超静定结构与弯矩分配法

合集下载

第十四章:超静定结构

第十四章:超静定结构

Fl3 8EI
0

l3 2EI
X1

l3 3EI
X2

l2 2EI
X3

5Fl3 48EI

0
3l 2
l2
2l
Fl 2
2 EI
X1

2EI
X2

EI
X3
8EI

0
14
化简,得:
32l X1 12l X 2 36X 3 3Fl 0 24l X1 16l X 2 24X 3 5Fl 0 12l X1 4l X 2 16X 3 Fl 0
14
11

1 EI

1 2
l
l

2l 3

l3 3EI
1 ql 2 2
1F


1 EI

1 3
ql2 2
l

3l 4

ql4 8EI
M图
11X1 1F 0
l
M图

X1
1F
11
ql4

8EI l3
3 ql (方向向上) 8
3EI
14
例2:解图示超静定问题。
多余约束可以是结构外部的(多余支撑条 件),也可以是结构内部的。
14
2.内部约束
多余内部约束的实例:
ab
静定
二次超静定
三次超静定 14
具有多余内部约束的结构的特点:平衡 方程可以求出所有反力,但不能求出所有内 力。
一个超静定结构,去掉 n 个约束后成为 静定结构,则原结构为 n 次超静定结构。

结构力学 力矩分配法计算超静定结构

结构力学 力矩分配法计算超静定结构
知识链接
力法和位移法是求解超静定结构的两种基本方法。两种方法的共同特点都是 要列方程和解联立方程,计算烦琐。而力矩分配法是建立在位移法基础上的一 种渐近解法,计算过程按照重复步骤进行,结果逐渐接近真实解答。它无须解 联立方程而直接计算出杆端弯矩,方法简便,适合手算。适用范围是连续梁和 无侧移刚架的内力计算。
情景二 用力矩分配法计算连续梁 学习能力目标
掌握力矩分配法计算连续梁并绘制弯矩图。
项目表述
运用力矩分配法计算多跨连续梁结构。
学习进程
情景二 用力矩分配法计算连续梁
项目实施
案例 3 – 17 图 3 – 62a 所示为两跨梁,试用力矩分配法求杆端弯矩,并作 M 图。
解答:(1)计算分配系数 同一结点各杆分配系数之和等于 1,把算好的μ 值填在表格 3 – 5中B结点处。 (2)计算固端弯矩(查表 3 – 4) (3)放松刚结点 B 进行力矩分配 (4)计算传递弯矩 (5)计算杆端弯矩 把同一杆端的固端弯矩、分配弯矩和传递弯矩相加(代数和),即得杆端弯
情景一 力矩分配法的基本原理和要素
知识链接
加于刚结点 1 的外力矩按分配系数分配给各杆的 1 端(近端),称 其 为分配弯矩。
3.传递系数 C 如图 3 – 60 所示,当外力矩 M 加于结点 1 时,该结点发生转角.1 , 于是各杆近端和远端都将产生杆端弯矩,这些杆端弯矩值如下
情景一 力矩分配法的基本原理和要素
解答:① 求分配系数。 ② 锁住结点 B、C,求各杆的固端 M。 ③ 先放松结点 C,按单结点直接把M=150kN.m进行分配、传递,此时 C
暂时平衡,将结果填入表中。求出此时结点B的不平衡力矩。 ④ 再放松结点 B,将( - MB )进行分配、传递,此时 B 暂时平衡,而由

超静定结构(精)

超静定结构(精)

第4章超静定结构§4.1 超静定结构特性●由于多余约束的存在产生的影响1. 内力状态单由平衡条件不能惟一确定,必须同时考虑变形条件。

2. 具有较强的防护能力,抵抗突然破坏。

3. 内力分布范围广,分布较静定结构均匀,内力峰值也小。

4. 结构刚度和稳定性都有所提高。

●各杆刚度改变对内力的影响1. 荷载作用下内力分布与各杆刚度比值有关,与其绝对值无关。

2. 计算内力时,允许采用相对刚度。

3. 设计结构断面时,需要经过一个试算过程。

4. 可通过改变杆件刚度达到调整内力状态目的。

●温度和沉陷等变形因素的影响1. 在超静定结构中,支座移动、温度改变、材料收缩、制造误差等因素都可以引起内力,即在无荷载下产生自内力。

2. 由上述因素引起的自内力,一般与各杆刚度的绝对值成正比。

不应盲目增大结构截面尺寸,以期提高结构抵抗能力。

3. 预应力结构是主动利用自内力调节超静定结构内力的典型范例。

§4.2 力法原理●计算超静定结构的最基本方法超静定结构是具有多余联系(约束)的静定结构,其反力和内力(归根结底是内力)不能或不能全部根据静力平衡条件确定。

力法计算超静定结构的过程一般是在去掉多余联系的静定基本结构上进行,并选取多余力(也称赘余力)为基本未知量(其个数等于原结构的超静定次数)。

根据基本体系应与原结构变形相同的位移条件建立方程,求解多余力后,原结构就转化为在荷载和多余力共同作用下的静定基本结构的计算问题。

这里,基本体系起了从超静定到静定、从静定再到超静定的过渡作用,即把未知的超静定问题转换成已知的静定问题来解决。

●基本结构的选择(解题技巧)1. 通常选取静定结构;也可根据需要采用比原结构超静定次数低的、内力已知的超静定结构;甚至可取几何可变(但能维持平衡)的特殊基本结构。

2. 根据结构特点灵活选取,使力法方程中尽可能多的副系数δij = 0。

3. 应选易于绘制弯矩图或使弯矩图限于局部、并且便于图乘计算的基本结构。

材料力学第十四章__超静定结构

材料力学第十四章__超静定结构

§14.1 超静定结构概述
整理课件
本节应用能量法求解静不定系统。 应用能量法求解静不定系统,特别是对桁 架、刚架等构成的静不定系统,将更加有效 。 求解静不定问题的关键是建立补充方程。 静不定系统,按其多余约束的情况,可以 分为外力静不定系统和内力静不定系统。
整理课件
支座反力静不定 类型反力静定内力静不定
整理课件
解静不定梁的一般步骤
(4)在求出多余约束反力的基础上,根据静 力平衡条件,解出静不定梁的其它所有支 座反力。 (5)按通常的方法(已知外力求内力、应力 、变形的方法)进行所需的强度和刚度计 算。
整理课件
例:作图示梁的弯矩图 。
整理课件
解:变形协调条件为
A 0

MAl2Pl2 10 2 382
A
M10 1
D
P
1
2
(d)
(e)
1 P0 2M E 1 0 M P d I s2 P E 20 2 a (I 1 c
o) s (1 )d P2(a 1 ) 2 E2 I
1102M E102IdsE aI02(1)2d2EaI
上面两式代入 正则方程:
11
X 整理课1件
Pa( 2
)
求出X1后,可得图(C)
解得
MA
3Pl 16
整理课件
3Pl MA 16
11 P
5P
16

整理课件
另解:变形协调条件为
vB 0

RBl2
2l Pl2
5l
0
2 386
解得
5P
RB 16
整理课件
5P
5Pl/32
16
3Pl 16

《建筑力学》期末复习指导

《建筑力学》期末复习指导

11秋建筑施工与管理专科《建筑力学》期末复习指导一、课程说明《建筑力学》是广播电视大学土木工程专业(本科)和水利水电工程专业(本科)的补修课。

本课程的教材:《建筑力学》,作者:吴国平,中央广播电视大学出版社出版。

二、考试说明1、考核方式闭卷考试,考试时间为90分钟。

2、试题类型试题类型分为两类:第一类判断题与选择题,占30%;第二类计算题,占70%。

计算题共4题,主要类型有:求静定结构支座反力并画内力图,梁的正应力强度计算,图乘法求位移,力法计算超静定结构,力矩分配法计算超静定结构。

三、复习要点第一章静力学基本知识一、约束与约束反力1.柔索约束:由软绳构成的约束。

约束反力是拉力;2.光滑面约束:由两个物体光滑接触构成的约束。

约束反力是压力;3.滚动铰支座:将杆件用铰链约束连接在支座上,支座用滚轴支持在光滑面上,这样的支座称为滚动铰支座。

约束反力垂直光滑面;4.链杆约束:链杆是两端用光滑铰链与其它物体连接,不计自重且中间不受力作用的杆件。

约束反力作用线与两端铰链的连线重合。

5.固定铰支座:将铰链约束与地面相连接的支座。

约束反力是一对相互垂直的力6.固定端:使杆件既不能发生移动也不能发生转动的约束。

约束反力是一对相互垂直的力和一个力偶。

二、力矩与力偶1.力偶不等效一个力,也不能与一个力平衡。

2.力偶的转动效果由力偶矩确定,与矩心无关。

3.力对点之矩一般与矩心位置有关,对不同的矩心转动效果不同4.力偶与矩心位置无关,对不同点的转动效果相同。

三、主矢和主矩1.主矢与简化中心位置无关,主矩与简化中心位置有关。

2.平面任意力系向一点简化的结果a)主矢不为零,主矩为零:一个合力;b)主矢不为零,主矩不为零:一个合力、一个合力偶;c)主矢为零,主矩不为零——一个合力偶;d)主矢为零,主矩为零——平衡力系。

四、平面力系1.平面任意力系的主矢和主矩同时为零,即,是平面任意力系的平衡的必要与充分条件。

2.平面一般力系有三个独立方程可求解三个未知数,平面平行力系有二个独立方程可求解二个未知数。

材料力学 第14章 超静定结构

材料力学 第14章  超静定结构

39
目录
例题 14-4
M1 图
M F图
1 a 2 2a a3 ⋅ = δ11 = EI 2 3 3EI ∆1F 1 a 2 qa 2 qa 4 ⋅ =− 2 8 = − 16EI EI
40
目录
例题 14-4
由力法正则方程δ11 X1 + ∆1F = 0得: 3qa X1 = 16 3qa ∴X C = ,YC = 0,M C = 0 16 qa 3qa X A (→) = X B (←) = ,YA = YB = (↑) 16 2 qa 2 M A (顺时针) = M B (逆时针) = 16
25
目录
对 称 结 构
对称结构的对称变形
26
目录
对 称 结 构
对称结构的对称变形
27
目录
对 称 结 构 对称结构的对称变形
28
目录
对 称 结 构
对称结构的对称变形
29
目录
对称结构,反对称载荷 对称结构,
判断载荷反对称的方法: 判断载荷反对称的方法:
将对称面(轴)一侧的载荷反向,若变为 将对称面( 一侧的载荷反向, 对称的,则原来的载荷便是反对称的。 对称的,则原来的载荷便是反对称的。
24
目录
对 称 结 构
对称结构的对称变形- 对称结构的对称变形-对称结构在对称载 荷作用下: 荷作用下:
约束力、内力分量以及变形和位移都是对称的; 约束力、内力分量以及变形和位移都是对称的; 反对称的内力分量必为零; 反对称的内力分量必为零; 某些对称分量也可等于零或变为已知。 某些对称分量也可等于零或变为已知
34
目录
对称结构,反对称载荷 对称结构,

第8章超静定结构的计算方法

第8章超静定结构的计算方法
约束。
三次超静定拱
X1
X2
X3
e)
上一页 下一页 返回
3)撤除一 个固定铰支 座或撤除一 个内部单铰, 相当于解除 两个多余约 束。
二次超静定刚架
X1 X2X2来自X1X1X2二次超静定刚架
上一页 下一页 返回
4)撤除一 个固定端支 座或切断一 个刚性连接, 相当于解除 三个多余约 束。
三次超静定刚架
F
超静定梁,画出内力图。已知梁的抗弯
刚度EI为常数。 解2 (1) 属于一次超静定梁,得 到基本结构如图所示。 (2)建立力法典型方程。 A
A
l/2
C l/2 F
B
C
X1 M1图
B
11 X1+1F=0
(3)求系数和自由项
1 l l 2 l3 11 l EI 2 3 3EI
l Fl/2 M F图
处沿Xi方向的位移。
上一页 下一页 返回
c)
C
X1
f) B
C
X1=1
21
11
A d) B
11
X1倍
d) B
A
C
C
22
12
A
X2
X2=1 X2倍
12
A
ij=ij Xj
22
上一页 下一页 返回
21
B
1=11+12+1F= 0 2=21+22+2F= 0
ij 为多余约束力Xj=1时,基本结构在Xj 单独作用
上一页 下一页
返回
1)撤除 一根支 承链杆 二次超静定梁
一次超静定桁架
X1
X1
a)
或切断
一根结 构内部

超静定结构

超静定结构

l
A
B
l
q
D
2 )建立正则方程 1 (δ 11 + ) X 1 + ∆1P = 0 C
3 )求解 2 1 2 2l 3 δ11 = ( × l × l × × l) = EI 2 3 3EI 1 1 ql 2 2l 1 ql 2 3l ∆ 1P = − ( ×l × × + ×l × × ) EI 2 2 3 3 2 4 ∆ 1P 7 ql 4 7 ql =− X1 = − = (↑ ) 1 24 EI 24 δ11 + C 2 )据平衡条件,求得
ql 2 M C = M × X1 = 7
0 C
q
A
ql 2 7
X1
MP
ql 2 2
M
5ql 2 14
M A = M × X 1 − M PA
0 A
5 ql 2 =− 14
例14 − 2 − 4 画图示刚架的内力图。
q
D
q
C
X2
解:利用对称性,从CD中间
X1
EI
D K
剖开,由于结构对称,载荷 对称,故只有对称内力, 所以,X 3 = 0。
δ11
求得 X 1 后,则可解出相当系统所有内力、位移,此相当系统的解 即为原系统的解。
三、n次静不定的正则方程
可将上述思想推广到n次静不定系统,如解除n个多余约束后的未知多余 约束力为 X j ( j = 1,2,..., n ) 它们将引起 X i 作用点的相应的位移为 ∑ ∆ ij ,而原系统由 x j ( j = 1, K n) j =1 与外载荷共同作用对此位移限制为零(或已知),故有
P A C D n O B P (b) P A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五、固端弯矩
固端弯矩:对单跨超静定梁仅由荷载引起的杆端弯矩,称为
固端弯矩,用 M 表示。
M M
将每相邻两节点之间的杆件视为一根两端支座为固定支座 的单跨梁,这样的梁在各种外荷载作用下的杆端弯矩叫做固 端弯矩。
单结点的弯矩分配 ——基本运算
B A 固端弯矩带本身符号
M AB
M BA
MB
M BC
C
MB
弯矩分配法的基本概念
理论基础:位移法;
弯矩分配法
计算对象:杆端弯矩;
计算方法:逐渐逼近的方法; 适用范围:连续梁和无侧移刚架。
一、转动刚度S : 表示杆端对转动的抵抗能力。 SAB=4i
1 在数值上 = 仅使杆端发生单位转动时需在杆端施加的力 矩。 SAB=3i 1
SAB=i
1
SAB=0
SAB与杆的i(材料的性质、横截面的形状和尺寸、杆长)及远
第一节 超静定结构和静定结构的差别
一、几何组成分析
静定梁: 几何可变
静定结构是没有多余约束的几何不变体系 超静定梁:
有多余支座
超静定结构是有多余约束的几何不变体系
二、超静定结构的优缺点 1.超静定结构的优点 1)超静定结构在抵抗外荷载时具有较大的刚度。 刚度:力在所作用点产生单位位移时所需的力。
1 d
MBA = - iAB A
B
A
A
C AB
M BA 1 M AB
在结点上的外力矩按各杆分配系数分配给各杆近端截面,各杆远端
弯矩分别等于各杆近端弯矩乘以传递系数。
四、杆端弯矩 :支座对靠近支座的杆件这一端的弯矩
1.计算杆端弯矩的目的 2.近端弯矩和远端弯矩 3.杆端弯矩一律以顺时 针方向为正
小结: 1、超静定结构是有多余约束的几何不变体系; 2、超静定结构的全部内力和反力仅有平衡条件求不出,还 必须考虑变形条件; 如在力法计算中,多余未知力由力法方程(变形条件)计 算。再由M=∑MiXi+MP 叠加内力图。如只考虑平衡条件画出单 位弯矩图和荷载弯矩图,Xi是没有确定的任意值。 因此单就满足平衡条件来说,超静定结构有无穷多组解答。 3、超静定结构的内力与材料的物理性能和截面的几何特征 有关,即与刚度有关。 荷载引起的内力与各杆的刚度比值有关。因此在设计超静 定结构时须事先假定截面尺寸,才能求出内力;然后再根据内 力重新选择截面。 另外,也可通过调整各杆刚度比值达到调整内力的目的。
MBC = M BC M BC
MAB= M M 然后各跨分别叠加简支梁的弯矩图,即得最后弯矩图。 AB AB
例1. 用弯矩分配法作图示连续梁 (1)B点加约束 的弯矩图。 167.2 M图(kN· m) 200 6 115.7 200kN 150 kN m MAB= 20kN/m 8 90 300 MBA= 150 kN m EI EI C B A 20 62 90kN m MBC= 3m 6m 3m 8 MB= MBA+ MBC= 60 kN m 200kN 60 20kN/m (2)放松结点B,即加-60进行分配 C 设i =EI/l B A 计算转动刚度: -150 150 -90 SBA=4i SBC=3i + -60 4i 0.571 0.429 BA 0.571 分配系数: 4i 3i C A -17.2 -34.3 B -25.7 0 0.571 A -150 150 0.429
M BA
=
M BC
A
M AB
M BA
B
-MB
M BC
C
+
0 C
M B M BA M BC
-MB
M BA
A
M BC
M AB
M BA
B
M BC
最后杆端弯矩:
MBA = M BA M BA
BA ( M B ) M BA
BC ( M B ) M BC
端支承有关, 而与近端支承无关。
二、分配系数 设A点有力矩M,求MAB、MAC和MAD
D M A B 如用位移法求解:
SAB = 4i
iAD
A
iAB
M AB 4iAB A S AB A
iAC
C M
M AC iAC A S AC A
M AD 3iAD A S AD A

1 于是可得 SAB= 3i SAB= i 1
S AB M AB M 1 S
A
MAD MAC
MAB
m 0
A
M (S AB S AC S AD ) A
M M S AB S AC S AD S
M AC
S AC M S
A
A
M AD
Aj
S
A
S Aj
5、超静定结构的多余约束破坏,仍能继续承载。具有较 高的防御能力。 6、超静定结构的整体性好,在局部荷载作用下可以减小 局部的内力幅值和位移幅值。 P
P
P
P Pl/4 P
μ =1
l
μ =1/2
P Pl/4 l/2 l/2
多余约束约束的存在, 使结构的强度、刚度、稳 定性都有所提高。
第二节 超静定Leabharlann 构的计算方法概述P P K1 Kd 1 d
静定梁
超静定梁
1 d
P P K1 Kd 1 d
2)超静定结构与静定结构相比具有较低的应力
连续性
2.超静定结构的缺点
连续性
1)支座沉降会引起内力和变形 超静定三跨连续梁
支座B相对沉降 可能导致超载
对于超静定结构,可以导致结构变形的任何原因,如相 对的沉陷、温度改变引起的杆件长度变化或者制造误差等, 都会使整个结构产生内力。
1.力法是将超静定结构的多余未知力作为首先解决的对象,通 过把多余未知力计算出未成为已韧力以后,剩下的问题便可归 结为静定结构的计算。 2.位移法是通过向原结构中沿独立位移方向人为地添加约束, 并引入未知位移作为首先解决的现象,当把未知的节点位移 计算出来以后,剩下的问题就可以把杆件的杆端弯矩求出, 又使问题成为静定结构的计算。 3. 有限元法或称结构矩阵分析。 4.渐进法
A
S AD M S
A

M Aj Aj M
分配系数
1
三、传递系数 MAB = 4 iAB A
近端 A A l
MBA = 2 iAB A
远端 B
C AB
M BA 1 M AB 2
MAB = 3iABA
A
A
MAB= iABA
B
C AB
M BA 0 M AB
相关文档
最新文档