惯性矩总结(含常用惯性矩公式)
计算惯性矩的公式

矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12三角形:b*h^3/36圆形对于圆心的惯性矩:π*d^4/64环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D§16-1 静矩和形心平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。
静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示。
定义式:,(Ⅰ-1)量纲为长度的三次方。
由于均质薄板的重心与平面图形的形心有相同的坐标和。
则由此可得薄板重心的坐标为同理有所以形心坐标,(Ⅰ-2)或,由式(Ⅰ-2)得知,若某坐标轴通过形心,则图形对该轴的静矩等于零,即,;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。
静矩与所选坐标轴有关,其值可能为正,负或零。
如一个平面图形是由几个简单平面图形组成,称为组合平面图形。
设第i块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为,(Ⅰ-3),(Ⅰ-4)【例I-1】求图Ⅰ-2所示半圆形的及形心位置。
【解】由对称性,,。
现取平行于轴的狭长条作为微面积所以读者自己也可用极坐标求解。
【例I-2】确定形心位置,如图Ⅰ-3所示。
【解】将图形看作由两个矩形Ⅰ和Ⅱ组成,在图示坐标下每个矩形的面积及形心位置分别为矩形Ⅰ:mm2mm,mm矩形Ⅱ:mm2mm,mm整个图形形心的坐标为§16-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示。
,(Ⅰ-5)量纲为长度的四次方,恒为正。
相应定义,(Ⅰ-6)为图形对轴和对轴的惯性半径。
组合图形的惯性矩设为分图形的惯性矩,则总图形对同-轴惯性矩为,(Ⅰ-7)若以表示微面积到坐标原点的距离,则定义图形对坐标原点的极惯性矩(Ⅰ-8)因为所以极惯性矩与(轴)惯性矩有关系(Ⅰ-9)式(Ⅰ-9)表明,图形对任意两个互相垂直轴的(轴)惯性矩之和,等于它对该两轴交点的极惯性矩。
常用截面惯性矩计算公式

常用截面惯性矩计算公式截面的惯性矩是描述截面抵抗弯曲的特性之一,也称为截面二阶矩。
它是通过计算截面各点到其中一轴线的距离的二次方与其对应的面积乘积之和来获得。
常用的截面惯性矩计算公式如下:1.矩形截面的惯性矩公式:对于矩形截面,惯性矩可以通过以下公式进行计算:I=(b*h^3)/12其中,I为惯性矩,b为矩形宽度,h为矩形高度。
2.圆形截面的惯性矩公式:对于圆形截面,惯性矩可以通过以下公式进行计算:I=(π*R^4)/4其中,I为惯性矩,R为圆的半径。
3.I型截面的惯性矩公式:对于I型截面(又称为双T型截面或工字型截面),惯性矩可以通过以下公式进行计算:I = bw * hw^3 / 12 + hf * tf^3 / 12 + 2 * tf * hf * (hw / 2 + tf / 2)^2其中,I为惯性矩,bw为上翼板的宽度,hw为上翼板的高度,hf为下翼板的高度,tf为翼板的厚度。
4.H型截面的惯性矩公式:对于H型截面,惯性矩可以通过以下公式进行计算:I = [bw * (hw^3 - tw1 ^3) / 12] + [hf * (tf^3 - tw2^3) / 12] + 2 * tw1 * hw^3 / 12 + 2 * tw2 * tf^3 / 12 + 2 * hf * (hw / 2 + tf / 2)^2其中,I为惯性矩,bw为上翼板的宽度,hw为上翼板的高度,hf为下翼板的高度,tf为翼板的厚度,tw1为上翼板的厚度,tw2为下翼板的厚度。
5.T型截面的惯性矩公式:对于T型截面,惯性矩可以通过以下公式进行计算:I = [bw * hw^3 / 12] + [tf * hf^3 / 12] + tw * hw * (hw / 2 + tf)^2其中,I为惯性矩,bw为翼板的宽度,hw为翼板的高度,hf为梁的高度,tf为梁的厚度,tw为翼板的厚度。
这些公式是根据不同截面形状和尺寸推导出来的,可以用于计算截面的惯性矩。
惯性矩计算公式

惯性矩计算公式(总1页)
--本页仅作为文档封面,使用时请直接删除即可--
--内页可以根据需求调整合适字体及大小--
惯性矩计算公式:
矩形:b*h^3/12
三角形:b*h^3/36
圆形:π*d^4/64
环形:π*D^4*(1-α^4)/64;α=d/D
^3表示3次
截面抵抗矩(W)就是截面对其形心轴惯性矩与截面上最远点至形心轴距离的比值1)找出达到极限弯矩时截面的中和轴。
它是与弯矩主轴平行的截面面积平行线,该中和轴两边的面积相等。
在双轴对称截面中,这条轴是主轴。
2)分别求两侧面积对中和轴的面积矩,面积矩之和即为塑性截面模量。
矩形截面抵抗矩W=bh^2/6 圆形截面的抵抗矩W=^3/32 圆环截面抵抗矩:W=π(R4-
r4)/(32R)
2。
材料力学笔记(惯性矩)汇总

材料力学笔记一、截面对形心轴的轴惯性矩矩形、实心圆、空心圆、薄壁圆截面的轴惯性矩分别为(B.3-4)(B.3-5)(B.3-6)式中,d—实心圆直径和空心圆内径,D—空心圆外径,R—薄壁圆平均半径。
t—薄壁圆壁厚。
惯性矩I量纲为长度的四次方(mm4),恒为正。
二、截面抗弯刚度EI z和抗弯截面模量Wz(a)上式代表距中性层为y处的任一纵向“纤维”的正应变,式中的ρ对同一横截面来说是个常数,所以正应变ε与y成正比(上缩下伸),与z无关。
式(a)即为横截面保持平面,只绕中性轴旋转的数学表达式,通常称为几何方面的关系式。
(b)式(b)表示横截面上正应力沿梁高度的变化规律,即物理方面的关系式。
由于式中ρ对同一横截面来说是个常数,均匀材料的弹性模量E也是常数,所以横截面上任一点处的正应力与y成正比(上压下拉)。
显然中性轴上的正应力为零,而距中性轴愈远,正应力愈大,最大正应力σmax发生在距中性轴最远的上下边缘(图7.2-4)。
图7.2-4 弯曲正应力分布微内力对中性轴z之矩组成弯矩M,即(e)代入式(b ),并将常数从积分号中提出,得。
令,称为横截面对z轴的惯性矩,它只取决于横截面的形状和尺寸,其量纲是长度的四次方,此值很容易通过积分求出。
于是得出(7.2-1)上式确定了曲率的大小。
式中EIz称为截面抗弯刚度(stiffness in bending)。
到此为止,式(a)中的y和ρ已经确定。
联合式(b)及式(7.2-1),得出(7.2-2)上式即为对称弯曲正应力公式。
当y=ymax时,得出最大正应力公式,即(7.2-3)式中称为抗弯截面模量(section modulus in bending),其量纲是长度的三次方。
表7.2-I列出了简单截面的Iz和Wz计算公式。
表中 =d/D,R为薄壁圆平均半径。
三、平行轴间惯性矩的移轴公式图B.3-3如图B.3-3所示,设y0、z为截面的一对形心轴,如果截面对形心轴的惯性矩为和,则截面对任一平行于它的轴y和z的惯性矩为:,(B.3-7)上式称为惯性轴的移轴公式或称平行轴定理(Parallel axis theorem)。
惯性矩的定义和计算公式

惯性矩的定义和计算公式惯性矩的定义●区域惯性矩-典型截面I●区域惯性矩,一个区域的惯性矩或典型截面轮廓的第二个区域惯性矩●面积惯性矩或面积惯性矩-也称为面积二阶矩-I,是用于预测梁的挠度、弯曲和应力的形状特性。
●面积惯性矩-英制单位●inches4●面积惯性矩-公制单位●mm4●cm4●m4●单位转换● 1 cm4 = 10-8 m4 = 104 mm4● 1 in4 = 4.16x105 mm4 = 41.6 cm4●示例-惯性单位面积矩之间的转换●9240 cm4 can be converted to mm4 by multiplying with 104●(9240 cm4) 104 = 9.24 107 mm4●区域惯性矩(一个区域或第二个区域的惯性矩)●●绕x轴弯曲可表示为●I x = ∫ y2 dA (1)●其中●I x =与x轴相关的惯性矩面积(m4, mm4, inches4)●y =从x轴到元件dA的垂直距离(m, mm, inches)●dA =基元面积(m2, mm2, inches2)●绕y轴弯曲的惯性矩可以表示为●I y = ∫ x2 dA (2)●其中●I x =与y轴相关的惯性矩面积(m4, mm4, inches4)●x =从轴y 到元件dA的垂直距离(m, mm, inches)●典型截面I的面积惯性矩●典型截面II的面积惯性矩●实心方形截面●●实心方形截面的面积惯性矩可计算为●I x = a4 / 12 (2)●其中● a = 边长(mm, m, in..)●I y = a4 / 12 (2b)●实心矩形截面●●矩形截面惯性矩的面积可计算为●I x = b h3 / 12 (3)●其中● b = 宽●h = 高●I y = b3 h / 12 (3b)●实心圆形截面●●实心圆柱截面的面积惯性矩可计算为●I x = π r4 / 4●= π d4 / 64 (4)●其中●r =半径● d = 直径●I y = π r4 / 4●= π d4 / 64 (4b)●中空圆柱截面●空心圆柱截面的面积惯性矩可计算为●I x = π (d o4 - d i4) / 64 (5)●其中●d o = 外圆直径●d i = 内圆直径●I y = π (d o4 - d i4) / 64 (5b)●方形截面-对角力矩●●矩形截面的对角线面积惯性矩可计算为●I x = I y = a4 / 12 (6)●矩形截面-通过重心的任何线上的面积力矩●●通过重心在线计算的矩形截面和力矩面积可计算为●I x = (b h / 12) (h2 cos2 a + b2 sin2 a) (7)●对称形状●●对称形状截面的面积惯性矩可计算为●I x = (a h3 / 12) + (b / 12) (H3 - h3) (8)●I y = (a3 h / 12) + (b3 / 12) (H - h) (8b)●不对称形状●●非对称形状截面的面积惯性矩可计算为●I x = (1 / 3) (B y b3 - B1 h b3 + b y t3 - b1 h t3) (9)●典型截面II的面积惯性矩●区域惯性矩vs.极惯性矩vs.惯性矩●“面积惯性矩”是一种形状特性,用于预测梁的挠度、弯曲和应力●“极惯性矩”是衡量梁抗扭能力的一个指标,计算受扭矩作用的梁的扭曲度时需要用到它●“转动惯量”是测量物体在旋转方向上变化的阻力。
惯性矩总结(含常用惯性矩公式)

惯性矩就是一个物理量,通常被用作描述一个物体抵抗扭动,扭转得能力。
惯性矩得国际单位为(m^4)。
工程构件典型截面几何性质得计算2、1面积矩1.面积矩得定义图2-2、1任意截面得几何图形如图2-31所示为一任意截面得几何图形(以下简称图形)。
定义:积分与分别定义为该图形对z轴与y轴得面积矩或静矩,用符号S z与S y,来表示,如式(2—2、1)(2—2、1)面积矩得数值可正、可负,也可为零。
面积矩得量纲就是长度得三次方,其常用单位为m3或mm3。
2.面积矩与形心平面图形得形心坐标公式如式(2—2、2)(2—2、2)或改写成,如式(2—2、3)(2—2、3)面积矩得几何意义:图形得形心相对于指定得坐标轴之间距离得远近程度。
图形形心相对于某一坐标距离愈远,对该轴得面积矩绝对值愈大。
图形对通过其形心得轴得面积矩等于零;反之,图形对某一轴得面积矩等于零,该轴一定通过图形形心。
3.组合截面面积矩与形心得计算组合截面对某一轴得面积矩等于其各简单图形对该轴面积矩得代数与。
如式(2—2、4)(2—2、4)式中,A与y i、z i分别代表各简单图形得面积与形心坐标。
组合平面图形得形心位置由式(2—2、5)确定。
(2—2、5)2、2极惯性矩、惯性矩与惯性积1.极惯性矩任意平面图形如图2-31所示,其面积为A。
定义:积分称为图形对O点得极惯性矩,用符号I P,表示,如式(2—2、6)(2—2、6)极惯性矩就是相对于指定得点而言得,即同一图形对不同得点得极惯性矩一般就是不同得。
极惯性矩恒为正,其量纲就是长度得4次方,常用单位为m4或mm4。
(1)圆截面对其圆心得极惯性矩,如式(2—7)(2—2、7)(2)对于外径为D、内径为d得空心圆截面对圆心得极惯性矩,如式(2—2、8)(2—2、8)式中,d/D为空心圆截面内、外径得比值。
2.惯性矩在如图6-1所示中,定义积分,如式(2—2、9)(2—2、9)称为图形对z轴与y轴得惯性矩。
极惯性矩常用计算公式[精华]
![极惯性矩常用计算公式[精华]](https://img.taocdn.com/s3/m/fc9d50e976c66137ef061951.png)
极惯性矩常用计算公式[精华]极惯性矩常用计算公式:Ip=?Aρ^2dA矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12三角形:b*h^3/36圆形对于圆心的惯性矩:π*d^4/64环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D?16-1 静矩和形心平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。
静矩:平面图形面积对某坐标轴的一次矩,如图?-1所示。
定义式:, (?-1)量纲为长度的三次方。
由于均质薄板的重心与平面图形的形心有相同的坐标和。
则由此可得薄板重心的坐标为同理有所以形心坐标, (?-2) 或,由式(?-2)得知,若某坐标轴通过形心,则图形对该轴的静矩等于零,即,;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。
静矩与所选坐标轴有关,其值可能为正,负或零。
如一个平面图形是由几个简单平面图形组成,称为组合平面图形。
设第i块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为, (?-3), (?-4)【例I-1】求图?-2所示半圆形的及形心位置。
【解】由对称性,,。
现取平行于轴的狭长条作为微面积所以读者自己也可用极坐标求解。
【例I-2】确定形心位置,如图?-3所示。
【解】将图形看作由两个矩形?和?组成,在图示坐标下每个矩形的面积及形心位置分别为矩形?:mm2mm,mm矩形?:mm2mm,mm 整个图形形心的坐标为?16-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图?-4所示。
, (?-5)量纲为长度的四次方,恒为正。
相应定义, (?-6)为图形对轴和对轴的惯性半径。
组合图形的惯性矩设为分图形的惯性矩,则总图形对同-轴惯性矩为, (?-7)若以表示微面积到坐标原点的距离,则定义图形对坐标原点的极惯性矩(?-8) 因为所以极惯性矩与(轴)惯性矩有关系(?-9) 式(?-9)表明,图形对任意两个互相垂直轴的(轴)惯性矩之和,等于它对该两轴交点的极惯性矩。
惯性矩及相关总结(画重点)-20200408整理

前引360知识:惯性矩是一个物理量,通常被用作描述一个物体抵抗弯曲的能力。
惯性矩的国际单位为(m^4)。
百度知识:惯性矩(moment of inertia of an area)是一个几何量,通常被用作描述截面抵抗弯曲的性质。
惯性矩的国际单位为(m4)。
即面积二次矩,也称面积惯性矩,而这个概念与质量惯性矩(即转动惯量)是不同概念。
截面惯性矩(I=截面面积X截面轴向长度的二次方)结构构件惯性矩I x结构设计和计算过程中,构件惯性矩I x为截面各微元面积与各微元至与X轴线平行或重合的中和轴距离二次方乘积的积分。
主要用来计算弯矩作用下绕X轴的截面抗弯刚度。
结构构件惯性矩I y结构设计和计算过程中,构件惯性矩I y为截面各微元面积与各微元至与Y轴线平行或重合的中和轴距离二次方乘积的积分。
主要用来计算弯矩作用下绕Y轴的截面抗弯刚度。
工程构件典型截面几何性质的计算2.1面积矩1.面积矩的定义图2-2.1任意截面的几何图形如图2-2.1所示为一任意截面的几何图形(以下简称图形)。
定义:积分和分别定义为该图形对z轴和y轴的面积矩或静矩,用符号S z和S y,来表示,如式(2—2.1)(2—2.1)面积矩的数值可正、可负,也可为零。
面积矩的量纲是长度的三次方,其常用单位为m3或mm3。
2.面积矩与形心平面图形的形心坐标公式如式(2—2.2)(2—2.2)或改写成,如式(2—2.3)(2—2.3)面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。
图形形心相对于某一坐标距离愈远,对该轴的静距(面积矩)绝对值愈大。
图形对通过其形心的轴的静距(面积矩)等于零;反之,图形对某一轴的面积矩等于零,该轴一定通过图形形心。
形心确定的规律:(a)图形有对称轴时,形心必在此对称轴上。
(b)图形有两个对称轴时,形心必在此两对称轴的交点处。
3.组合截面面积矩和形心的计算组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
惯性矩是一个物理量,通常被用作描述一个物体抵抗扭动,扭转的能力。
惯性矩的国际单位为(m^4)。
工程构件典型截面几何性质的计算
2.1面积矩
1.面积矩的定义
图2-2.1任意截面的几何图形
如图2-31所示为一任意截面的几何图形(以下简称图形)。
定义:积分和分别定义为该图形对z轴和y轴的面积矩或静矩,用符号S z和S y,来表示,如式(2—2.1)
(2—2.1)面积矩的数值可正、可负,也可为零。
面积矩的量纲是长度的三次方,其常用单位为m3或mm3。
2.面积矩与形心
平面图形的形心坐标公式如式(2—2.2)
(2—2.2)
或改写成,如式(2—2.3)
(2—2.3)
面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。
图形形心相对于某一坐标距离愈远,对该轴的面积矩绝对值愈大。
图形对通过其形心的轴的面积矩等于零;反之,图形对某一轴的面积矩等于零,该轴一定通过图形形心。
3.组合截面面积矩和形心的计算
组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。
如式(2—2.4)
(2—2.4)
式中,A和y i、z i分别代表各简单图形的面积和形心坐标。
组合平面图形的形心位置由式(2—2.5)确定。
(2—2.5)
2.2极惯性矩、惯性矩和惯性积
1.极惯性矩
任意平面图形如图2-31所示,其面积为A。
定义:积分称为图形对O点的极惯性矩,用符号I P,表示,如式(2—2.6)
(2—2.6)
极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。
极惯性矩恒为正,其量纲是长度的4次方,常用单位为m4或mm4。
(1)圆截面对其圆心的极惯性矩,如式(2—7)
(2—2.7)
(2)对于外径为D、内径为d的空心圆截面对圆心的极惯性矩,如式(2—2.8)
(2—2.8)
式中,d/D为空心圆截面内、外径的比值。
2.惯性矩
在如图6-1所示中,定义积分,如式(2—2.9)
(2—2.9)
称为图形对z轴和y轴的惯性矩。
惯性矩是对一定的轴而言的,同一图形对不同的轴的惯性矩一般不同。
惯性矩恒为正值,其量纲和单位与极惯性矩相同。
同一图形对一对正交轴的惯性矩和对坐标原点的极惯性矩存在着一定的关系。
如式2—2.10)
I P=I z+I y (2—2.10)
上式表明,图形对任一点的极惯性矩,等于图形对通过此点且在其平面内的任一对正交轴惯性矩之和。
表6-1给出了一些常见截面图形的面积、形心和惯性矩计算公式,以便查用。
工程中使用的型钢截面,如工字钢、槽钢、角钢等,这些截面的几何性质可从附录的型钢表中查取。
3.惯性积
如图2—32所示,积分定义为图形对y,、z轴的惯性积,用符号I yz表示,如式(2—11)
图2-2.2具有轴对称的图形
(2—11)惯性积是对于一定的一对正交坐标轴而言的,即同一图形对不同的正交坐标轴的惯性积不同,惯性积的数值可正、可负、可为零,其量纲和单位与惯性矩相同。
由惯性积的定义可以得出如下结论:若图形具有对称轴,则图形对包含此对称轴在内的一对正交坐标抽的惯性积为零。
如图2-32所示,y为图形的对称轴.则整个图形对y、z轴的惯,性积等于零。
常见图形的面积、形心和惯性矩表2—2.1
序
号
图形面积形心位置惯性矩(形心轴)
1
2
3
4
5
6
2.3组合截面的惯性矩
1.惯性矩和惯性积的平行移轴公式
任意平面图形如图2-2.3所示。
z、y为一对正交的形心轴,z1、y1为与形心轴平行的另一对正交轴,平行轴间的距离分别为a和b。
已知图形对形心轴的惯性矩I z、I y和惯性积I zy,现求图形对z1、y1轴的惯性矩I z1、I y1和惯性积I z1y1。
有惯性矩和惯性积的平行移轴公式如式(2—2.12)和式(2—2.13)
(2—2.12)
I z1y1=I zy+abA (2—2.13)
可见,图形对于形心轴的惯性矩是对所有平行轴的惯性矩中最小的一个。
在应用平行移轴公式(2—2.12)时,要注意应用条件,即y、z轴必须是通过形心的轴,且z1、y1轴必须分别与z、y轴平行。
在应用式(2—2.13)计算惯性积时,还须注意a、b的正负号,它们是截面形心c在z1oy1坐标系中的坐标值。
2.组合截合惯性矩计算
组合图形对某一轴的惯性矩,等于其各组成部分简单图形对该轴惯性矩之和,如式(2—2.14)
(2—2.14)
在计算组合图形对z、y轴的惯性矩时,应先将组合图形分成若干个简单图形,并计算出每一简单图形对平行于z、y轴的自身形心轴的惯性矩,然后利用平行移轴公式
(2—2.12)计算出各简单图形对z、y轴的惯性矩,最后利用式(2—2.14)求总和。
2.4主惯性轴和主惯性矩
过图形上任一点都可得到一对主轴,通过截面图形形心的主惯性轴,称为形心主轴,图形对形心主轴的惯性矩称为形心主惯性矩。
在对构件进行强度、刚度和稳定计算中,常常需要确定形心主轴和计算形心主惯性矩。
因此,确定形心主轴的位置是十分重要的。
由于图形对包括其对称轴在内的一对正交坐标轴的惯性积为零,所以对于如图6-4所示具有对称轴的截面图形,可根据图形具有对称轴的情况,观察确定形心主轴的位置。
(1)如果图形有一根对称轴,则此轴必定是形心主轴、而另一根形心主轴通过形心,并与对称轴垂直,如图2-34 b)、d)所示。
(2)如果图形有两根对称轴,则该两轴都为形心主轴,如图6-4 a)、c)所示。
(3)如果图形具有3根或更多根对称轴,过图形形心的任何轴都是形心主、轴,且图形对其任一形心主轴的惯性矩都相等,如图6-4 e)、f)所示。
图2-2.4具有对称轴的截面图形
常用惯性矩公式:。