,负数的立方根是数,0的立方根是 .【考点2】二次根式1.二次根式的意义:形如的代数式叫做二次根式.注意被开方数只能是正数或O.2.最简二次根式满足下列两个条件的二次根式叫做最简二次根式.①被开方数的因数是,因式是整式.②被开方数中不含能开的尽方的和 .3.同类二次根式几个二次根式化成最简二次根式以后,如果相同,这几个二次根式就叫做同类二次根式.4.二次根式的性质①()=2a (a ≥0);= ⎪⎩⎪⎨⎧= ③=ab (a ≥0,b ≥0); ④=ba(a ≥0,b >0).【考点3】实数的运算 1.加法同号两数相加,取原来的符号,并把 相加; 异号两数相加.取绝对值较 的数的符号,并用较大的绝对值减去较小的绝对值; 任何数与零相加等于 . 2.减法减去一个数等于加上这个数的 . 3.乘法两数相乘,同号得 ,异号得 ,并把相乘;任何数与零相乘,都得 . 4.除法除以一个数等于乘以这个数的 . 5.乘方正数的任何次幂都是 ;负数的偶次幂是 ,奇次幂是 ;0的任何次幂(0除外)都是 ;任何非零数a 的偶次幂为 . 6. 实数的运算律(a >0),(1)加法交换律: ; (2)加法结合律: ; (3)乘法交换律: ; (4)乘法结合律: ; (5)乘法分配律: . 【考点4】比较实数的大小1.求差法——设a ,b 为任意两个实数,先求出a 与b 的差,再根据“当a -b<0时,a <b ;当a-b=0时,a =b ;当a -b>0时,a >b.”来比较a 与b 的大小.2.求商法——设a ,b 为任意正两个实数,先求出a 与b的商,再根据“当b a <1时,a <b ;当b a=1时,a =b ;当b a >1时,a >b.”来比较a 与b的大小.3.倒数法——设a ,b 为任意两个正实数,先分别求出a与b 的倒数,再根据“当a 1<b 1时,a>b ;当a1>b 1 时,a <b.”来比较a 与b 的大小.4.估算法——设a ,b 为任意两个正实数,先估算出a, b 两数或两数中某部份的取值范围,再进行比较.5.平方法——比较含有无理数的式子的大小时,先将要比较的两个数分别平方,再根据“在a>0,b>0时,可由a2>b2得到a>b”比较大小.也就是说,两个正数比较大小时,如果一个数的平方比另一个数的平方大,则这个数大于另一个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学专题复习第二讲:实数的运算【基础知识回顾】 一、实数的运算。

1、基本运算:初中阶段我们学习的基本运算有 、 、 、 、 、 和 共六种,运算顺序是先算 ,再算 ,最后算 ,有括号时要先算 ,同一级运算,按照 的顺序依次进行。

2、运算法则: 加法:同号两数相加,取 的符号,并把 相加,异号两数相加,取 的符号,并用较大的 减去较小 的,任何数同零相加仍得 。

减法,减去一个数等于 。

乘法:两数相乘,同号得 ,异号得 ,并把 相乘。

除法:除以一个数等于乘以这个数的 。

乘方:(-a ) 2n +1 = (-a ) 2n =3、运算定律:加法交换律:a+b= 加法结合律:(a+b)+c= 乘法交换律:ab= 乘法结合律:(ab )c= 分配律: (a+b )c= 二、零指数、负整数指数幂。

0a = (a ≠0) a -p = (a ≠0) 【名师提醒:1、实数的混合运算在中考考查时经常与0指数、负指数、绝对值、锐角三角函数等放在一起,计算时要注意运算顺序和运算性质。

2、注意底数为分数的负指数运算的结果,如:(31)-1= 】三、实数的大小比较: 1、比较两个有理数的大小,除可以用数轴按照 的原则进行比较以外,,还有 比较法、 比较法等,两个负数 大的反而小。

2、如果几个非负数的和为零,则这几个非负数都为 。

【名师提醒:比较实数大小的方法有很多,根据题目所给的实数的类型或形可的大小,可以先确定10和65以式灵活选用。

如:比较的取值范围,然后得结论:10-2。

】【重点考点例析】考点一:实数的大小比较。

例1 (2012•西城区)的整数部分为a,小数部分为b,则代数式a2-a-b的值为.思路分析:由于34a和b,然后代入代数式求值.解:∵34,∴a=3,,则a2-a-b=32-3--3)故答案为:点评:此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.例 2 (2012•台湾)已知甲、乙、丙三数,甲=5=3,丙=1,则甲、乙、丙的大小关系,下列何者正确?()A.丙<乙<甲B.乙<甲<丙C.甲<乙<丙D.甲=乙=丙思路分析:乙,丙的取值范围,进而可以比较其大小.解:∵,∴8<9,∴8<甲<9;∵=5,∴7<<8,∴7<乙<8,∵4= =5,∴5<6,∴丙<乙<甲故选A.点评:本题考查了实数的比较大小:(1)任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.对应训练 1.(2012•南京)12的负的平方根介于( )A .-5与-4之间B .-4与-3之间C .-3与-2之间D .-2与-1之间 1.B .2.(2012•宁夏)已知a 、b 为两个连续的整数,且a <b ,则a+b= . 2.7考点二:实数的混合运算。

例3 (2012•岳阳)计算:1013()(2012)2cos303π---+.思路分析:本题涉及零指数幂、负指数幂、特殊角的三角函数值等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解:原式=5.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、负指数幂、特殊角的三角函数值等考点.对应训练3.(2012•肇庆)计算:1|6sin 454---+.3.解:原式=164=14=14. 考点三:实数中的规律探索。

例4 (2012•张家界)阅读材料:对于任何实数,我们规定符号a b c d的意义是a bc d=ad-bc .例如:121423234=⨯-⨯=-,24(2)5432235-=-⨯-⨯=-.(1)按照这个规定,请你计算5678的值;(2)按照这个规定,请你计算:当x2-4x+4=0时,12123x xx x+--的值.思路分析:(1)根据符号a bc d的意义得到5678=5×8-7×6,然后进行实数的乘法运算,再进行实数的减法运算即可;(2)利用配方法解方程x2-4x+4=0得x=2,则12123x xx x+--=3411,然后根据符号a bc d的意义得到3×1-4×1,再进行实数的运算.解:(1)5678=5×8-7×6=-2;(2)由x2-4x+4=0得(x-2)2=4,∴x=2,∴12123x xx x+--=3411=3×1-4×1=-1.点评:本题考查了实数的运算:先进行乘方或开方运算,再进行乘除运算,然后进行加减运算.也考查了配方法解一元二次方程以及阅读理解能力.对应训练【聚焦山东中考】一、选择题1.(2012•泰安)下列各数比-3小的数是()A.0 B.1 C.-4 D.-11.C2.(2012•聊城)计算12||33--的结果是()A.13-B.13C.-1 D.12.A3.(2012•菏泽)在算式((W的W中填上运算符号,使结果最大,这个运算符号是()A.加号B.减号C.乘号D.除号3.D二、填空题1.(201212.(填“>”、“<”或“=”)1.>2.(2012•济南)计算:2sin30°= .2.-3解:2sin30°=2×12-4=1-4=-3.故答案为:-3.【备考真题过关】一、选择题1.(2012•重庆)在-3,-1,0,2这四个数中,最小的数是()A.-3 B.-1 C.0 D.21.A2.(2012•桂林)下面是几个城市某年一月份的平均温度,其中平均温度最低的城市是()A.桂林11.2℃B.广州13.5℃C.北京-4.8℃D.南京3.4℃2.C3.(2012•莆田)下列各数中,最小的数是()A.-l B.0 C.1 D3.A4.(2012•肇庆)计算-3+2的结果是()A.1 B.-1 C.5 D.-54.B5.(2012•南通)计算6÷(-3)的结果是()A.12-B.-2 C.-3 D.-185.B6.(2012•滨州)-23等于()A.-6 B.6 C.-8 D.86.C 7.(2012•黑龙江)若(a-2)2+|b-1|=0,则(b-a )2012的值是( ) A .-1 B .0 C .1 D .2012 7.C 8.(2012•义乌市)一个正方形的面积是15,估计它的边长大小在( ) A .2与3之间 B .3与4之间 C .4与5之间 D .5与6之间 8.B9.(20121的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间 9.B二、填空题 10.(2012•绵阳)比-1℃低2℃的温度是 ℃.(用数字填写) 10.-3 11.(2012•扬州)扬州市某天的最高气温是6℃,最低气温是-2℃,那么当天的日温差是 . 11.8℃ 13.(2012•云南)写出一个大于2小于4的无理数: 。

13π14.(2012•陕西)计算2cos45°-0(1= .14.1-15.(201220(2)2)--= . 15.-1 16.(2012•沈阳)今年沈阳市人均月最低工资标准为900元,相比去年提高了200元,则今年沈阳市人均最低工资相比去年涨幅的百分数约为 %(结果保留一位小数). 16.28.6解:∵沈阳市人均月最低工资标准为900元,相比去年提高了200元, ∴去年人均最低工资=900-200=700元,∴今年沈阳市人均最低工资相比去年涨幅的百分数=200 700 ≈0.286=28.6%. 故答案为:28.6. 17.(2012•黄石)“数学王子”高斯从小就善于观察和思考.在他读小学时就能在课堂上快速地计算出1+2+3+…+98+99+100=5050,今天我们可以将高斯的做法归纳如下: 令 S=1+2+3+…+98+99+100 ① S=100+99+98+…+3+2+1 ② ①+②:有2S=(1+100)×100 解得:S=5050 请类比以上做法,回答下列问题:若n 为正整数,3+5+7+…+(2n+1)=168,则n= . 17.12解:设S=3+5+7+…+(2n+1)=168①, 则S=(2n+1)+…+7+5+3=168②,①+②得,2S=n (2n+1+3)=2×168, 整理得,n 2+2n-168=0, 解得n 1=12,n 2=-14(舍去). 故答案为:12. 三、解答题18.(2012•珠海)计算:011|1|+(2012)( )2π----. 18.解:原式=2-1+1-2=0. 19.(2012•株洲)计算:2-1+cos60°-|-3|. 19.解:原式=113222+-=-.20.(20120201221(2)|5|(1)()3π----+-+. 20.解:原式=2+1-5+1+9=8.。

相关文档
最新文档