惯性矩总结(含常用惯性矩公式)==

合集下载

极惯性矩常用计算公式

极惯性矩常用计算公式

极惯性矩常用计算公式:Ip=∫Aρ^2dA矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12三角形:b*h^3/36圆形对于圆心的惯性矩:π*d^4/64环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D§16-1 静矩和形心平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。

静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示。

定义式:,(Ⅰ-1)量纲为长度的三次方。

由此可得薄板重心的坐标为同理有所以形心坐标,(Ⅰ-2)或,由式(Ⅰ-2)得知,若某坐标轴通过形心,则图形对该轴的静矩等于零,即,;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。

静矩与所选坐标轴有关,其值可能为正,负或零。

如一个平面图形是由几个简单平面图形组成,称为组合平面图形。

设第i块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为,(Ⅰ-3),(Ⅰ-4)【例I-1】求图Ⅰ-2所示半圆形的及形心位置。

【解】由对称性,,。

现取平行于轴的狭长条作为微面积所以读者自己也可用极坐标求解。

【例I-2】确定形心位置,如图Ⅰ-3所示。

【解】将图形看作由两个矩形Ⅰ和Ⅱ组成,在图示坐标下每个矩形的面积及形心位置分别为矩形Ⅰ:mm2mm,mm矩形Ⅱ:mm2mm,mm整个图形形心的坐标为§16-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示。

,(Ⅰ-5)量纲为长度的四次方,恒为正。

相应定义,(Ⅰ-6)为图形对轴和对轴的惯性半径。

组合图形的惯性矩设,(Ⅰ-7)若以表示微面积到坐标原点的距离,则定义图形对坐标原点的极惯性矩(Ⅰ-8)因为所以极惯性矩与(轴)惯性矩有关系(Ⅰ-9)式(Ⅰ-9)表明,图形对任意两个互相垂直轴的(轴)惯性矩之和,等于它对该两轴交点的极惯性矩。

下式(Ⅰ-10)定义为图形对一对正交轴、轴的惯性积。

极惯性矩常用计算公式

极惯性矩常用计算公式

极惯性矩常用计算公式:Ip=∫Aρ^2dA矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12三角形:b*h^3/36圆形对于圆心的惯性矩:π*d^4/64环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D§16-1 静矩和形心平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。

静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示。

定义式:,(Ⅰ-1)量纲为长度的三次方。

由此可得薄板重心的坐标为同理有所以形心坐标,(Ⅰ-2)或,由式(Ⅰ-2)得知,若某坐标轴通过形心,则图形对该轴的静矩等于零,即,;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。

静矩与所选坐标轴有关,其值可能为正,负或零。

如一个平面图形是由几个简单平面图形组成,称为组合平面图形。

设第i块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为,(Ⅰ-3),(Ⅰ-4)【例I-1】求图Ⅰ-2所示半圆形的及形心位置。

【解】由对称性,,。

现取平行于轴的狭长条作为微面积所以读者自己也可用极坐标求解。

【例I-2】确定形心位置,如图Ⅰ-3所示。

【解】将图形看作由两个矩形Ⅰ和Ⅱ组成,在图示坐标下每个矩形的面积及形心位置分别为矩形Ⅰ:mm2mm,mm矩形Ⅱ:mm2mm,mm整个图形形心的坐标为§16-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示。

,(Ⅰ-5)量纲为长度的四次方,恒为正。

相应定义,(Ⅰ-6)为图形对轴和对轴的惯性半径。

组合图形的惯性矩设,(Ⅰ-7)若以表示微面积到坐标原点的距离,则定义图形对坐标原点的极惯性矩(Ⅰ-8)因为所以极惯性矩与(轴)惯性矩有关系(Ⅰ-9)式(Ⅰ-9)表明,图形对任意两个互相垂直轴的(轴)惯性矩之和,等于它对该两轴交点的极惯性矩。

下式(Ⅰ-10)定义为图形对一对正交轴、轴的惯性积。

计算惯性矩的公式

计算惯性矩的公式

矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12三角形:b*h^3/36圆形对于圆心的惯性矩:π*d^4/64环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D§16-1 静矩和形心平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。

静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示。

定义式:,(Ⅰ-1)量纲为长度的三次方。

由于均质薄板的重心与平面图形的形心有相同的坐标和。

则由此可得薄板重心的坐标为同理有所以形心坐标,(Ⅰ-2)或,由式(Ⅰ-2)得知,若某坐标轴通过形心,则图形对该轴的静矩等于零,即,;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。

静矩与所选坐标轴有关,其值可能为正,负或零。

如一个平面图形是由几个简单平面图形组成,称为组合平面图形。

设第i块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为,(Ⅰ-3),(Ⅰ-4)【例I-1】求图Ⅰ-2所示半圆形的及形心位置。

【解】由对称性,,。

现取平行于轴的狭长条作为微面积所以读者自己也可用极坐标求解。

【例I-2】确定形心位置,如图Ⅰ-3所示。

【解】将图形看作由两个矩形Ⅰ和Ⅱ组成,在图示坐标下每个矩形的面积及形心位置分别为矩形Ⅰ:mm2mm,mm矩形Ⅱ:mm2mm,mm整个图形形心的坐标为§16-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示。

,(Ⅰ-5)量纲为长度的四次方,恒为正。

相应定义,(Ⅰ-6)为图形对轴和对轴的惯性半径。

组合图形的惯性矩设为分图形的惯性矩,则总图形对同-轴惯性矩为,(Ⅰ-7)若以表示微面积到坐标原点的距离,则定义图形对坐标原点的极惯性矩(Ⅰ-8)因为所以极惯性矩与(轴)惯性矩有关系(Ⅰ-9)式(Ⅰ-9)表明,图形对任意两个互相垂直轴的(轴)惯性矩之和,等于它对该两轴交点的极惯性矩。

极惯性矩常用计算公式

极惯性矩常用计算公式

极惯性矩常用计算公式:Ip=∫Aρ^2dA矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12三角形:b*h^3/36圆形对于圆心的惯性矩:π*d^4/64环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D§16-1 静矩和形心平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。

静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示。

定义式:,(Ⅰ-1)量纲为长度的三次方。

由于均质薄板的重心与平面图形的形心有相同的坐标和。

则由此可得薄板重心的坐标为同理有所以形心坐标,(Ⅰ-2)或,由式(Ⅰ-2)得知,若某坐标轴通过形心,则图形对该轴的静矩等于零,即,;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。

静矩与所选坐标轴有关,其值可能为正,负或零。

如一个平面图形是由几个简单平面图形组成,称为组合平面图形。

设第i块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为,(Ⅰ-3),(Ⅰ-4)【例I-1】求图Ⅰ-2所示半圆形的及形心位置。

【解】由对称性,,。

现取平行于轴的狭长条作为微面积所以读者自己也可用极坐标求解。

【例I-2】确定形心位置,如图Ⅰ-3所示。

【解】将图形看作由两个矩形Ⅰ和Ⅱ组成,在图示坐标下每个矩形的面积及形心位置分别为矩形Ⅰ:mm2mm,mm矩形Ⅱ:mm2mm,mm整个图形形心的坐标为§16-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示。

,(Ⅰ-5)量纲为长度的四次方,恒为正。

相应定义,(Ⅰ-6)为图形对轴和对轴的惯性半径。

组合图形的惯性矩设为分图形的惯性矩,则总图形对同-轴惯性矩为,(Ⅰ-7)若以表示微面积到坐标原点的距离,则定义图形对坐标原点的极惯性矩(Ⅰ-8)因为所以极惯性矩与(轴)惯性矩有关系(Ⅰ-9)式(Ⅰ-9)表明,图形对任意两个互相垂直轴的(轴)惯性矩之和,等于它对该两轴交点的极惯性矩。

惯性矩总结含常用惯性矩公式

惯性矩总结含常用惯性矩公式
常用图形的惯性矩:
2.圆形截面
由对称性
3.环形截面
常用图形的惯性矩:
惯 性 矩——对某一轴而言
极 惯 性 矩——对某一点而言
特别指出:
——图形对 x 轴的惯性半径
单位:m
三、惯性半径
在力学计算中,有时把惯性矩写成
即:
——图形对 y 轴的惯性半径
注意:
试问:
即:
三、惯性半径
四、平行移轴Байду номын сангаас式
一、定理推导
二、应用
一、定理推导
即:
§A.3 平行轴定理
显然:
性质4:在平面图形对所有相互平行的坐标轴的惯性矩
中,以对形心轴的惯性矩为最小。
同理
——惯性矩和惯性积的平行轴定理
一、定理推导
解:

二、应用
解:
教学目的和要求
惯性矩 惯性半径
一、惯性矩
二、惯性矩与极惯性矩的关系
三、惯性半径
四、平行移轴公式
1、惯性矩、极惯性矩的概念和计算方法;2、平行移轴公式。
教学重点
平行移轴公式的应用。
教学难点
一、惯性矩
整个图形 A 对x 轴的惯性矩
整个图形 A 对 y 轴的惯性矩
y2dA——微面积dA对 x 轴的惯性矩
x2dA——微面积dA对 y 轴的惯性矩
定义:
其值:+
单位:m4
1.惯性矩
二、惯性矩与极惯性矩的关系
即:
平面图形对任意一点的极惯性矩等于该图形对通过
该点的任意一对相互垂直的坐标轴的惯性矩之和
性质 :
若 x 、 y 轴为一对正交坐标轴
§A.2 惯性矩 惯性积 惯性半径

极惯性矩常用计算公式[精华]

极惯性矩常用计算公式[精华]

极惯性矩常用计算公式[精华]极惯性矩常用计算公式:Ip=?Aρ^2dA矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12三角形:b*h^3/36圆形对于圆心的惯性矩:π*d^4/64环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D?16-1 静矩和形心平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。

静矩:平面图形面积对某坐标轴的一次矩,如图?-1所示。

定义式:, (?-1)量纲为长度的三次方。

由于均质薄板的重心与平面图形的形心有相同的坐标和。

则由此可得薄板重心的坐标为同理有所以形心坐标, (?-2) 或,由式(?-2)得知,若某坐标轴通过形心,则图形对该轴的静矩等于零,即,;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。

静矩与所选坐标轴有关,其值可能为正,负或零。

如一个平面图形是由几个简单平面图形组成,称为组合平面图形。

设第i块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为, (?-3), (?-4)【例I-1】求图?-2所示半圆形的及形心位置。

【解】由对称性,,。

现取平行于轴的狭长条作为微面积所以读者自己也可用极坐标求解。

【例I-2】确定形心位置,如图?-3所示。

【解】将图形看作由两个矩形?和?组成,在图示坐标下每个矩形的面积及形心位置分别为矩形?:mm2mm,mm矩形?:mm2mm,mm 整个图形形心的坐标为?16-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图?-4所示。

, (?-5)量纲为长度的四次方,恒为正。

相应定义, (?-6)为图形对轴和对轴的惯性半径。

组合图形的惯性矩设为分图形的惯性矩,则总图形对同-轴惯性矩为, (?-7)若以表示微面积到坐标原点的距离,则定义图形对坐标原点的极惯性矩(?-8) 因为所以极惯性矩与(轴)惯性矩有关系(?-9) 式(?-9)表明,图形对任意两个互相垂直轴的(轴)惯性矩之和,等于它对该两轴交点的极惯性矩。

惯性矩及相关总结(画重点)-20200408整理

惯性矩及相关总结(画重点)-20200408整理

前引360知识:惯性矩是一个物理量,通常被用作描述一个物体抵抗弯曲的能力。

惯性矩的国际单位为(m^4)。

百度知识:惯性矩(moment of inertia of an area)是一个几何量,通常被用作描述截面抵抗弯曲的性质。

惯性矩的国际单位为(m4)。

即面积二次矩,也称面积惯性矩,而这个概念与质量惯性矩(即转动惯量)是不同概念。

截面惯性矩(I=截面面积X截面轴向长度的二次方)结构构件惯性矩I x结构设计和计算过程中,构件惯性矩I x为截面各微元面积与各微元至与X轴线平行或重合的中和轴距离二次方乘积的积分。

主要用来计算弯矩作用下绕X轴的截面抗弯刚度。

结构构件惯性矩I y结构设计和计算过程中,构件惯性矩I y为截面各微元面积与各微元至与Y轴线平行或重合的中和轴距离二次方乘积的积分。

主要用来计算弯矩作用下绕Y轴的截面抗弯刚度。

工程构件典型截面几何性质的计算2.1面积矩1.面积矩的定义图2-2.1任意截面的几何图形如图2-2.1所示为一任意截面的几何图形(以下简称图形)。

定义:积分和分别定义为该图形对z轴和y轴的面积矩或静矩,用符号S z和S y,来表示,如式(2—2.1)(2—2.1)面积矩的数值可正、可负,也可为零。

面积矩的量纲是长度的三次方,其常用单位为m3或mm3。

2.面积矩与形心平面图形的形心坐标公式如式(2—2.2)(2—2.2)或改写成,如式(2—2.3)(2—2.3)面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。

图形形心相对于某一坐标距离愈远,对该轴的静距(面积矩)绝对值愈大。

图形对通过其形心的轴的静距(面积矩)等于零;反之,图形对某一轴的面积矩等于零,该轴一定通过图形形心。

形心确定的规律:(a)图形有对称轴时,形心必在此对称轴上。

(b)图形有两个对称轴时,形心必在此两对称轴的交点处。

3.组合截面面积矩和形心的计算组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。

惯性矩的计算方法及常用截面惯性矩计算公式

惯性矩的计算方法及常用截面惯性矩计算公式

LOGO惯性矩的计算方法及常用截面惯性矩计算公式在此输入你的公司名称惯性矩的计算方法及常用截面惯性矩计算公式截面图形的几何性质一.重点及难点:(一).截面静矩和形心1•静矩的定义式如图1所示任意有限平面图形,取其单元如面积dA,定义它对任意轴的一次矩为它对该轴的静矩,即dS y 二xdAdSx = ydA整个图形对y、z轴的静矩分别为S y = A xdA(1-Sx= A ydA1)2.形心与静矩关系图1-1设平面图形形心C的坐标为y C,z C则0-S y x =A (1-2)推论1如果y轴通过形心(即x = 0),则静矩Sy=0 ;同理,如果x轴通过形心(即y = 0),则静矩Sx=o;反之也成立。

推论2如果x、y轴均为图形的对称轴,则其交点即为图形形心;如果y轴为图形对称轴,贝昭形形心必在此轴上。

3.组合图形的静矩和形心设截面图形由几个面积分别为A,A2,A3……A n的简单图形组成,且一直各族图形的形心坐标分别为x1,y1; x2,y2; x3,y3,则图形对y轴和x轴的静矩分别为n nS y = * S yi i A i Xii -1 i-1 nnS x 八 S xi 八 A i y ii 4i 4截面图形的形心坐标为A i4.静矩的特征(1)界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。

(2)静矩有的单位为m 3(3)静矩的数值可正可负,也可为零。

图形对任意形心轴的静矩必定 为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。

⑷ 若已知图形的形心坐标。

则可由式(I-1)求图形对坐标轴的静矩。

若已知图形对坐标轴的静矩,则可由式(1-2)求图形的形心坐标。

组 合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静 矩,然后由式(I-4)求出其形心坐标。

(二)■惯性矩惯性积惯性半径1. 惯性矩定义 设任意形状的截面图形的面积为 A (图I-3),则图形对0点的极 惯性矩定义为 I p = A (2dA(1-5)图形对y 轴和x 轴的光性矩分别定义为 I y 二 A X 2dA , I x 「A y 2dA (I-6)惯性矩的特征(1)界面图形的极惯性矩是对某一极点定义的; 轴惯性矩是对某一坐标轴定义的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 Ix I A a x 2 2 C C2
30 200 3 57.52 200 30 mm 4 3.98 107 mm 4 12
例2 求 I x 和 I y C C 解:
200 yC
7 4
I xC I
xC
I 6.01 10 mm
xC
200 yC
7 4
I xC I

xC
I 6.01 10 mm
xC
30
I
xC1
C
200 157.5
I
xC
I
xC 1
a A1
2 1
a1 57.5 xC a2 57.5 xC2
30
II
200 30 3 57.52 200 30 mm 4 12 2.03 107 mm 4
ix
Ix ——图形对 x 轴的惯性半径 A
iy
单位:m
Iy A
——图形对 y 轴的惯性半径
三、惯性半径
试问:
即: 注意:
2 2 A yC I x y 2dA A i x
A
?
i x yC
i x yC
?
i y xC
四、平行移轴公式
一、定理推导 二、应用
一、定理推导
30
I
xC1
C
200 157.5
I yC I yC I yC
a1 57.5 xC a2 57.5 xC2
30
II
30 200 3 200 30 3 12 12 2.05 107 mm 4
y
h2
dy dA y
y
x
h __ 2
C
hb 3 Iy 12
h __ 2
h
3 bh y 2 bdy 3
I x1 y 2dA
A
O
b __ 2 b __ 2
x1
0
常用图形的惯性矩:
2.圆形截面
y
I x I y Ip
由对称性
D
4
3x I y Ip 2 64
一、定理推导
同理
I x I xC a A
2
I y I yC b A I xy I xC yC abA
2
——惯性矩和惯性积的平行轴定理
显然:
I x I xC
I y I yC
性质4:在平面图形对所有相互平行的坐标轴的惯性矩
中,以对形心轴的惯性矩为最小。
二、应用
解: 例 求 I xC和 I yC
2 2 A A
即: 性质 :
Ip I y I x
平面图形对任意一点的极惯性矩等于该图形对通过 该点的任意一对相互垂直的坐标轴的惯性矩之和
§A.2 惯性矩 惯性积 惯性半径
常用图形的惯性矩:
1.矩形截面
3 bh 2 2 y bdy I x y dA h 2 A 12
3.环形截面
d D
( D 4 d 4 ) D 4 1 4 (1 ) I x I y Ip 64 64 2
特别指出: 惯 性 矩——对某一轴而言 极 惯 性 矩——对某一点而言
三、惯性半径
在力学计算中,有时把惯性矩写成
I x A i x2
即:
I y A i y2
惯性矩总结(含常用惯性矩公式)
第五章 平面图形的几何性质
5.1 静矩和形心 5.2惯性矩、极惯性矩 、平行移轴公式
教学目的和要求
• 平面图形的几何性质是影响构件承载能力的重要 因素之一。如何确定平面图形的几何性质的量值, 是本章讨论的内容。本章主要介绍了形心、静矩、 惯性矩、惯性积等几何量,学习时要掌握其基本 的概念和计算方法,同时要掌握平行移轴公式及 其应用。
惯性矩 惯性半径
一、惯性矩 二、惯性矩与极惯性矩的关系 三、惯性半径
四、平行移轴公式
教学重点
1、惯性矩、极惯性矩的概念和计算方法;
2、平行移轴公式。
教学难点
• 平行移轴公式的应用。
一、惯性矩
1.惯性矩 定义: y2dA——微面积dA对 x 轴的惯性矩
y
x
dA
y
x
A
x2dA——微面积dA对 y 轴的惯性矩 O
整个图形 A 对x 轴的惯性矩
整个图形 A 对 y 轴的惯性矩
I x y 2dA
A
I y x dA
2 A
单位:m4
其值:+
二、惯性矩与极惯性矩的关系
若 x 、 y 轴为一对正交坐标轴
y
x
dA
y
x
I p 2dA ( x 2 y 2 )dA
A
A

A O
x dA y dA
x xC b y yC a
I x y dA ( yC a) dA
2
y
x
yC
b
xC
dA
yC
2
A O
C
a
y
xC
A
A
y dA 2a yC dA a
A 2 C A
2
dA
A
x
I xC
即:
0
a2 A
2
I x I xC a A
§A.3 平行轴定理
相关文档
最新文档