5.2 惯性矩和平行移轴公式

合集下载

M02资_惯性矩和惯性积的平行移轴定理

M02资_惯性矩和惯性积的平行移轴定理
第5章 平面的几何性质 5
材料力学
本章主要内容
§5–1 面积矩与形心位置 惯性矩、惯性积、 §5–2 惯性矩、惯性积、极惯性矩 §5–3 惯性矩和惯性积的平行移轴定理 §5–4 惯性矩和惯性积的转轴定理 、 截面的主惯性轴和主惯性矩
材料力学
§5-1 静矩与形心位置
一、面积(对轴)矩:(与力矩类似) 面积(对轴) y 是面积与它到轴的距离之积。
I AB = I x + d 2 A=
π d 4 π d 4 5π d 4
64 + 4 = 64
材料力学
§5 - 4
惯性矩和惯性积的转轴定理、 惯性矩和惯性积的转轴定理、 截面的主惯性轴和主惯性矩
y y1 x1
一、 惯性矩和惯性积的转轴定理
x 1 = x cos α + y sin α y 1 = − x sin α + y cos α
i i
1
1
2
A2
A
A1 + A2
x
5×(−70×110) = =−20.3 120×80−70×110
图(b)
材料力学
§5 - 2
惯性矩、惯性积、 惯性矩、惯性积、极惯性矩
是面积与它到轴的距离的平方之积。
与转动惯量类似) 一、惯性矩:(与转动惯量类似) 惯性矩: 与转动惯量类似
I x =∫ y dA
tg2 0=− α IxC−I yC
2IxC yC
形心主惯ቤተ መጻሕፍቲ ባይዱ矩:
IxC+I yC 2 2 IxC0 IxC+I yC ± ( ) +IxCyC = 2 2 I yC0
材料力学
3.求截面形心主惯性矩的方法 ①建立坐标系 ②计算面积和面积矩 ③求形心位置

惯性矩和平行移轴公式课件

惯性矩和平行移轴公式课件

01
深入研究惯性矩和平行 移轴公式的理论和应用, 提高计算精度和效率。
Байду номын сангаас
02
探索新的计算方法和算 法,以适应更复杂和大 规模的结构分析。
03
加强与其他学科的交叉 研究,如计算机科学、 数学等,以推动相关领 域的发展。
04
推广惯性矩和平行移轴 公式的应用,提高工程 和科学研究的水平。
THANKS
感谢观看
实例二:复杂结构的平行移轴公式应用
总结词:深入浅
详细描述:以一个复杂的组合结构为例,介绍如何利用平行移轴公式计算其惯性矩。首先,对平行移轴公式的应用条件进行 说明,然后通过逐步解析和推导,展示如何将复杂的结构拆分成简单的部分,并分别计算其惯性矩,最后利用平行移轴公式 得出整个结构的惯性矩。
实例三
05
总结与展望
CHAPTER
惯性矩和平行移轴公式的重要性和意义
惯性矩
描述物体在转动时保持其转动轴不变 的特性,是工程和物理学中常用的物 理量。
平行移轴公式
应用领域
广泛应用于机械、航空、船舶、车辆 等领域,用于设计和优化各种结构。
用于计算多个轴上的惯性矩,是解决 复杂问题的重要工具。
未来研究方向和展望
工程应用
02
平行移轴公式
CHAPTER
平行移轴公式的推导
平行移轴公式的应用 01 02
平行移轴公式的证明
平行移轴公式的证明可以通过几 何证明和代数证明两种方法进行。
几何证明方法利用了平行四边形 的性质和平行线的性质,通过图 形变换和比较证明平行移轴公式
的正确性。
代数证明方法基于矩的性质和线 性代数中的向量运算,通过数学 推导证明平行移轴公式的正确性。

材料力学第五章

材料力学第五章
组合图形形心坐标计算公式为
xC

Sy A

n
x C
Ai
i 1
n
Ai
i 1

n

yC

Sx A

i 1 n
y C
Ai

Ai
i 1

第五章 平面图形的几何性质
270
30
y [例1] 已知:图形尺寸如图

所示。
求:图形的形心。
50
C2

C C1
yc
z
解:1、将图形分解为 简单图形的组合
第五章 平面图形的几何性质
静矩与形心坐标之间的关系
S y
zdA
A
S z

ydA
A
Sy AzC
Sz AyC
yC

Sz A

ydA
A
A
zC

Sy A

zdA
A
A
已知静矩可以确定图形的形心坐标 已知图形的形心坐标可以确定静矩
第五章 平面图形的几何性质
构件截面的图形往往是由矩形、圆形等简单图形 组成,称为组合图形。
xc
A
G
A At g
, yc
A
G
A At g
由于是均质等厚度,t、 、g为常量,故上式可改写为
xdA
ydA
xc
A
A
, yc
A
A
第五章 平面图形的几何性质
1. 静矩的定义
对 z 轴静矩 对 y 轴静矩
Sz
ydA
A
Sy

惯性矩的计算方法

惯性矩的计算方法

惯性矩的计算⽅法第1节静矩和形⼼静矩和形⼼任何受⼒构件的承载能⼒不仅与材料性能和加载⽅式有关,⽽且与构件截⾯的⼏何形状和尺⼨有关.如:计算杆的拉伸与压缩变形时⽤到截⾯⾯积 A ,计算圆轴扭转变形时⽤到横截⾯的极惯性矩 I等. A 、 I等是从不同⾓度反映了截⾯的⼏何特性,因此称它们为截⾯图形的⼏何性质.静矩和形⼼设有⼀任意截⾯图形如图 4 — 1 所⽰,其⾯积为 A .选取直⾓坐标系 yoz ,在坐标为 (y,z) 处取⼀微⼩⾯积 dA ,定义微⾯积dA 乘以到 y 轴的距离 z ,沿整个截⾯的积分,为图形对 y 轴的静矩 S,其数学表达式(4 -1a )同理,图形对 z 轴的静矩为(4-1b)图 4-1截⾯静矩与坐标轴的选取有关,它随坐标轴 y 、 z 的不同⽽不同.所以静矩的数值可能是正,也可能是负或是零.静矩的量纲为长度的三次⽅.确定截⾯图形的形⼼位置 ( 图 4-1 中 C 点 ):(4 -2a )(4-2b)式中 y、 z 为截⾯图形形⼼的坐标值.若把式 (4-2) 改写成(4-3)性质:若截⾯图形的静矩等于零,则此坐标轴必定通过截⾯的形⼼.若坐标轴通过截⾯形⼼,则截⾯对此轴的静矩必为零.由于截⾯图形的对称轴必定通过截⾯形⼼,故图形对其对称轴的静矩恒为零。

4 )⼯程实际中,有些构件的截⾯形状⽐较复杂,将这些复杂的截⾯形状看成是由若⼲简单图形 ( 如矩形、圆形等 ) 组合⽽成的.对于这样的组合截⾯图形,计算静矩 (S) 与形⼼坐标 (y、 z ) 时,可⽤以下公式(4-4)(4-5)式中 A, y , z 分别表⽰第个简单图形的⾯积及其形⼼坐标值, n 为组成组合图形的简单图形个数.即:组合图形对某⼀轴的静矩等于组成它的简单图形对同⼀轴的静矩的代数和.组合图形的形⼼坐标值等于组合图形对相应坐标轴的静矩除以组合图形的⾯积.组合截⾯图形有时还可以认为是由⼀种简单图形减去另⼀种简单图形所组成的.例 4-1 已知 T 形截⾯尺⼨如图 4-2 所⽰,试确定此截⾯的形⼼坐标值.图 4-2解: (1) 选参考轴为 y 轴, z 轴为对称轴,(2) 将图形分成 I 、两个矩形,则(3) 代⼊公式 (4-5)惯性矩、惯性积和惯性半径设任⼀截⾯图形 ( 图 4 — 3) ,其⾯积为 A .选取直⾓坐标系 yoz ,在坐标为 (y 、 z) 处取⼀微⼩⾯积 dA ,定义此微⾯积 dA 乘以到坐标原点o的距离的平⽅,沿整个截⾯积分,为截⾯图形的极惯性矩 I.微⾯积 dA 乘以到坐标轴 y 的距离的平⽅,沿整个截⾯积分为截⾯图形对 y 轴的惯性矩 I.极惯性矩、惯性矩常简称极惯矩、惯矩.数学表达式为极惯性矩 (4-6)对 y 轴惯性矩 (4 -7a )同理,对 z 轴惯性矩 (4-7b)图 4-3由图 4-3 看到所以有即(4-8) 式 (4 — 8) 说明截⾯对任⼀对正交轴的惯性矩之和恒等于它对该两轴交点的极惯性矩。

截面的几何性质—平行移轴公式(材料力学)

截面的几何性质—平行移轴公式(材料力学)
三、平行移轴公式
1、平行移轴公式
右图任意截面,zc、yc 轴为通过截面形心C的一对正交轴,z、y轴为分别与zc、yc 轴平行的轴,
两平行轴之间的距离分别为a和b。
根据定义,图形对zc、yc 轴的惯性矩和惯性积分别为
Izc yc2dA, I yc zc2dA, Izc yc yc zcdA
I zy
i 1
I yzi
Izi, Iyi
,Iyz i
----指第
i个简单截面对
y, z
轴的惯性矩,惯性积。
例题 求T形截面对其形心轴 zC 的惯性矩(单位为mm)。
解:将截面分成两个矩形截面。 截面的形心必在对称轴 y 上。
取过矩形2的形心且平行于底边的轴作为参考轴记作z轴。
A1
20140
2800mm2 ,
Iz c
I1 zc
I2 zc
7.68106
4.43106
12.11106 mm4
20 140
yc
20
1
a1 zc
y1 a2 yc z
2
100
a2A b2A
c
I zy I zc yc abA
上式即为惯性矩和惯性积的平行移轴公式。
y
z yc
b
zc
dA
C
yc
a y zc
O
z
2、组合截面的惯性矩、惯性积
组合截面对某轴的惯性矩、惯性积,等于各简单图形对此轴的惯性矩、惯性积的代数和。
n
Iz Iz i
i 1
n
I y I y
i1 i
n
ycdA a2
dA
A
A
A
A
A
A

惯性矩及相关总结(画重点)-20200408整理

惯性矩及相关总结(画重点)-20200408整理

前引360知识:惯性矩是一个物理量,通常被用作描述一个物体抵抗弯曲的能力。

惯性矩的国际单位为(m^4)。

百度知识:惯性矩(moment of inertia of an area)是一个几何量,通常被用作描述截面抵抗弯曲的性质。

惯性矩的国际单位为(m4)。

即面积二次矩,也称面积惯性矩,而这个概念与质量惯性矩(即转动惯量)是不同概念。

截面惯性矩(I=截面面积X截面轴向长度的二次方)结构构件惯性矩I x结构设计和计算过程中,构件惯性矩I x为截面各微元面积与各微元至与X轴线平行或重合的中和轴距离二次方乘积的积分。

主要用来计算弯矩作用下绕X轴的截面抗弯刚度。

结构构件惯性矩I y结构设计和计算过程中,构件惯性矩I y为截面各微元面积与各微元至与Y轴线平行或重合的中和轴距离二次方乘积的积分。

主要用来计算弯矩作用下绕Y轴的截面抗弯刚度。

工程构件典型截面几何性质的计算2.1面积矩1.面积矩的定义图2-2.1任意截面的几何图形如图2-2.1所示为一任意截面的几何图形(以下简称图形)。

定义:积分和分别定义为该图形对z轴和y轴的面积矩或静矩,用符号S z和S y,来表示,如式(2—2.1)(2—2.1)面积矩的数值可正、可负,也可为零。

面积矩的量纲是长度的三次方,其常用单位为m3或mm3。

2.面积矩与形心平面图形的形心坐标公式如式(2—2.2)(2—2.2)或改写成,如式(2—2.3)(2—2.3)面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。

图形形心相对于某一坐标距离愈远,对该轴的静距(面积矩)绝对值愈大。

图形对通过其形心的轴的静距(面积矩)等于零;反之,图形对某一轴的面积矩等于零,该轴一定通过图形形心。

形心确定的规律:(a)图形有对称轴时,形心必在此对称轴上。

(b)图形有两个对称轴时,形心必在此两对称轴的交点处。

3.组合截面面积矩和形心的计算组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。

结构力学

结构力学

本章重点1、静矩与形心2、惯性矩、极惯性矩和惯性积3、平行移轴公式、转轴公式关键概念静矩、惯性矩、极惯性矩、惯性积、主惯性轴、形心主惯性轴目录§I-1 静矩和形心§I-2极惯性矩·惯性矩·惯性积§I-3 平行移轴公式§I-4 惯性矩和惯性积的转轴公式.截面的§I -1 静矩和形心一、基本概念1. 静矩(或一次矩)O xd A y yx C x ydA x ⋅——微面积对y 轴的静矩dA y ⋅——微面积对x 轴的静矩A x S A y d ⎰=A y S A x d ⎰=——整个平面图形对y 轴的静矩——整个平面图形对x 轴的静矩2.形心坐标公式AS A Ay y A S A A x x x A yA ====⎰⎰d d 常用单位:m 3或mm 3。

数值:可为正、负或0 。

3.静矩与形心坐标的关系yA S x A S x y ==推论:截面对形心轴的静矩恒为0,反之,亦然。

1.组合截面的静矩根据静矩的定义:整个平面图形对某轴的静矩应等于它的各组成部分对同一轴的静矩的代数和,即:∑=∑===ni i i x n i i i y y A S x A S 11 和面积。

个简单图形的形心坐标分别为第和 式中: i A y x i i i ,二、讨论:2.组合截面的形心坐标公式∑=∑===n i i i x n i i i y y A S x A S 11 组合截面静矩∑==n i i A A 1组合截面面积组合截面的形心坐标公式为:∑∑==∑∑======n i i ni i i x n i i n i i i y A y A A S y A x A A S x 1111 ,例I —1:计算由抛物线、y 轴和z 轴所围成的平面图形对y 轴和z 轴的静矩,并确定图形的形心坐标。

z h y b =-⎛⎝ ⎫⎭⎪122O y z 解:S z A y A =⎰2d S y A z A =⎰d =-⎛⎝ ⎫⎭⎪⎰12102222b h y b y d =-⎛⎝ ⎫⎭⎪⎰yh y b y b0221d =4152bh =b h 24O y z y d y bh A A A =⎰d =-⎛⎝ ⎫⎭⎪⎰0221b h y b y d =23bh 形心坐标为:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧======52321548332422hbh bh A S z bbh bhA S y y C z C例I —2:确定图示图形形心C 的位置。

惯性矩的计算方法与常用截面惯性矩计算公式

惯性矩的计算方法与常用截面惯性矩计算公式

惯性矩的计算方法及常用截面惯性矩计算公式截面图形的几何性质一.重点及难点:(一).截面静矩和形心1.静矩的定义式如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴的一次矩为它对该轴的静矩,即ydAdSx xdA dS y == 整个图形对y 、z 轴的静矩分别为⎰⎰==AAy ydASx xdAS (I-1) 2.形心与静矩关系 图I-1设平面图形形心C 的坐标为C C z y , 则 0AS y x= , A S x y = (I-2)推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。

推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。

3.组合图形的静矩和形心设截面图形由几个面积分别为n A A A A ⋯⋯321,,的简单图形组成,且一直各族图形的形心坐标分别为⋯⋯332211,,,y x y x y x ;;,则图形对y 轴和x轴的静矩分别为∑∑∑∑========ni ni ii xi x ni ii ni yi y y A S S x A S 1111S (I-3)截面图形的形心坐标为∑∑===ni ini ii AxA x 11 , ∑∑===ni ini ii AyA y 11 (I-4)4.静矩的特征(1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。

(2) 静矩有的单位为3m 。

(3) 静矩的数值可正可负,也可为零。

图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。

(4) 若已知图形的形心坐标。

则可由式(I-1)求图形对坐标轴的静矩。

若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。

组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1 形心和静矩
第五章 平面图形的几何性质
5.1 静矩和形心 5.2惯性矩、极惯性矩 、平行移轴公式
教学目的和要求
• 平面图形的几何性质是影响构件承载能力的重要 因素之一。如何确定平面图形的几何性质的量值, 是本章讨论的内容。本章主要介绍了形心、静矩、 惯性矩、惯性积等几何量,学习时要掌握其基本 的概念和计算方法,同时要掌握平行移轴公式及 其应用。
30
I
xC1
C
200 157.5
I yC I yC I yC
a1 57.5 xC a2 57.5 xC2
30
II
30 200 3 200 30 3 12 12 2.05 107 mm 4
I xC I xC 2 a 22 A2
30 200 3 57.52 200 30 mm 4 3.98 107 mm 4 12
例2 求 I x 和 I y C C 解:
200 yC
7 4
I xC I
xC
I 6.01 10 mm
xC
x xC b y yC a
I x y dA ( yC a) dA
2
y
x
yC
b
xC
dA
yC
C
A O
2
a
y
xC
A
A
y dA 2a yC dA a
A 2 C A
2
dA
A
x
I xC
即:
0
a2 A
2
I x I xC a A
§A.3 平行轴定理
2 2 A A
x
即: 性质 :
Ip I y I x
平面图形对任意一点的极惯性矩等于该图形对通过 该点的任意一对相互垂直的坐标轴的惯性矩之和
§A.2 惯性矩 惯性积 惯性半径
常用图形的惯性矩:
1.矩形截面
y
dy
bh3 2 2 I x y dA y bdy h 2 A 12
一、定理推导
同理
I x I xC a A
2
I y I yC b A I xy I xC yC abA
2
——惯性矩和惯性积的平行轴定理
显然:
I x I xC
I y I yC
性质4:在平面图形对所有相互平行的坐标轴的惯性矩
中,以对形心轴的惯性矩为最小。
二、应用
解: 例 求 I xC和 I yC
h2
h __ 2
C
dA
y
y
x
hb 3 Iy 12
h __ 2
h
I x1 y 2dA
A
0
bh3 y 2 bdy 3
O
b __ 2 b __ 2
x1
常用图形的惯性矩:
2.圆形截面
y
I x I y Ip
由对称性
D
4
32
4
O
x
D 1 I x I y Ip 2 64
200 yC
7 4
I xC I

xC
I 6.01 10 mm
xC
30
I
xC1
C
200 157.5
I
xC
I
xC 1
a A1
2 1
a1 57.5 xC a2 57.5 xC2
30
II
200 30 3 57.52 200 30 mm 4 12 2.03 107 mm 4
ix
Ix ——图形对 x 轴的惯性半径 A
iy
单位:m
Iy A
——图形对 y 轴的惯性半径
三、惯性半径
试问:
即: 注意:
2 2 I x y 2dA A i x A yC
A
?
i x yC
i x yC
?
i y xC
四、平行移轴公式
一、定理推导 二、应用
一、定理推导
3.环形截面
d D
( D 4 d 4 ) D 4 1 4 (1 ) I x I y Ip 64 64 2
特别指出: 惯 性 矩——对某一轴而言 极 惯 性 矩——对某一点而言
三、惯性半径
在力学计算 A i y2
x
整个图形 A 对x 轴的惯性矩
整个图形 A 对 y 轴的惯性矩
I x y 2dA
A
I y x dA
2 A
单位:m4
其值:+
二、惯性矩与极惯性矩的关系
若 x 、 y 轴为一对正交坐标轴
y
x
dA
I p 2dA ( x 2 y 2 )dA
A
A

A O
y
x dA y dA
§5.2
一、惯性矩
惯性矩 惯性半径
二、惯性矩与极惯性矩的关系 三、惯性半径
四、平行移轴公式
教学重点
1、惯性矩、极惯性矩的概念和计算方法;
2、平行移轴公式。
教学难点
• 平行移轴公式的应用。
一、惯性矩
1.惯性矩 定义: y2dA——微面积dA对 x 轴的惯性矩
y
x
dA
A
y
x2dA——微面积dA对 y 轴的惯性矩 O
相关文档
最新文档