江苏省镇江句容市中考数学一轮复习 解直角三角形的实际应用学案(无答案)

合集下载

江苏省镇江市中考数学专题题型复习05:解直角三角形的实际应用

江苏省镇江市中考数学专题题型复习05:解直角三角形的实际应用

江苏省镇江市中考数学专题题型复习05:解直角三角形的实际应用姓名:________ 班级:________ 成绩:________一、解答题 (共13题;共70分)1. (5分)(2017·荆门) 金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)2. (5分)如图1,图2,分别是吊车在吊一物品时的实物图与示意图,已知吊车底盘CD的高度为2米,支架BC的长为4米,且与地面成30°角,吊绳AB与支架BC的夹角为80°,吊臂AC与地面成70°角,求吊车的吊臂顶端A点距地面的高度是多少米?(精确到0.1米)(参考数据:sin10°=cos80°=0.17,cos10°=sin80°=0.98,sin20°=cos70°=0.34,tan70°=2.75,sin70°=0.94)3. (5分)(2017·阜阳模拟) 位于合肥滨湖新区的渡江战役纪念馆,实物图如图1所示,示意图如图2所示.某学校数学兴趣小组通过测量得知,纪念馆外轮廓斜坡AB的坡度i=1:,底基BC=50m,∠ACB=135°,求馆顶A 离地面BC的距离.(结果精确到0.1m,参考数据:≈1.41,≈1.73)4. (5分) (2019九上·西安月考) 某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC的距离.参考数据:sin73.7°≈,co s73.7°≈,tan73.7°≈5. (10分)(2017·永定模拟) 某数学兴趣小组在学习了《锐角三角函数》以后,开展测量物体高度的实践活动,测量一建筑物CD的高度,他们站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走20m,到达点F 处测得楼顶C的仰角为45°(BFD在同一直线上).已知观测员的眼睛与地面距离为1.5m(即AB=1.5m),求这栋建筑物CD的高度.(参考数据:≈1.732,≈1.414.结果保留整数)6. (5分)(2017·宝坻模拟) 如图所示,某中学九年级数学活动小组选定测量学校前面小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若斜坡FA的坡比i=1:,求大树的高度.(结果保留一位小数)参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,取1.73.7. (5分)(2017·随州) 风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)8. (5分)(2018·天津) 如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为,测得底部处的俯角为,求甲、乙建筑物的高度和(结果取整数).参考数据:, .9. (5分)(2017·青浦模拟) 小明在海湾森林公园放风筝.如图所示,小明在A处,风筝飞到C处,此时线长BC为40米,若小明双手牵住绳子的底端B距离地面1.5米,从B处测得C处的仰角为60°,求此时风筝离地面的高度CE.(计算结果精确到0.1米,≈1.732)10. (5分) (2018九上·来宾期末) 如图,是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据: =1.414, =1.732)11. (5分)(2017·临沭模拟) 如图,海中一小岛有一个观测点A,某天上午观测到某渔船在观测点A的西南方向上的B处跟踪鱼群由南向北匀速航行.B处距离观测点30 海里,若该渔船的速度为每小时30海里,问该渔船多长时间到达观测点A的北偏西60°方向上的C处?(计算结果用根号表示,不取近似值)12. (5分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C 的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)13. (5分)(2011·河南) 如图所示,中原福塔(河南广播电视塔)是世界第﹣高钢塔.小明所在的课外活动小组在距地面268米高的室外观光层的点D处,测得地面上点B的俯角α为45°,点D到AO的距离DG为10米;从地面上的点B沿BO方向走50米到达点C处,测得塔尖A的仰角β为60°.请你根据以上数据计算塔高AO,并求出计算结果与实际塔高388米之间的误差.(参考数据:≈1.732,≈1.414.结果精确到0.1米)二、综合题 (共5题;共50分)14. (10分)(2018·龙岗模拟) 2014年3月,某海域发生航班失联事件,我海事救援部门用高频海洋探测仪进行海上搜救,分别在A、B两个探测点探测到C处是信号发射点,已知A、B两点相距400m,探测线与海平面的夹角分别是和,若CD的长是点C到海平面的最短距离.(1)问BD与AB有什么数量关系,试说明理由;(2)求信号发射点的深度结果精确到1m,参考数据:,15. (10分) (2019九上·长葛期末) 如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B.已知AB∥MN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)(1)求点M到AB的距离;(结果保留根号)(2)在B点又测得∠NBA=53°,求MN的长.(结果精确到1米)16. (10分) (2017九下·台州期中) 在徒骇河观景堤坝上有一段斜坡,为了方便游客通行,现准备铺上台阶,某施工队测得斜坡上铅锤的两棵树间水平距离AB=4米,斜坡距离BC=4.25米,斜坡总长DE=85米.(1)求坡角∠D的度数(结果精确到1°)(2)若这段斜坡用厚度为15cm的长方体台阶来铺,需要铺几级台阶?(最后一个高不足15cm时,按一个台阶计算)(参考数据:cos20°≈0.94,sin20°≈0.34,sin18°≈0.31,cos18°≈0.95)17. (10分)今年,我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC 方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为75 海里.(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)18. (10分)如图,为测量某建筑物BC上旗杆AB的高度,小明在距离建筑物BC底部11.4米的点F处,测得视线与水平线夹角∠AED=60°,∠BED=45°.小明的观测点与地面的距离EF为1.6米.参考数据:≈1.41,≈1.73.(1)求建筑物BC的高度;(2)求旗杆AB的高度(结果精确到0.1米).参考答案一、解答题 (共13题;共70分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、二、综合题 (共5题;共50分)14-1、14-2、15-1、15-2、16-1、16-2、17-1、17-2、18-1、18-2、。

中考数学第一轮复习导学案:解直角三角形及其应用

中考数学第一轮复习导学案:解直角三角形及其应用

解直角三角形及其应用◆课前热身1.图1是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,∠ABC=150°,BC 的长是8 m ,则乘电梯从点B 到点C 上升的高度h 是( )A.833 mB .4 mC .43 mD .8 m 2.如图2,长方体的长为15,宽为10,高为2 0,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( )A. 215B. 25C. 1055+D. 353.如图3,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为( )A. αcos 5B.αcos 5C. αsin 5D. αsin 54.如图4,在Rt ABC △中,ACB ∠=90°,1BC =,2AB =,则下列结论正确的是( ) A .3sin 2A =B .1tan 2A = C .3cos 2B =D .tan 3B =5.如图5,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.75的山坡上种树,也要求株距为4m ,那么相邻两树间的坡面距离为( )图2EA BCD 150°图1hBCA 图4α5米AB图3A .5mB .6mC .7mD .8m 【参考答案】 1. B【解析】过点B 作直线AB 的垂线,,垂足为E ,在Rt △BCE 中,sin ∠CBE=BCCE,即sin30°=218=h ,所以h=4m. 【点评】作垂线构造直角三角形,因为知道斜边长,所以利用已知锐角的正弦关系解答即可.本题还可以利用“直角三角形中,30°所对的直角边等于斜边的一半”来求解. 2. B【解析】根据“两点之间,线段最短”和“勾股定理”蚂蚁如果要沿着长方体的表面从点A 爬到点B ,较短爬行路线有以下4条(红色线段表示).计算可知最短的是第2条.【点评】在立体图形上找最短距离,通常要把立体图形转化为平面图形(即表面展开图)来解答,但是不同的展开图会有不同的答案,所以要分情况讨论.3. B 【解析】利用锐角三角函数解答,在以AB 为斜边的直角三角形中,cos AB5=α,所以AB=αcos 5.【点评】在直角三角形中,根据已知边、角和要求的边、角确定函数关系. 4. D 【解析】此题考查了特殊角的三角函数值.由已知可知∠A=30°,∠B=60°,对照 30°、60°的三角函数值选择正确答案. 【点评】熟记特殊角30°、45°、60°的三角函数值是解题的关键.本题也可以通过勾股定理计算出AC ,然后根据锐角三角函数定义判断. 5. A 【解析】考查了勾股定理和坡度的定义.坡度即坡比是铅直高度与水平宽度的比,在这里设铅直高度为h 米,则有h:4=0.75,h=3,利用勾股定理得相邻两树间的坡面距离为2243+=5m.【点评】在理解坡度、坡面距离、水平距离等概念的基础上,通过直角三角形的知识来解答.1.掌握并灵活应用各种关系解直角三角形,这是本节重点.2.了解测量中的概念,并能灵活应用相关知识解决某些实际问题,而在将实际问题转化为直角三角形问题时,•怎样合理构造直角三角形以及如何正确选用直角三角形的边角关系是本节难点,也是中考的热点. ◆备考兵法正确地建立解直角三角形的数学模型以及熟悉测量,航海,航空,•工程等实际问题中的常用概念是解决这类问题的关键.注意:(1)准确理解几个概念:①仰角,俯角;②坡角;③坡度;④方位角. (2)将实际问题抽象为数学问题的关键是画出符合题意的图形.(3)在一些问题中要根据需要添加辅助线,构造出直角三角形,•从而转化为解直角三角形的问题. ◆考点链接1.解直角三角形的概念:在直角三角形中已知一些_____________叫做解直角三角形. 2.解直角三角形的类型:已知____________;已知___________________. 3.如图(1)解直角三角形的公式:(1)三边关系:__________________.(2)角关系:∠A+∠B=_____,(3)边角关系:sinA=___,sinB=____,cosA=_______.cosB=____,tanA=_____ ,tanB=_____.4.如图(2)仰角是____________,俯角是____________.5.如图(3)方向角:OA :_____,OB :_______,OC :_______,OD :________. 6.如图(4)坡度:AB 的坡度i AB =_______,∠α叫_____,tanα=i =____.(图2) (图3) (图4)αACB45︒南北西东60︒ADC B70︒OOA B Cc baAC B例1(安徽省)长为4m 的梯子搭在墙上与地面成45°角,作业时调整成60°角(如图所示),则梯子的顶端沿墙面升高了 ______m .【答案】2(32)- (约0.64).【解析】涉及知识点有锐角三角函数的应用.4m 的梯子、地面和墙高构成了直角三角形,当梯子搭在墙上与地面成45°的角时,梯子的顶端到地面的距离是4×sin45°=22,当梯子搭在墙上与地面成60°的角时,梯子的顶端到地面的距离是4×sin60°=23.则梯子的顶端沿墙面升高了2(32)- (约0.64)m .【点评】把立体图形转化为平面图形即直角三角形,利用锐角三角函数或勾股定理解答即可. 例2(山东临沂)如图,A ,B 是公路l (l 为东西走向)两旁的两个村庄,A 村到公路l 的距离AC=1km ,B 村到公路l 的距离BD=2km ,B 村在A 村的南偏东45°方向上. (1)求出A ,B 两村之间的距离;(2)为方便村民出行,计划在公路边新建一个公共汽车站P ,要求该站到两村的距离相等,请用尺规在图中作出点P 的位置(保留清晰的作图痕迹,并简要写明作法).【分析】(1)设AB 与CD 的交点为O ,那么三角形AOC 和BOD 是两个等要直角三角形,根据A 、B 到公路的距离,利用勾股定理计算AO 、BO ,进而计算AB 的长度.或者以AB 为斜边构造直角三角形解答.(2)作AB 的垂直平分线,与公路l 的交点即为所求.【答案】解:(1)方法一:设AB 与CD 的交点为O ,根据题意可得45A B ∠=∠=°.ACO ∴△和BDO △都是等腰直角三角形.北 东AC Dl2AO ∴=,22BO =.∴A B ,两村的距离为22232AB AO BO =+=+=(km ). 方法二:过点B 作直线l 的平行线交AC 的延长线于E . 易证四边形CDBE 是矩形,∴2CE BD ==.在Rt AEB △中,由45A ∠=°,可得3BE EA ==.∴223332AB =+=(km )∴A B ,两村的距离为32km .(2)作图正确,痕迹清晰.作法:①分别以点A B ,为圆心,以大于12AB 的长为 半径作弧,两弧交于两点M N ,, 作直线MN ;②直线MN 交l 于点P ,点P 即为所求.【点评】(1)点到线的距离是垂线短的长,所以图形中就包含了直角三角形,然后利用勾股定理计算便是.本题也可以利用锐角三角函数计算.(2)“到线段两个端点的距离相等的点在这条线段的垂直平分线上”把握这个特征是找出确切位置的基础. ◆迎考精练 一、选择题1.(山东泰安)在一次夏令营活动中,小亮从位于A 点的营地出发,沿北偏东60°方向走了5km 到达B 地,然后再沿北偏西30°方向走了若干千米到达C 地,测得A 地在C 地南偏西30°方向,则A 、C 两地的距离为 A.km 3310 B.km 335 C.km 25 D.km 352.(山东潍坊)如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米.BACDlN MOPBA l2题E第1题图A .25B .253C .1003D .25253+二、填空题1.(四川遂宁)如图,已知△ABC 中,AB=5cm ,BC=12cm ,AC=13cm ,那么AC 边上的中线BD 的长为 cm.2.(浙江宁波)如图,在坡屋顶的设计图中,AB AC =,屋顶的宽度l 为10米,坡角α为35°,则坡屋顶高度h 为 米.(结果精确到0.1米)3.(湖南益阳)如图,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到△C B A ''',使点B '与C 重合,连结B A ',则C B A ''∠tan 的值为 .4.(山东济南)如图,AOB ∠是放置在正方形网格中的一个角,则cos AOB ∠的值是 .5.(山东泰安)如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tanA 的值为 .O AB第4题图ABChlαA C (B ′)A ′C ′D6.(湖南衡阳)某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个坡面的坡度为__________.7.(湖北孝感)如图,角α的顶点为O,它的一边在x轴的正半轴上,另一边OA上有一点P(3,4),则sinα=.三、解答题1.(河南省)如图所示,电工李师傅借助梯子安装天花板上距地面2 .90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m.矩形面与地面所成的角α为78°.李师傅的身高为l.78m,当他攀升到头顶距天花板0.05~0.20m时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?(参考数据:sin78°≈0.98,c os78°≈0.21,tan78°≈4.70.)D2.(福建福州)如图,在边长为1的小正方形组成的网格中,ABC△的三个顶点均在格点上,请按要求完成下列各题:(1)用签字笔...画AD∥BC(D为格点),连接CD;(2)线段CD的长为;(3)请你在ACD△的三个内角中任选一个锐角..,若你所选的锐角是,则它所对应的正弦函数值是 .(4)若E为BC中点,则tan∠CAE的值是3.(山东德州)如图,斜坡AC的坡度(坡比)为1:3,AC=10米.坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.4.(浙江台州)如图,有一段斜坡BC长为10米,坡角12CBD︒∠=,为方便残疾人的轮椅车通行,现准备把坡角降为5°.(1)求坡高CD ;(2)求斜坡新起点A 与原起点B 的距离(精确到0.1米).5.(河北省)如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD∥AB,且CD = 24 m ,OE⊥CD 于点E .已测得sin∠DOE = 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?6.(江苏省)如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5min 后该轮船行至点A 的正北方向的D 处.(1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度(结果精确到0.1km/h ).(参考数据:3 1.73≈,sin760.97°≈,cos760.24°≈,tan76 4.01°≈)(第4题)DC BA5°12°参考数据 sin12°≈0.21 cos12°≈0.98 tan5°≈0.09OEC D 北东CDB E 60° 76°O7.(湖南娄底)在学习实践科学发展观的活动中,某单位在如图所示的办公楼迎街的墙面上垂挂一长为30米的宣传条幅AE ,张明同学站在离办公楼的地面C 处测得条幅顶端A 的仰角为50°,测得条幅底端E 的仰角为30°. 问张明同学是在离该单位办公楼水平距离多远的地方进行测量?(精确到整数米)(参考数据:sin50°≈0.77,cos50°≈0.64, tan50°≈1.20,sin30°=0.50,cos30°≈0.87,tan30°≈0.58)8.(山东烟台)腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图②).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3173. ).DC B A② ①9.(山东济南)九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠; (2)根据手中剩余线的长度算出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米.根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.1米,3 1.73≈)10.(山东威海)如图,一巡逻艇航行至海面B 处时,得知其正北方向上C 处一渔船发生故障.已知港口A 处在B 处的北偏西37o方向上,距B 处20海里;C 处在A 处的北偏东65o方向上.求,B C 之间的距离(结果精确到0.1海里).参考数据:sin370.60cos370.80tan370.75≈≈≈o o o,,, sin 650.91cos650.42tan 65 2.14.≈≈≈o o o ,,11.(广东省)如图所示,A 、B 两城市相距100km .现计划在这两座城市间修筑一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上.已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内.请问计划修筑的这条高速公路会不会穿越保护区.为什么?A DB EC60°65° 37°北北 ACB1.732 1.414)12.(湖北襄樊)为打击索马里海盗,保护各国商船的顺利通行,我海军某部奉命前往该海域执行护航任务.某天我护航舰正在某小岛A 北偏西45︒并距该岛20海里的B 处待命.位于该岛正西方向C 处的某外国商船遭到海盗袭击,船长发现在其北偏东60︒的方向有我军护航舰(如图所示),便发出紧急求救信号.我护航舰接警后,立即沿BC 航线以每小时60海里的速度前去救援.问我护航舰需多少分钟可以到达该商船所在的位置C 处?(结果精确1.4 1.7)13.(湖南长沙)校九年级数学兴趣小组的同学开展了测量湘江宽度的活动.如图,他们在河东岸边的A 点测得河西岸边的标志物B 在它的正西方向,然后从A 点出发沿河岸向正北方向行进550米到点C 处,测得B 在点C 的南偏西60°方向上,他们测得的湘江宽度是多1.4141.732)AB F E P45°30°【参考答案】 选择题 1. A【解析】此题考查了锐角三角函数的应用.由方位角可求得∠BAC=30°,∠ABC=90°,所以由∠BAC 的余弦定义得cos30°=235==AC AC AB ,所以AC=km 3310.【点评】根据角度判断三角形的形状,再选择适当的关系式. 2.【解析】过点B 作BE 垂直于AC ,垂足为E ,因为30BAD ∠=°,60BCD ∠=°,所以∠ABC=∠BAD=30°,则BC=AC=50,在Rt △BCE 中,sin ∠BCD=BCBE,所以小岛B 到公路l 的距离BE=BC ·sin ∠BCD=50×23=. 【点评】遇到非直角三角形的问题,通常最垂线构造直角三角形,利用锐角三角函数或勾股定理解答. 填空题1. 213【解析】知识点:勾股定理的逆定理、直角三角形斜边上的中线性质.由52+122=132知△ABC 是直角三角形,AC 是斜边,所以BD=21AC=213cm. 【点评】由数量关系判断三角形的形状,这是数形结合思想的体现.学习时要注意把直角三角形所有的知识都归纳起来,从而达到综合运用知识的能力.2. 3.5【解析】知识点:等腰三角形三线合一的性质、坡角α函数关系、计算器的操作.根据三线合一的性质可知,坡屋顶高度h 把等腰三角形分成了两个全等的直角三角形,且有tan α=5h,所以h 约为3.5米. 【点评】利用三线合一的性质把等腰三角形转化为直角三角形,利用相应的函数关系时解答. 3.31【解析】由题意可知,△ABC 平移的距离是等腰直角三角形的斜边长,过点A ′作AD ⊥B ′C 于点D ,设A ′D 为a ,根据等腰三角形三线合一的性质则有BC=B ′C ′=2a ,所以BD=3a ,在Rt △A ′BD 中,C B A ''∠tan =BD D A '=31.【点评】准确地构造直角三角形是解答此题的关键.4.225.33【解析】本题所考查的知识点有轴对称、直角三角形斜边的中线性质、等边对等角、同角的余角相等、30°的正切函数值. 由CM 是Rt △ABC 斜边的中线可得CM=AM ,则∠A=∠ACM ;由折叠可知∠ACM=∠DCM ;又∠A+∠B=∠BCD+∠B=90°,则∠A =∠BCD ,所以∠A=∠ACM=∠DCM=∠BCD=30°,因此tanA=tan30°=33.【点评】把直角三角形与等腰三角形结合起来,根据折叠的不变性转化角与角之间的关系,求出角的大小,函数值即可跃然纸上. 6. 1:2 【解析】如图,由题意得直角三角形ABC ,AB=10米,AC=52米,由勾股定理得BC=45米,坡度为215452=.7.45(或0.8) 【解析】根据点P 的坐标利用勾股定理可以求得OP=2243+=5.所以 sin α=54=斜边的对边α. 解答题1. 【解析】过点A 作AE ⊥BC 于点E ,过点D 作DF ⊥BC 于点F ,利用三角函数计算AE 、DF ,结合电工身高计算其头顶到天花板的距离在0.05~0.20m 范围内即可判断安装方便;否则,不方便.【答案】解:过点A 作AE ⊥BC 于点E ,过点D 作DF ⊥BC 于点F .BCA∵AB=AC, ∴CE=12BC=0.5. 在Rt △ABC 和Rt △DFC 中,∵tan780=AE EC,∴AE=EC ×tan780≈0.5×4.70=2.35.又∵sin α=AE AC =DFDC, DF=DC AC ·AE=37×AE ≈1.007.李师傅站在第三级踏板上时,头顶距地面高度约为:1.007+1.78=2.787. 头顶与天花板的距离约为:2.90-2.787≈0.11.∵0.05<0.11<0.20, ∴它安装比较方便.【点评】将等腰三角形转化为直角三角形,把问题转化为解直角三角形的问题.2. 【解析】按要求作图,因图中的三角形是格点三角形,所以线段的计算要用它与网格线构成的直角三角形,通过勾股定理计算,然后计算有关锐角的函数值. 【答案】(1)如图;(2)5;(3)∠CAD ,55(或∠ADC ,552) (4)21 【点评】选择合适的格点直角三角形是计算线段长、锐角三角函数值的基础.3. 【解析】BC 所在的三角形是斜三角形,所以它的高度无法直接求得,我们可以过点C 作AD 的垂线,结合坡比这个条件计算CE 、AE ,再计算BE ,从而通过BE 、CE 的差求BC. 【答案】解:延长BC 交AD 于E 点,则CE ⊥AD .在Rt △AEC 中,AC =10, 由坡比为1︰3可知:∠CAE =30°,∴ CE =AC ·sin30°=10×12=5,AE =AC ·cos30°=103=53. 在Rt △ABE 中,BE 22AB AE -2214(53)-=11. ∵ BE =BC +CE ,∴ BC =BE -CE =11-5=6(米).ABCDE答:旗杆的高度为6米.【点评】过合适的点作垂线构造直角三角形,利用锐角三角函数和勾股定理计算线段的长度.4. 【解析】在Rt △BCD 中,利用∠CBD 的正弦计算CD ,利用∠CBD 的余弦计算BD ;在Rt △ACD 中,利用∠A 的正切计算AD ,AD 与BD 的差则是A 、B 的距离.【答案】解:(1)在BCD Rt ∆中,︒=12sin BC CD 1.221.010=⨯≈(米). (2)在BCD Rt ∆中,︒=12cos BC BD 8.998.010=⨯≈(米); 在ACD Rt ∆中,︒=5tan CD AD 2.123.330.09≈≈(米), 23.339.813.5313.5AB AD BD =-≈-=≈(米). 答:坡高2.1米,斜坡新起点与原起点的距离为13.5米.【点评】这是一道锐角三角函数的应用题,结合图形和已知条件,选择合适的函数关系式计算线段的长度.5. 【解析】根据垂径定理可知DE 的长度,在Rt △DOE 中,利用∠DOE 的正弦求半径OD ,再利用勾股定理计算OE ,然后结合水面下降的速度得时间. 【答案】解:(1)∵OE⊥CD 于点E ,CD=24,∴ED =12CD =12.在Rt△DOE 中,∵sin∠DOE =ED OD =1213, ∴OD =13(m ).(2)OE=22OD ED -=2213125-=.∴将水排干需: 5÷0.5=10(小时).【点评】在直角三角形中,已知一边和与它相关的函数关系式时用函数关系计算另一边,当知道两条边长时,则用勾股定理计算第三边.6. 【解析】在Rt △OAD 中,利用∠A 的余弦关系求OA ,便知OB 的长度,然后在Rt △BOE 中利用∠OBE 的余弦关系求BE ;在Rt △OAD 和Rt △BOE 利用60°的正切关系求出OD 、OE ,便得DE ,利用路程和时间求速度.【答案】解:(1)设AB 与l 交于点O . 在Rt AOD △中,6024cos60ADOAD AD OA ∠====°,,°.又106AB OB AB OA =∴=-=,.在Rt BOE △中,60cos603OBE OAD BE OB ∠=∠=∴==g °,°(km ). ∴观测点B 到航线l 的距离为3km .(2)在Rt AOD △中,tan 6023OD AD ==g °. 在Rt BOE △中,tan 6033OE BE ==g °.53DE OD OE ∴=+=.在Rt CBE △中,763tan 3tan76CBE BE CE BE CBE ∠==∴=∠=g °,,°.3tan 7653 3.38CD CE DE ∴=-=-°≈.15min h 12=,1212 3.3840.6112CDCD ∴==⨯≈(km/h ). 答:该轮船航行的速度约为40.6km/h【点评】根据已知的边和角,在相应的直角三角形中选择三角函数关系式计算线段的长度即距离.7. 【解析】过D 点作DF ⊥AB 于F 点,DF 的长度便是张明同学是在离该单位办公楼水平距离.【答案】解:方法一:过D 点作DF ⊥AB 于F 点在Rt △DEF 中,设EF=x ,则DF=3x在Rt △ADF 中,tan50°=303x x+≈1.204分 30+x=3x ×1.20Fx ≈27.8 ∴DF=3x ≈48答:张明同学站在离办公楼约48米处进行测量的.方法二:过点D 作DF ⊥AB 于F 点 在Rt △DEF 中,EF=FD ·tan30° 在Rt △AFD 中,AF=FD ·tan30° ∵AE+EF=AF∴30+FDtan30°=FD ·tan50° ∴FD ≈48答:张明同学站在离办公楼约48米处进行测量的.【点评】作垂线构造直角三角形,根据锐角三角函数直接或间接计算所要求的距离. 8. 【解析】过点C 作CE AB ⊥于E 则AB 被分为AE 、BE 两部分,在相应的直角三角形中计算即可.【答案】解:过点C 作CE AB ⊥于E .906030903060D ACD ∠=-︒=∠=-=Q °°,°°°, 90CAD ∴∠=°.11052CD AC CD =∴==Q ,.在Rt ACE △中,5sin 5sin 302AE AC ACE =∠==g g °,5cos 5cos3032CE AC ACE =∠==g g °在Rt BCE △中,545tan 4532BCE BE CE ∠=∴==Q g °,° 5553(31) 6.8222AB AE BE ∴=+=+=≈(米). 所以,雕塑AB 的高度约为6.8米.【点评】利用已知角度判断三角形的形状——直角三角形,作垂线构造直角三角形,通过锐角三角函数关系把未知转化为已知,步步为营,水到渠成.9. 【解析】首先利用三角函数关系计算DC 的长度,加上侧倾器的高度AB ,便得风筝的高度CE.DEAC【答案】解:在Rt △CBD 中,sin60°=70CD BC CD ==23, ∴CD=353≈60.55∴CE=CD+DE=CD+AB ≈62.1(米) 答:风筝的高度CE 约为62.1米.【点评】把实际问题转化为数学问题——直角三角形,这是锐角三角函数的应用.10. 【解析】过点A 作AD ⊥BC 于D ,在Rt △ABD 中利用正弦、余弦函数计算BD 、AD ,在Rt △ACD 中利用正切求CD ,即可计算BC 的长. 【答案】解:过点A 作AD BC ⊥,垂足为D . 在Rt ABD △中,20AB =,37B ∠=°, ∴sin3720sin3712AD AB ==·°°≈.cos3720cos3716BD AB ==·°°≈.在Rt ADC △中,65ACD ∠=°, ∴125.61tan 65 2.14AD CD =≈≈°5.611621.6121.6BC BD CD ∴=++=≈≈(海里)答:B C ,之间的距离约为21.6海里.【点评】把斜三角形转化为直角三角形,灵活利用锐角三角函数间接计算两点之间的距离.11. 【解析】根据“垂线段最短”的道理,利用解直角三角形的知识计算P 到公路AB 的垂直距离,再与半径50km 作比较.【答案】解:过点P 作PC AB C ⊥,是垂足,则3045APC BPC ∠=∠=°,°,PFBC AEAC PC =·tan 30BC PE =°,·tan 45°, AC BC AB +=Q ,PC ∴·tan 30PC +°·tan 45°=100,31100PC ⎛⎫∴+= ⎪ ⎪⎝⎭, ()()5033503 1.73263.450PC ∴=-⨯->≈≈答:森林保护区的中心与直线AB 的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区.【点评】构造直角三角形,通过三角函数关系计算点到公路的距离,再与森林区域涉及的数据相比较,就能知道公路是否通过保护区.12. 【解析】要求护航舰所需时间,已知它的速度,必须要先计算出B 、C 两处的距离. 【答案】解:由图可知,3045ACB BAC =︒=︒∠,∠ 作BD AC ⊥于D (如图), 在Rt ADB △中,20AB =∴2sin 45201022BD AB ==⨯=g° 在Rt BDC △中,30ACB =︒∠∴210220228BC =⨯= ∴280.4760≈ ∴0.476028.228⨯=≈(分钟)答:我护航舰约需28分钟就可到达该商船所在的位置C . 【点评】“化斜为直”便可解决问题的目的. 13. 【解析】在Rt △ABC 中,利用tanC=ACAB求AB. 【答案】解:由题意得:ABC △中,9060550BAC ACB AC ∠=∠==°,°,,tan AB AC ACB =∠g 5503≈952.6≈953≈(米). 答:他们测得湘江宽度为953米.【点评】在直角三角形中,已知一锐角和它的邻边、求对边时,用正切函数.CAB60° 45°北北D。

江苏省镇江句容市中考数学一轮复习 一次函数学案(无答案)

江苏省镇江句容市中考数学一轮复习 一次函数学案(无答案)

一次函数【学习目标】基本目标:1.通过对图形的变化,分析图象,得出一次函数的性质,并利用其来解决生活中实际问题。

提高目标:2.能懂得分析图象,从图象中得出信息,归纳总结知识,进一步提高学生的分析能力、归纳能力与数形结合能力。

3.在分析探索图象中,让学生体会掌握知识的快乐与体验成功的喜悦,进一步提高学生的学习积极性。

【教学重点】一次函数的性质与运用 【教学难点】数形结合思想的渗透与领悟练习:1、函数2(2)(4)y m x m =++-为正比例函数,则m 的值为 。

2、若正比例函数y=kx 的图象经过点P(1,1),则该函数图象必经过点( )A (-1,1)B (2,2)C (-2,2)D (2,一2)3、一次函数y=kx+b 满足kb>0,且y 随着x 的增大而减小,则此函数不经过第___象限。

4、如果直线(1)1y k x =-+经过第一、二、三象限,那么k 的取值范围是: .5、函数y=x+3的图像与x 轴交点A 的坐标为_____,与y 轴交点B 的坐标为_____,直线y=x+3与直线1y x =-+的交点坐标为 。

6、小明从家跑步到学校,接着马上步行回家. 如图是小明离家的路程y (米)与时间t (分)的函数图象,则小明回家的速度是每分钟步行 米.7、已知一次函数y kx b =+经过点(1,-8),(-1,-4)(1)求这个函数的解析式;(2)求出函数图象与坐标轴的两个交点之间的距离; (3)求出函数图像与坐标轴围成的三角形的面积;例题:例1、甲、乙两车从A 地出发,沿同一条高速公路行驶至距A•地400千米的B 地.L1、L2分别表示甲、乙两车行驶路程y (千米)与时间x (时)之间的关系(•如图所示),根据图象提供的信息,解答下列问题:(1)求L2的函数表达式(不要求写出x 的取值范围);(2)甲、乙两车哪一辆先到达B 地?该车比另一辆车早多长时间到达B 地?例2、如图,直线的解析式为1332y x =-+,且与轴交于点,直线经过点A,B两点,直线,交于点C . (1)求交点C 的坐标;(2)在直线l2上是否存在异于点C 的P 点,使得ADPADCss=,如果有请直接写出点P 的坐标,若没有说明理由;【课堂检测】1、如图直线y=kx+b ,根据图像回答问题 (1)、k= ,b= ;(2)、若A(-1,m),B(13,n),比较大小m n ;(3)、当x 时,y>0; (4)、当x<0时,y 的取值范围是 。

江苏省句容市近年中考数学第一轮复习解直角三角形的实际应用学案(无答案)

江苏省句容市近年中考数学第一轮复习解直角三角形的实际应用学案(无答案)

解直角三角形的实际应用【学习目标】1。

理解直角三角形的概念及仰角和俯角、坡度和坡角、方向角和方位角的概念。

2.灵活运用直角三角形中边与角的关系和勾股定理解直角三角形,考查学生运用直角三角形知识建立数学模型的能力。

【学习重难点】运用解直角三角形的知识,结合实际问题示意图,正确选择边角关系,解决实际问题。

【教学过程】预习导航:1.在正方形网格中,AOB ∠如图放置,则cos AOB ∠的值为( ) A .5 B .25C .12D .22。

如图,是一水库大坝横断面的一部分,坝高h =6m ,迎水斜坡AB =10m ,斜坡的坡角为α,则tan α的值为( )A .53B .54C .34D .433。

如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m(即小颖的眼睛距地面的距离),那么这棵树高是( ) A.533()32m B.3(53)2m C 。

m 335 D.4m 典型例题AA BqhOB1.仰角、俯角问题例1.(2016张家界中考)如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,小明在地面D处观测旗杆顶端B的仰角为30°,然后他正对建筑物的方向前进了20 m到达地面的E处,又测得旗杆顶端B的仰角为60°,已知建筑物的高度AC=12 m,求旗杆AB的高度.(结果精确到0。

1 m,参考数据:错误!≈1.73,错误!≈1.41)2。

方位角问题例2.(2016临沂中考)一艘轮船位于灯塔P的南偏西60°方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45°方向上的B处?(参考数据:错误!≈1.732,结果精确到0。

1)3。

坡度、坡比问题例3.(2016巴中中考)如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6 m,坝高20 m,斜坡AB的坡度i=1∶2。

江苏省句容市中考数学第一轮复习 三角形、四边形中的相关证明及计算学案(无答案) 学案

江苏省句容市中考数学第一轮复习 三角形、四边形中的相关证明及计算学案(无答案) 学案

课题:三角形、四边形中的相关证明及计算班级:姓名:_________【学习目标】1.巩固全等三角形的判定及性质,平行四边形、矩形、菱形、正方形的判定及性质等知识点;2.理解并灵活运用判定与性质解题。

【学习重难点】判定方法与性质的灵活运用,解题格式的规范;【近五年中考原题回顾】21.(6分)(2012•镇江)如图,在四边形ABCD中,AD∥BC,E 是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.21.(6分)(2013•镇江)如图,AB∥CD,AB=CD,点E、F在BC上,且BE=CF.(1)求证:△ABE≌△DCF;(2)试证明:以A、F、D、E为顶点的四边形是平行四边形.20.(6分)(2015•镇江)如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.(1)求证:△BAE≌△BCF;(2)若∠ABC=50°,则当∠EBA= °时,四边形BFDE是正方形.21.(6分)(2016•镇江)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠ABC=35°,则∠CAO=______°.命题总结:纵观近五年中考原题,三角形、四边形的计算与证明出现在20-22题中,分2问,共6分。

第1问考查全等三角形的判定方法,第2问借助第1问的结论,运用全等三角形实现边角的转化,再加入一些条件来考查特殊四边形的判定或进行角度的计算。

所给的图形涉及旋转、折叠、平移等全等变换,题目难度偏易.命题预测:预计2017 仍会以保持上述结论。

【例题教学】例1.如图,在ABC∆中,90=∠ABC,60=∠BAC。

ACD∆是等边三角形,E是AC的中点。

中考数学复习第25课时《解直角三角形的应用》教学设计

中考数学复习第25课时《解直角三角形的应用》教学设计

中考数学复习第25课时《解直角三角形的应用》教学设计一. 教材分析《解直角三角形的应用》是中考数学复习的第25课时,主要内容是让学生掌握解直角三角形的知识,学会运用解直角三角形解决实际问题。

本课时内容在教材中占据重要地位,是对前面所学三角函数知识的巩固和拓展,也是解决实际问题的基础。

二. 学情分析学生在学习本课时前,已经掌握了三角函数的基本知识,对直角三角形有一定的了解。

但部分学生对直角三角形的应用还不够熟练,解决实际问题的能力有待提高。

因此,在教学过程中,需要关注学生的个体差异,针对不同学生的学习情况,进行有针对性的教学。

三. 教学目标1.让学生掌握解直角三角形的知识,理解解直角三角形的原理和方法。

2.培养学生运用解直角三角形解决实际问题的能力。

3.提高学生的数学思维能力和创新能力。

四. 教学重难点1.教学重点:让学生掌握解直角三角形的知识,学会运用解直角三角形解决实际问题。

2.教学难点:如何引导学生将实际问题转化为解直角三角形的问题,提高学生解决实际问题的能力。

五. 教学方法1.采用问题驱动法,引导学生主动探究解直角三角形的知识。

2.运用案例分析法,让学生通过分析实际问题,学会运用解直角三角形解决实际问题。

3.采用合作学习法,让学生在小组讨论中,共同解决问题,提高解决问题的能力。

六. 教学准备1.准备相关的教学案例和实际问题,用于引导学生运用解直角三角形解决实际问题。

2.准备多媒体教学设备,用于展示和解释解直角三角形的知识和方法。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何利用解直角三角形解决问题。

例如:在直角三角形ABC中,∠C为直角,AB为斜边,若∠A=30°,BC=3,求AC的长度。

2.呈现(10分钟)引导学生回顾三角函数的基本知识,讲解解直角三角形的原理和方法。

通过多媒体演示,让学生直观地理解解直角三角形的过程。

3.操练(10分钟)让学生分组讨论,运用解直角三角形的方法解决导入中提出的问题。

中考数学一轮复习 解直角三角形教案

中考数学一轮复习 解直角三角形教案

解直角三角形教案【课标要求】1.掌握直角三角形的判定、性质.2.能用面积法求直角三角形斜边上的高.3.掌握勾股定理及其逆定理,能用勾股定理解决简单的实际问题.4.理解锐角三角函数定义(正弦、余弦、正切、余切),知道四个三角函数间的关系.5.能根据已知条件求锐角三角函数值.6.掌握并能灵活使用特殊角的三角函数值.7.能用三角函数、勾股定理解决直角三角形中的边与角的问题.8.能用三角函数、勾股定理解决直角三角形有关的实际问题.【课时分布】解直角三角形部分在第一轮复习时大约需要5课时,其中包括单元测试,下表为课时安排解直角三角形的应用【12.基础知识直角三角形的特征⑴直角三角形两个锐角互余;⑵直角三角形斜边上的中线等于斜边的一半;⑶直角三角形中30°所对的直角边等于斜边的一半;在Rt △ABC 中,若∠C =90°,则a 2+b 2=c 2;则这个三角形是直角三角形,即:在△ABC 中,若a 2+b 2=c 2⑹射影定理:AC 2=AD AB ,BC 2=BD AB ,CD 2=DA DB .锐角三角函数的定义: 如图,在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a,b,c ,则sinA =a c ,cosA =b c ,tanA =a b ,cotA =ba1 解直角三角形(Rt △ABC ,∠C =90°)⑴三边之间的关系:a 2+b 2=c 2.⑵两锐角之间的关系:∠A +∠B =90°.. ⑶边角之间的关系:sinA =A a c ∠的对边=斜边,cosA = A bc ∠的邻边=斜边.tanA =A a A b ∠∠的对边=的邻边,cotA = A bA a∠∠的邻边=的对边.⑷解直角三角形中常见类型:①已知一边一锐角. ②已知两边.③解直角三角形的应用. 2.能力要求例1 在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,CD ⊥AB 于点D ,求∠BCD 的四个三角函数值.【分析】求∠BCD 的四个三角函数值,关键要弄清其定义,由于∠BCD 是在Rt △BCD 中的一个内角,根据定义,仅一边BC 是已知的,此时有两条路可走,一是设法求出BD 和CD ,二是把∠BCD 转化成∠A ,显然走第二条路较方便,因为在Rt △ABC 中,三边均可得出,利用三角函数定义即可求出答案.【解】 在Rt △ABC 中,∵ ∠ACB =90°∴∠BCD +∠ACD =90°,∵CD ⊥AB ,∴∠ACD +∠A =90°,∴∠BCD =∠A . 在Rt △ABC 中,由勾股定理得,AB10,∴sin ∠BCD =sinA =BC AB =45 ,cos ∠BCD =cosA =AC AB =35 ,tan ∠BCD =tanA =BC AC =43 ,cot ∠BCD =cotA =AC BC =34.【说明】本题主要是要学生了解三角函数定义,把握其本质,教师应强调转化的思想,即本题中角的转换.(或可利用射影定理,求出BD 、DC ,从而利用三角函数定义直接求出)例2 如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪离AB 为1.5米,求拉线CE 的长.(结果保留根号)【分析】求CE 的长,此时就要借助于另一个直角三角形,故过点A 作AG ⊥CD ,垂足为G ,在Rt △ACG 中,可求出CG ,从而求得CD ,在Rt △CED 中,即可求出CE 的长. 【解】 过点A 作AG ⊥CD ,垂足为点G ,在Rt △ACG 中,∵∠CAG =30°,BD =6,∴tan 30°=CG AG ,∴CG =6×33 =2 3∴CD =2 3 +1.5,在Rt △CED 中,sin 60°=CDEC,∴EC =CD sin60°=4+ 3 .答:拉线CE 的长为4+ 3 米.【说明】在直角三角形的实际应用中,利用两个直角三角形的公共边或边长之间的关系,往往是解决这类问题的关键.老师在复习过程中应加以引导和总结.例3 如图,某县为了加固长90米,高5米,坝顶宽为4米的迎水坡和背水坡,它们是坡度均为1∶0.5,橫断面是梯形的防洪大坝,现要使大坝顺势加高1米,求⑴坡角的度数;⑵完成该大坝的加固工作需要多少立方米的土?【分析】大坝需要的土方=橫断面面积×坝长;所以问题就转化为求梯形ADNM 的面积,在此问题中,主要抓住坡度不变,即MA 与AB 的坡度均为1∶0.5. 【解】 ⑴∵i =tanB ,即tanB =10.5=2,∴∠B =63.43⑵过点M 、N 分别作ME ⊥AD ,NF ⊥AD , 垂足分别为E 、F . 由题意可知:ME =NF =5,∴ME AE =10.5, ∴AE=DF =2.5,∵AD =4, ∴MN =EF =1.5,∴S 梯形ADNM =12(1.5+4)×1=2.75.∴需要土方为2.75×90=247.5 (m 3) .【说明】本题的关键在于抓住前后坡比不变来解决问题,坡度=垂直高度水平距离 =坡角的正切值,虽然2007年中考时计算器不能带进考场,但学生应会使用计算器,所以建议老师还是要复习一下计算器的使用方法.例4 某风景区的湖心岛有一凉亭A ,其正东方向有一棵大树B ,小明想测量A 、B 之间的距离,他从湖边的C 处测得A 在北偏西45°方向上,测得B 在北偏东32°方向上,且量得B 、C 间距离为100米,根据上述测量结果,请你帮小明计算A 、B 之间的距离.(结果精确到1米,参考数据:sin 32°≈0.5299,cos 32°≈0.8480,tan s 32°≈0.6249,cot 32°≈1.600) 【分析】本题涉及到方位角的问题,要解出AB 的长,只要去解Rt △ADC 和Rt △BDC 即可.【解】过点C 作CD ⊥AB ,垂足为D . 由题知:∠α=45°,∠β=32°.在Rt △BDC 中,sin 32°=BDBC,∴BD =100sin 32°≈52.99cos32°=CDBC,∴CD =100 cos 32°≈84.80.在Rt △ADC 中,∵∠ACD =45°,∴AD =DC =84.80. ∴AB =AD +BD ≈138米.答:AB 间距离约为138米.【说明】本题中涉及到方位角的问题,引导学生画图是本题的难点,找到两个直角三角形的公共边是解题的关键,教师在复习中应及时进行归纳、总结由两个直角三角形构成的各种情形. 例5 在某海滨城市O 附近海面有一股台风,据监测,当前台风中心位于该城市的东偏南70°方向200千米的海面P 处,并以20千米/ 时的速度向西偏北25°的PQ 的方向移动,台风侵袭范围是一个圆形区域,当前半径为60千米,且圆的半径以10千米/ 时速度不断扩张.(1)当台风中心移动4小时时,受台风侵袭的圆形区域半径增大到 千米;又台风中心移动t 小时时,受台风侵袭的圆形区域半径增大到 千米.(2)当台风中心移动到与城市O 距离最近时,这股台风是否侵袭这座海滨城市?请说明理由(参1.41 1.73≈). 【分析】⑴由题意易知. ⑵先要计算出OH 和PH 的长,即可求得台风中心移动时间,而后求出台风侵袭的圆形区域半径,此圆半径与OH 比较即可.【解】⑴100; (6010)t +.⑵作OH ⊥PQ 于点H ,可算得141OH =≈(千米),设经过t 小时时,台风中心从P 移动到H ,则20PH t ==得t =,此时,受台风侵袭地区的圆的半径为:6010130.5+⨯(千米)<141(千米).B∴城市O 不会受到侵袭.【说明】本题是在新的情境下涉及到方位角的解直角三角形问题,对于此类问题常常要构造直角三角形,利用三角函数知识来解决.例6 如图所示:如图,某人在山坡坡脚A 处测得电视塔尖点C 的仰角为60° ,沿山坡向上走到P 处再测得点C 的仰角为45° ,已知OA =100米,山坡坡度为 12 ,(即tan ∠PAB = 12)且O 、A 、B 在同一条直线上。

江苏省句容市中考数学第一轮复习 三角形学案(无答案)

江苏省句容市中考数学第一轮复习 三角形学案(无答案)

三角形班级: 姓名: 【考点目标】了解三角形的角平分线,中线、高的定义。

理解三角形的三边关系、稳定性、内角和定理。

【教学重难点】利用三角形性质计算和证明。

【课前练习】1.以下列各组线段长为边,能组成三角形的是( ) A .1cm ,2cm ,4 cm B .8 crn ,6cm ,4cm C .12 cm ,5 cm ,6 cm D .2 cm ,3 cm ,6 cm2. 1.在下列长度的四根木棒中,能与3cm ,7cm 两根木棒围成一个三角形的( )A .7cmB .4cmC .3cmD .10cm3.等腰三角形的两边长分别为5 cm 和10 cm ,则此三角形的周长是( )A .15cmB .20cmC .25 cmD .20 cm 或25 cm 4.一个三角形三个内角之比为1:1:2,则这个三角形的三边比为_______.5. 已知D 、E 分别是ΔABC 的边AB 、BC 的中点,F 是BE 的中点.若面ΔDEF 的面积是10,则ΔADC 的面积是多少?二:【例题】例1如图,CE 是ABC D 的外角ACD Ð的平分线,若35B ?,60ACE?,求∠A 度数。

例2.已知,如图,∠xoy=900,点A 、B 分别在射线Ox,Oy 上移动,BE 是∠ABy 的平分线,BE 的反向延长线与∠OAB 的平分线相交于C 点,试问∠ACB 请ABDE图235°60°给出证明;如果随点A 、B 移动发生变化,请求出变化范围。

【课堂练习】1.两根木棒的长分别为7cm 和10cm ,要选择第三根棒,将它钉成一个三角形框架,那么第三根木棒长xcm 的范围是__________2.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( ) A .等腰三角形 B .直角三角形 C .锐角三角形 D .钝角三角形3.若等腰三角形两边长a和b满足|a-3︱+4 b =0则此三角形周长为______.4.三角形的下列线段中能将三角形的面积分成相等两部分的是( ) A 高 B 中线 C 角平分线 D 中位线5.如图,DE 是△ABC 的中位线, F 是DE 的中点,BF 的延长线交 AC 于点H ,求AH :HE6.如图,D 是△ABC 的边BC 上任意一点,E 、F 分别是线段AD 、CE 的中点,且△ABC 的面积为24cm 2,求△BEF 的面积.【课后训练】1.下列每组数分别是三根小木棒、的长度,用它们能摆成三角形的一组是()A.1cm,2cm,3cm B.3cm,4cm,5cmC.5cm,7cm,13cm D.7cm,7cm,15cm2.在ΔABC中,AC=5,中线AD=4,则AB边的取值范围是()A.1<AB<9 B.3<AB<13C.5<AB<13 D.9<AB<133.三角形中,最多有一个锐角,至少有_____个锐角,最多有______个钝角(或直角),三角形外角中,最多有______个钝角,最多有______个锐角.4.过△ABC的顶点C作边AB的垂线,如果这条垂线将∠ACB分为50°和20°的两个角,那么∠A、∠ B中较大的角的度数是________.5.如图,△ABC中,∠C=90○,点E在AC上,ED⊥AB,垂足为D,且ED平分△ABC的面积,则AD:AC.6.如图所示,在△ABC中,∠A=50°,BO、CO分别平分∠ABC和∠ACB.求∠BOC的度数.7. 已知:△ABC的两边AB=3cm,AC=8cm.(1)若第三边BC 长为偶数,求BC 的长;(2)若第三边BC 长为整数,求BC 的长8.已知:如图,正△ABC 的边长为a ,D 为AC 边上的一个动点,延长 AB 至 E ,使 BE=CD ,连结DE ,交BC 于点P .(1)求证:PD=PE ;(2)若D 为AC 的中点,求BP 的长.9. 已知△ABC,(1)如图1-1-27,若P 点是∠ABC 和∠ACB 的角平分线的交点,则∠P=1902A ??; (2)如图1-1-28,若P 点是∠ABC 和外角∠ACE 的角平分线的交点,则∠P=12A Ð; (3)如图1-1-29,若P 点是外角∠CBF 和∠BCE 的角平分线的交点,则∠P=1902A ??。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解直角三角形的实际应用
【学习目标】
1.理解直角三角形的概念及仰角和俯角、坡度和坡角、方向角和方位角的概念。

2.灵活运用直角三角形中边与角的关系和勾股定理解直角三角形,考查学生运用直角三角形知识建立数学模型的能力。

【学习重难点】
运用解直角三角形的知识,结合实际问题示意图,正确选择边角关系,解决实际问题。

【教学过程】 预习导航:
1.在正方形网格中,AOB ∠如图放置,则cos AOB ∠的值为( ) A
B
C .
12
D .2
2..如图,是一水库大坝横断面的一部分,坝高h =6m ,迎水斜坡AB =10m ,斜坡的坡角为α,则tan α
的值为( ) A .
53 B .54 C .34 D .4
3 3.如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m(即小颖的眼睛距地面的距离),那么这棵树高是( )
A.3)2m +
B.3
)2
m C.m 335 D.4m 典型例题
1. 仰角、俯角问题
例1.(2016张家界中考)如图,某建筑物AC 顶部有一旗杆AB ,且点A ,B ,C 在同一条直线上,小明在地面D 处观测旗杆顶端B 的仰角为30°,然后他正对建筑物的方向前进了20 m 到达地面的E 处,又测得旗杆顶端B 的仰角为60°,已知建筑物的高度AC =12 m ,求旗杆AB 的高度.(结果精确
A
B
B
到0.1 m,参考数据:3≈1.73,2≈1.41)
2.方位角问题
例2.(2016临沂中考)一艘轮船位于灯塔P的南偏西60°方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45°方向上的B处?(参考数据:3≈1.732,结果精确到0.1)
3.坡度、
坡比问题
例3.(2016巴中中考)如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6 m,坝高20 m,斜坡AB 的坡度i=1∶2.5,斜坡CD的坡角为30°,求坝底AD的长度.(精确到0.1m,参考数据:2≈1.414,3≈1.732.提示:坡度等于坡面的铅垂高度与水平长度之比
【课堂检测】
1(2016随州中考)某班数学兴趣小组利用数学活动课时间测量位于烈山山顶的炎帝雕像高度,已知烈山坡面与水平面的夹角为30°,山高857.5尺,组员从山脚D处沿山坡向着雕像方向前进1 620尺到达E点,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.
2.(2016乐山中考)如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,求巡逻船从出发到成功拦截捕鱼船所用的时间.
3.(2016石家庄二十八中二模)为邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图,已知斜坡AB长60 2 m,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE.(下面两个小题结果都保留根号)
(1)若修建的斜坡BE的坡比为3∶1,求休闲平台DE的长是多少米?
(2)一座建筑物GH距离A点33 m远(即AG=33 m),小亮在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B,C,A,G,H在同一个平面内,点C,A,G在同一条直线上,且HG⊥CG,建筑物GH高
为多少米?
【课后巩固】.
1(2016济宁中考)如图,斜面AC的坡度(CD与AD的比)为1∶2,AC=3 5 m,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=10 m,则旗杆BC的高度为( )
A.5 m B.6 m
C.8 m D.(3+5)m
2.(2016长沙中考)如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120 m,则这栋楼的高度为( ) A.160 3 m B.120 3 m C.300 m D.160 2 m
3.(2016钦州中考)如图,在电线杆CD上的C处引拉线CE,CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6 m的B处安置高为1.5 m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留小数点后一位,参考数据:2≈1.41,3≈1.73)
4.(2016绍兴中考)如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰角是45°,向前走6 m 到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是60°和30°.
(1)求∠BP Q 的度数;
(2)求该电线杆PQ 的高度.(结果精确到1m ,备用数据:3≈1.7,2≈1.4)
5.. 如图,水坝的横断面是梯形,背水坡AB 的坡
角∠BAD=
60,坡长AB=m 320,为加强水坝强度,
将坝底从A 处向后水平延伸到F 处,使新的背水坡 的坡角∠F=
45,求AF 的长度(结果精确到1米,
参考数据: 414.12≈,732.13≈).
(2题图)。

相关文档
最新文档