中考数学总复习知识点总结实数

合集下载

2024年中考数学总复习第一章《数与式》第一节:实数(附答案解析)

2024年中考数学总复习第一章《数与式》第一节:实数(附答案解析)

2024年中考数学总复习第一章《数与式》第一节:实数★解读课标★--------------熟悉课标要求,精准把握考点1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小;了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值;2.借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义;3.会用科学记数法表示数;4.了解平方根、算术平方根、立方根的概念.会用根号表示数的平方根、算术平方根、立方根,会用平方运算求百以内整数的平方根;5.掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主);能运用有理数的运算解决简单的问题.★中考预测★--------------统计考题频次,把握中考方向1.实数与运算在历年中考中以考查基础为主,也是考查重点,年年考查,是广大考生的得分点,分值为14~28分。

2.预计2024年各地中考还将继续重视对正负数的意义、相反数、绝对值、倒数、数轴等实数的相关概念及实数的分类的考查,也会对有理数的运算、科学记数法、数的开方、零次幂、负整数指数幂、二次根式及运算等进行考查,且考查形式多样,为避免丢分,学生应扎实掌握。

★聚焦考点★--------------直击中考考点,落实核心素养有理数及其相关概念1.整数和分数统称为有理数。

(有限小数与无限循环小数都是有理数。

)2.正整数、0、负整数统称为整数。

正分数、负分数统称分数。

3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

4.正数和负数表示相反意义的量。

【注意】0既不是正数,也不是负数。

数轴 1.数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表第1页共44页。

中考数学实数总复习

中考数学实数总复习

专题基础知识回顾一实数一、单元知识网络:二、考试目标要求:了解有理数、无理数、实数的概念;会比较实数的大小,知道实数与数轴上的点一一对应,会用科学记数法表示有理数;理解相反数和绝对值的概念及意义.进一步,对上述知识理解程度的评价既可以用纯粹数学语言、符号的方式呈现试题,也可以建立在应用知识解决问题的基础之上,即将考查的知识、方法融于不同的情境之中,通过解决问题而考查学生对相应知识、方法的理解情况.了解乘方与开方的概念,并理解这两种运算之间的关系.了解平方根、算术平方根、立方根的概念,了解整数指数幂的意义和基本性质.具体目标:1.有理数(1)理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.(2)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).(4)理解有理数的运算律,并能运用运算律简化运算.(5)能运用有理数的运算解决简单的问题.(6)能对含有较大数字的信息作出合理的解释和推断.2.实数(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根.(2)了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.(3)了解无理数和实数的概念,知道实数与数轴上的点—一对应.(4)能用有理数估计一个无理数的大致范围.(5)了解近似数与有效数字的概念.在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值.三、知识考点梳理知识点一、实数的分类1.按定义分类:2.按性质符号分类:注:0既不是正数也不是负数.3.有理数:整数和分数统称为有理数或者“形如 (m,n是整数n≠0)”的数叫有理数.4.无理数:无限不循环小数叫无理数.5.实数:有理数和无理数统称为实数.知识点二、实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.2.绝对值(1)代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.可用式子表示为:(2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.距离是一个非负数,所以绝对值的几何意义本身就揭示了绝对值的本质,即绝对值是一个非负数.用式子表示:若a是实数,则|a|≥0.3.倒数(1)实数的倒数是;0没有倒数;(2)乘积是1的两个数互为倒数.a、b互为倒数 .4.平方根(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.5.立方根如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根仍是零.知识点三、实数与数轴数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数.知识点四、实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.对于实数a、b,若a-b>0 a>b;a-b=0 a=b;a-b<0 a<b.5.无理数的比较大小:利用平方转化为有理数:如果 a>b>0,a2>b2 a>b ;或利用倒数转化:如比较与 .知识点五、实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.2.减法减去一个数等于加上这个数的相反数.3.乘法几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.4.除法除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.(3)零指数与负指数6.实数的六种运算关系加法与减法互为逆运算;乘法与除法互为逆运算;乘方与开方互为逆运算.7.实数运算顺序加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算.这三级运算的顺序是三、二、一.如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算.8.实数的运算律加法交换律:a+b=b+a乘法交换律:ab=ba知识点六、有效数字和科学记数法1.近似数:一个近似数,四舍五入到那一位,就说这个近似数精确到哪一位.2.有效数字:一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.3.科学记数法:把一个数用 (1≤<10,n为整数)的形式记数的方法叫科学记数法.四、规律方法指导1.数形结合思想实数与数轴上的点一一对应,绝对值的几何意义等,数轴在很多时候可以帮助我们更直观地分析题目,从而找到解决问题的突破口.2.分类讨论思想(算术)平方根,绝对值的化简都需要有分类讨论的思想,考虑问题要全面,做到既不重复又不遗漏.3.从实际问题中抽象出数学模型以现实生活为背景的题目,我们要抓住问题的实质,明确该用哪一个知识点来解决问题,然后有的放矢.4.注意观察、分析、总结对于寻找规律的题目,仔细观察变化的量之间的关系,尝试用数学式子表示规律.对于阅读两量大的题目,经常是把规律用语言加以叙述,仔细阅读,找到关键的字、词、句,从而找到思路. 经典例题精析考点一、实数概念及分类1. (2010上海)下列实数中,是无理数的为()思路点拨:考查无理数的概念.2.下列实数、sin60°、、、3.14159、、、中无理数有( )个总结升华:对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.举一反三:【变式1】把下列各数填入相应的集合里:(1)自然数集合:{ …}(2)整数集合:{ …}(3)分数集合:{ …}(4)无理数集合:{ …}答案:(1)自然数集合:(2)整数集合:(3)分数集合:(4)无理数集合:【答案】b,603,6n+3考点二、数轴、倒数、相反数、绝对值4.(2010湖南益阳)数轴上的点a到原点的距离是6,则点a表示的数为()思路点拨: 数轴上的点a到原点的距离是6的点有两个,原点的左边、右边各有一个。

中考数学知识点总结(最全)

中考数学知识点总结(最全)

中考数学知识点总结第一章实数考点一、实数的概念及分类(有理数、无理数)考点二、实数的倒数、相反数和绝对值考点三、平方根、算数平方根和立方根考点四、近似数、有效数字和科学记数法考点五、实数大小的比较考点六、实数的运算(做题的基础,分值相当大)考点七、实数的综合与创新第二章代数式考点一、整式的概念与运算考点二、分式考点三、多项式考点四、求代数式的值考点五、因式分解考点六、二次根式考点七、代数式的综合与创新第三章不等式与不等式组考点一、不等式的概念考点二、不等式基本性质考点三、一元一次不等式考点四、一元一次不等式组考点五、列不等式(组)解应用题考点六、不等式的综合与创新第四章方程与方程组考点一、一元一次方程的概念考点二、一元二次方程考点三、一元二次方程的解法考点四、一元二次方程根的判别式考点五、一元二次方程根与系数的关系考点六、分式方程考点七、二元一次方程组考点八、方程的综合与创新第五章函数及其图像考点一、平面直角坐标系考点二、不同位置的点的坐标的特征考点三、函数及其相关概念考点四、正比例函数和一次函数考点五、反比例函数考点六、二次函数的概念和图像考点七、二次函数的解析式考点八、二次函数的最值考点九、二次函数的性质考点十、函数的综合与创新第六章统计与概率考点一、平均数、众数、中位数考点二、统计学中的几个基本概念考点四、方差与极差考点五、频率分布考点六、确定事件和随机事件考点七、随机事件发生的可能性考点八、确定事件和随机事件的概率之间的关系考点九、古典概型考点十、列表法求概率考点十一、树状图法求概率考点十二、利用频率估计概率考点十三、统计图考点十四、调查方式与随机事件考点十五、概率的计算与实际应用考点十六、统计与概率的综合与创新第七章图形的初步认识与三角形考点一、角与线考点二、三角形的概念与全等三角形考点三、等腰三角形与直角三角形考点四、命题、定理、证明考点五、投影与视图考点六、三角形的综合与创新第八章全等与相似考点一、比例线段考点二、平行线分线段成比例定理考点三、相似三角形考点四、全等与相似的综合与创新第九章四边形考点一、四边形的相关概念考点二、平行四边形考点三、矩形考点四、菱形考点五、正方形考点六、梯形考点七、四边形的综合与创新第十章解直角三角形考点一、直角三角形的性质与判定考点二、勾股定理考点三、锐角三角函数的概念与解直角三角形考点四、解直角三角形的实际应用考点五、解直角三角形的综合与创新第十一章圆考点一、圆的概念与性质考点二、过三点的圆考点三、直线与圆的位置关系考点四、圆和圆的位置关系考点五、三角形的内切圆考点六、正多边形和圆考点七、与正多边形有关的概念(对称性)考点八、圆的弧长及扇形面积考点九、圆的综合与创新第十二章图形的变换考点一、对称考点二、平移与旋转考点三、中心对称考点四、位似的概念、性质、画法、判定考点五、图形变换的综合创新、。

中考数学复习数与式知识点总结

中考数学复习数与式知识点总结

中考数学复习数与式知识点总结第一部分:教材知识梳理-系统复第一单元:数与式第1讲:实数知识点一:实数的概念及分类1.实数是按照定义和正负性来分类的。

其中,既不属于正数也不属于负数的数是零。

无理数有几种常见形式:含π的式子是正有理数;无限不循环小数是无理数;开方开不尽的数是无理数;三角函数型的数是实数。

有理数包括正有理数、负有理数和零。

负无理数和正无理数的定义很明确。

2.在判断一个数是否为无理数时,需要注意开得尽方的含根号的数属于无理数,而开得尽的数属于有理数。

3.数轴有三个要素:原点、正方向和单位长度。

实数与数轴上的点一一对应,数轴右边的点表示的数总比左边的点表示的数大。

4.相反数是具有相反符号的两个数,它们的和为0.数轴上表示互为相反数的两个点到原点的距离相等。

5.绝对值是一个数到原点的距离。

它有非负性,即绝对值大于等于0.若|a|+b2=0,则a=b=0.绝对值等于该数本身的数是非负数。

知识点二:实数的相关概念2.数轴是一个直线,用来表示实数。

数轴上的每个点都对应着一个实数,反之亦然。

3.相反数是具有相反符号的两个数,它们的和为0.4.绝对值是一个数到原点的距离。

它有非负性,即绝对值大于等于0.5.倒数是乘积为1的两个数互为倒数。

a的倒数是1/a(a≠0)。

6.科学记数法是一种表示实数的方法,其中1≤|a|<10,n为整数。

确定n的方法是:对于数位较多的大数,n等于原数的整数位减去1;对于小数,写成a×10n,1≤|a|<10,n等于原数中左起至第一个非零数字前所有零的个数(含小数点前面的一个)。

7.近似数是一个与实际数值很接近的数。

它的精确度由四舍五入到哪一位来决定。

例:用科学记数法表示为2.1×104.19万用科学记数法表示为1.9×10^5,0.0007用科学记数法表示为7×10^-4.知识点三:科学记数法、近似数科学记数法是一种表示极大或极小数的方法,它的基本形式是a×10^n,其中1≤a<10,n为整数。

中考数学知识点总结大全

中考数学知识点总结大全

中考数学知识点总结大全初三数学知识点第一章实数重点实数的有关概念及性质,实数的运算内容提要一、重要概念1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x0)常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aa1时,1/aD.积为1。

4.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│0,符号││是非负数的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。

二、实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个加法[乘法]交换律、结合律;[乘法对加法的]分配律)3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从左到右(如5 C.(有括号时)由小到中到大。

三、应用举例(略)附:典型例题1. 已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a.2.已知:a-b=-2且ab0,(a0,b0),判断a、b的符号。

初三数学知识点第二章代数式重点代数式的有关概念及性质,代数式的运算内容提要一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

整式和分式统称为有理式。

2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。

初三 数学中考总复习 --实数

初三 数学中考总复习 --实数

第一章实 数1-1:实数的相关概念 知识要点:1、有理数:整数和分数统称为有理数。

2、无理数:无限不循环的小数,叫做无理数。

注意:有限小数和无限循环小数均能化成分数,属于有理数。

3、实数:有理数与无理数统称为实数。

正数:大于0的数,记为:0a >; 负数:小于0的数,记为:0a <; 0既不是正数,也不是负数。

4、实数的分类(按定义): 实数的分类(按正负性):0⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎩⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎪⎩正整数整数负整数有理数实数正分数分数负分数无理数:无限不循环的小数0⎧⎧⎧⎪⎪⎨⎨⎪⎩⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正实数正分数正无理数实数负整数负有理数负实数负分数负无理数 5、数轴:规定了原点、正方向和单位长度的一条直线,叫做数轴。

①实数与数轴上的点成一 一对应关系;②通常情况下,数轴上,右边的数总大于左边的数;正数大于0,负数小于0 ,正数大于负数,在负数中,绝对值大的数反而小,在正数中,绝对值大的数较大。

6、相反数:只有符号不同的两个数,叫做互为相反数,0的相反数是0,相反数的和为0。

注意:① a a -与一定互为相反数;② 若a b 与互为相反数,则:0a b +=; ③ 表示相反数的两个点关于原点对称。

7、倒数:乘积为1的两个数互为倒数。

注意:① 0没有倒数;1的倒数是1,-1的倒数是-1;② 1(0)a a a ≠与互为倒数,即:11a a⋅=;8、绝对值:在数轴上,表示一个数的点距原点的距离,叫做这个数的绝对值,记为 a 。

正数和0的绝对值是它本身;负数的绝对值是它的相反数。

即:(0)(0)a a a a a ≥⎧=⎨-<⎩任何一个实数的绝对值都是非负数,即:0a ≥;非正数:负数和0,即:0a ≤; 非负数:正数和0,即:0a ≥; 注意:11,10,1a a a a -=--≥≥则:即:;22,20,2a a a a -=--≥≤则: 即:。

中考冲刺实数概念与运算知识点总结

中考冲刺实数概念与运算知识点总结

实数的概念与运算知识点总结一、实数及其分类:1、有理数:整数和分数统称为有理数;2、无理数:无限不循环小数叫无理数;特别提示:常见的几种无理数:(1)根号型:如2,8等开方开不尽的数;(2)一些三角函数,如sin60º,tan30º;(但sin30º,tan45º等能算出具体数值的不是无理数);(3)构造性:如0.1010010001….等;(4)π及含π数:如7π;π-33、正负数:大于0的数叫正数,表示为a ﹥0;在正数前面加一个“﹣”的数叫负数,如﹣∣﹣5∣,负数都小于0,表示为a ﹤0。

切记0既不是正数也不是负数。

4、实数的定义:有理数和无理数统称为实数5、实数的分类:(1)按定义分类:实数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎭⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限循环或无限循环小负分数正分数分数负整数正整数整数有理数0 (2)按正负分类实数⎪⎩⎪⎨⎧负实数正实数0例:二、实数的相关概念:1、数轴:(1)定义:规定了原点、正方向、单位长度的直线叫做数轴。

特别提醒:①数轴有三要素:原点、正方向、单位长度。

②原点的确定和单位长度的大小,可根据各题的实际需要,灵活选取。

③同一数轴上的单位长度必须统一,不能出现同样的长度表示不同的数量。

(2)数轴的画法:①画一条直线;②在直线上选取一点为原点,并用该点表示0(在原点下表“0”);③确定正方向;,④选取适当的长度作为单位长度,向右一次表示为1,2,3,2…,向左表示为﹣1,﹣2,﹣5…(3)数轴的应用:2、相反数:(1)定义:只有符号不同的两个数叫做互为相反数。

特别提示:①“只有”指符号以外完全相同。

②相反数是成对出现的,是相互的。

(2)相反数表示法:一般地a 的相反数是a ;a+b 的相反数是-a-b;a-b 的相反数是b-a;a-b+c 的相反数是b-a-c ;特别地,0的相反数是0(3)相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O 的两边,并且到原点的距离相等,且关于原点对称。

中考数学复习《实数的运算及大小比较》

中考数学复习《实数的运算及大小比较》



1
1
.
4
2.化简: - 3.140 2 - 2 2 - 8 3 1 .
2
3.计算:
3
-1
2019-
0
- 6tan30
1
1
3
64.
2
4.计算:1
2

1 6

1 12

.


1
nn
1
.




1.对于涉及到乘方、零指数幂、负整数指数幂、 特殊角三角函数值、二次根式的运算,应先将每 部分正确化简,再按实数的运算法则求得结果;
2.对于规律性试题,应先找出规律后再计算.
类型2 实数大小的比较
例2 下列实数 :3,0 ,-3,4.25,- 2 2 ,其中 最小的实数是( B )
A. 0
B. -3
C. 3
D. - 2 2
解析:先比正负,因为是选最小的实数,因此再 比两个负数的平方.-3,- 2 2的平方分别是9和8, 所以-3最小.
计算:2 sin 60 3 3 20 1 1 .
2
解: 2 sin 60 3 3 20 1 1 .
2 2 3 3- 3 1-2
2
=2.
练 一练
1.计算:
-
4


-
20190
-
2
sin
30
因此,㏒1001000=
㏒1010³ ㏒1010²




读懂概念或法则,并将其正确应用到所求问题, 是解决新概念问题的关键.
巩固提升
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 实数
考点一、实数的概念及分类 (3分)
1、实数的分类
正有理数
有理数 零 有限小数和无限循环小数
实数 负有理数
正无理数
无理数 无限不循环小数
负无理数
2、无理数
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
(1)开方开不尽的数,如32,7等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如
3
π+8等; (3)有特定结构的数,如0.1010010001…等;
(4)某些三角函数,如sin60°等 考点二、实数的倒数、相反数和绝对值 (3分)
1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数
如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10分)
1、平方根
如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±
”。

2、算术平方根
正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a
==a a 2 ;注意a 的双重非负性:
-a (a <0) a ≥0
3、立方根
如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。

考点四、科学记数法和近似数 (3—6分)
1、有效数字
一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法
把一个数写做n a 10⨯±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。

考点五、实数大小的比较 (3分)
1、数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

2、实数大小比较的几种常用方法
(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

(2)求差比较:设a 、b 是实数,
,0b a b a >⇔>-
,0b a b a =⇔=-
b a b a <⇔<-0
(3)求商比较法:设a 、b 是两正实数,;1;1;1b a b
a b a b a b a b a <⇔<=⇔=>⇔> (4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>。

(5)平方法:设a 、b 是两负实数,则b a b a <⇔>22。

考点六、实数的运算 (做题的基础,分值相当大)
1、加法交换律 a b b a +=+
2、加法结合律 )()(c b a c b a ++=++
3、乘法交换律 ba ab =
4、乘法结合律 )()(bc a c ab =
5、乘法对加法的分配律 ac ab c b a +=+)(
6、实数的运算顺序
先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

相关文档
最新文档