实验三三段式电流保护实验
继保实验报告

实验一 电磁型电压电流继电器特性实验1.实验目的1)了解继电器基本分类方法及其结构。
2)熟悉几种常用继电器,如电流继电器、电压继电器、时间继电器、中间继电器、信号继电器等的构成原理。
3)学会调整、测量电磁型继电器的动作值、返回值和计算返回系数。
4)测量继电器的基本特性。
2.实验内容1)电流继电器特性实验电流继电器动作、返回电流值测试实验。
实验电路原理图如图1所示:图1 电流继电器动作电流值测试实验原理图实验步骤如下:(1)按图接线,将电流继电器的动作值整定为1A ,使调压器输出指示为0V ,滑线电阻的滑动触头放在中间位置。
(2)查线路无误后,先合上三相电源开关(对应指示灯亮),再合上单相电源开关和直流电源开关。
(3)慢慢调节调压器使电流表读数缓慢升高,记下继电器刚动作(动作信号灯XD1亮)时的最小电流值,即为动作值。
(4)继电器动作后,再调节调压器使电流值平滑下降,记下继电器返回时(指示灯XD1灭)的最大电流值,即为返回值。
(5)重复步骤(2)至(4),测三组数据。
(6)实验完成后,使调压器输出为0V ,断开所有电源开关。
-(7)分别计算动作值和返回值的平均值即为电流继电器的动作电流值和返回电流值。
(8)计算整定值的误差、变差及返回系数。
误差=[动作最小值-整定值 ]/整定值变差=[动作最大值-动作最小值]/动作平均值 100%返回系数=返回平均值/动作平均值表1 电流继电器动作值、返回值测试实验数据记录表2)电流继电器动作时间测试实验电流继电器动作时间测试实验原理图如图2所示:图2 电流继电器动作时间测试实验电路原理图实验步骤如下:(1)按图接线,将电流继电器的常开触点接在多功能表的“输出2”和“公共线”,将开关BK的一条支路接在多功能表的“输入1”和“公共线”,使调压器输出为0V,将电流继电器动作值整定为1.2A,滑线电阻的滑动触头置于其中间位置。
(2)检查线路无误后,先合上三相电源开关,再合上单相电源开关。
三段式零序电流保护

实习(实训)报告实习(实训)名称:电力系统继电保护课程设计学院:专业、班级:指导教师:报告人:学号:时间: 2017年1月5日目录1设计题目 (3)2 分析设计要求 (4)2.1设计规定 (5)2.2本线路保护计 (6)2.3 系统等效电路图 (7)3 三段式零序电流保护整定计算 (8)3.1 三段式零序电流保护中的原则 (9)3.2 M侧保护1零序电流保护Ⅰ段整定 (10)3.3 N侧保护1零序电流保护Ⅰ段整定 (11)4 零序电流保护评价 (12)4.1原理与内容 (13)4.2零序电流保护的优缺点 (13)5 总结 (14)参考文献 (15)1 设计题目如图1所示为双电源网络中,已知线路的阻抗km X /4.01Ω=,km X /4.10Ω=,两侧系统等值电源的参数: 相电动势:kV E E N M 3115==各电源阻抗:Ω==521M M X X ,Ω==1021N N X X ,Ω=80M X ,Ω=150N X 。
设计要求:决定线路MN 两侧零序电流速断保护Ⅰ段的整定值及保护范围。
图1 双电源网络2 分析设计要求2.1 设计规定根据电力工程设计手册上的相关规定,电力系统的继电保护装置必须满足可靠性、选择性、灵敏性和速动性的要求。
对于110kV及以上电压等级有效接地电力网络线路,应按照规定装设反应接地短路和相间短路的保护装置。
(1)对于接地短路:装设带方向和不带方向的阶段式零序电流保护;零序电流保护不能满足要求时,可装设接地距离保护,并应色一段或两段零序电流保护作为后备保护。
(2)对于相间短路:单侧电源单回线路,应装设三相多段式电流或电压保护,如不能满足要求,则应设距离保护;双侧电源线路宜装设阶段式距离保护。
2.2 本线路保护设计在电力系统中,当发生接地故障时,通过变压器接地丶构成短路通路,故障相流过很大的短路电流。
110kV及以上电网,为中性点直接接地系统;3~35kV及以上电网,为中性点不接地或不直接接地(小接地电流系统)。
大工15秋《电力系统继电保护实验》实验报告参考答案

大工15秋《电力系统继电保护实验》实验报告参考答案学习中心:层次:专科起点本科专业:年级:年春/秋季学号:学生姓名:实验一电磁型电流继电器和电压继电器实验一、实验目的1. 熟悉DL型电流继电器和DY型电压继电器的的实际结构,工电力系统继电保护作原理、基本特性;2. 学习动作电流、动作电压参数的整定方法。
二、实验电路1.过流继电器实验接线图 2.低压继电器实验接线图三、预习题1. DL-20C系列电流继电器铭牌刻度值,为线圈并联时的额定值;DY-20C系列电压继电器铭牌刻度值,为线圈串联时的额定值。
(串联,并联) 2. 动作电流(压),返回电流(压)和返回系数的定义是什么?动作电流(压):使继电器动作的最小电流(压);返回电流(压):使继电器返回的最大电流(压);返回系数:返回电流(压)和动作电流(压)之比;四、实验内容1.电流继电器的动作电流和返回电流测试表一过流继电器实验结果记录表2.低压继电器的动作电压和返回电压测试表二低压继电器实验结果记录表五、实验仪器设备六、问题与思考1.1.电流继电器的返回系数为什么恒小于1?答: 为了保证动作后输出状态的稳定性和可靠性,返回电流小于动作电流,所以过电流继电器返回系数小于1。
2.返回系数在设计继电保护装置中有何重要用途?答:确保保护选择性的重要指标.让不该动作的继电器及时返回,使正常运行的部分系统不被切除. 3. 实验的体会和建议在试验中我体会到返回系数越低,过电流保护的动作电流越大,因此装置的灵敏性越差。
返回系数过高,则可能造成在动作电流附近继电器输出不稳定,出现触点抖动的现象。
实验二电磁型时间继电器和中间继电器实验一、实验目的2. 掌握时间继电器和中间继电器的的测试和调整方法。
二、实验电路1.时间继电器动作电压、返回电压实验接线图 2.时间继电器动作时间实验接线图3.中间继电器实验接线图4.中间继电器动作时间测量实验接线图三、预习题影响起动电压、返回电压的因素是什么?答:额定电压和继电器内部结构四、实验内容1.时间继电器的动作电流和返回电流测试表一时间继电器动作电压、返回电压测试 2.时间继电器的动作时间测定表二时间继电器动作时间测定 3.中间继电器测试表三中间继电器动作时间实验记录表五、实验仪器设备六、问题与思考 1.根据你所学的知识说明时间继电器常用在哪些继电保护装置电路?答:时间继电器室一种用来实现触点延时接通或断开的控制电器,在机床控制线路中应用较多的是空气阻尼式和晶体管式时间继电器. 2.发电厂、变电所的继电器保护及自动装置中常用哪几种中间继电器?答:�Ь蔡�中间继电器、带保持中间继电器、延时中间继电器、交流中间继电器、快速中间继电器、大容量中间继电3. 实验的体会和建议通过这次实验,是我了解了时间继电器,中间继电器的工作原理,用途及使用性能,时间继电器和中间继电器是电气控制当中必不可少的电气元器件,只有熟练掌握和运用这些常用的电气器件,才能在工作中自如使用得心应手。
三段式零序电流保护(精)

零序电流保护指利用接地时产生的零序电流使保护动作的装置,叫零序电流保护。零序电流保护中,中性点直接接地系统发生接地短路,将产生很大的零序电流,根据零序电流分量构成保护,可以作为一种主要的接地短路保护。零序过流保护不反应三相和两相短路,在正常运行和系统发生振荡时也没有零序分量产生,所以它有较好的灵敏度。但零序过流保护受电力系统运行方式变换影响较大,灵敏度因此降低,特别是短距离线路上以及复杂的环网中,由于速动段的保护范围太小,甚至没有保护范围,致使零序电流保护各段的性能严重恶化,使保护动作时间很长,灵敏度很低。在电缆线路上都采用专门的零序电流互感器,可以用来实现规定
根据电力工程设计手册上的相关规定,电力系统的继电保护装置必须满足可靠性、选择性、灵敏性和速动性的要求。对于110kV及以上电压等级有效接地电力网络线路,应按照规定装设反应接地短路和相间短路的保护装置。
(1对于接地短路:装设带方向和不带方向的阶段式零序电流保护;零序电流保护不能满足要求时,可装设接地距离保护,并应色一段或两段零序电流保护作为后备保护。
3.3 N侧保护1零序电流保护Ⅰ段整定..................................................................................11
4零序电流保护评价..............................................................................................................12 4.1原理与内容………………………………………………… . …………………………… .13
电力系统继电保护课程设计——三段式电流保护的设计

电力系统继电保护课程设计题目:三段式电流保护的设计班级:姓名:学号:指导教师:设计时间:1 设计原始资料1.1 具体题目如图1.1所示网络,系统参数为ϕE =115/3kV ,1G X =15Ω、2G X =10Ω、3G X =10Ω, 1L =2L =60km 、3L =40km 、C B L -=50km 、D C L -=30km 、E D L -=20km ,线路阻抗0.4Ω/km ,I rel K =1.2、II rel K =IIIrel K =1.15,max C B I -=300A ,max D C I -=200A ,maxE D I -=150A ,ss K =1.5,re K =0.85。
AB图1.1 系统网络图试对线路BC 、CD 进行电流保护的设计。
1.2 要完成的内容(1)保护的配置及选择;(2)短路电流计算(系统运行方式的考虑、短路点的考虑、短路类型的考虑);(3)保护配合及整定计算; (4)保护原理展开图的设计; (5)对保护的评价。
2 设计要考虑的问题2.1 设计规程2.1.1 短路电流计算规程在决定保护方式前,必须较详细地计算各短路点短路时,流过有关保护的短路电流, 然后根据计算结果,在满足《继电保护和自动装置技术规程》和题目给定的要求条件下,尽可能采用简单的保护方式。
其计算步骤及注意事项如下。
(1)系统运行方式的考虑除考虑发电厂发电容量的最大和最小运行方式外,还必须考虑在设备检修或故障切除的情况下,发生短路时流过保护装置的短路电流最大和最小的系统运行方式,以便计算保护的整定值和保护灵敏度。
在需采用电流电压联锁速断保护时,还必须考虑系统的正常运行方式。
(2)短路点的考虑求不同保护的整定值和灵敏度时,应注意短路点的选择。
若要绘制短路电流、电压与距离的关系曲线,每一条线路上的短路点至少要取三点,即线路的始端、中点和末端三点。
(3)短路类型的考虑相间短路保护的整定计算应取系统最大运行方式下三相短路电流,以作动作电流整定之用;而在系统最小运行方式下计算两相短路电流,以作计算灵敏度之用。
保护三段式电流保护的设计(完整版)

继电保护原理课程设计报告专业:电气工程及其自动化班级:电气1103姓名: 马春辉学号:3指导教师:苏宏升__________ 兰州交通大学自动化与电气工程学院2014年7月12日1设计原始资料具体题目 如图所示网络,系统参数为 E =115/ 3kV , X GI =18Q 、X G 2=18Q 、X G 3=10Q,L 1 = L 2 =50km L 3=30km L B c =60km L cD =40km L D E =30km 线路阻抗 Q /km ,对线路进行三段式电流保护的设计图系统网络图要完成的内容本题完成对线路保护3进行三段式电流保护的设计K ;1 二、H 二 K r! ,1 B Cm ax=300A=200A1 D Emax=150AK ss=,心=。
试A '19 8A345CE2 分析课题的设计内容设计规程主保护配置选用三段式电流保护,经灵敏度校验可得电流速断保护不能作为主保护。
因此,主保护应选用三段式距离保护。
后备保护配置过电流保护作为后备保护和远后备保护。
3 短路电流计算等效电路的建立由已知可得, 线路的总阻抗的计算公式为X ZL其中:Z —线路单位长度阻抗;L —线路长度。
所以,将数据代入公式可得各段线路的线路阻抗分别为X L1 X L2 ZL1 0.4 50 20X L3 ZL3 0.4 30 12X BC ZL B C 0.4 60 24X DE ZL D E 0.4 30 12经分析可知, 路 L i 、 L 3最大运行方式即阻抗最小时,则有三台发电机运行,线运行,由题意知G 、G3连接在同一母线上,则X smin X G 1〃X G2 XL1〃 X L 2 〃 X G 3 X L 3式中 X smin —最大运行方式下的阻抗值;最大运行方式等效电路如图所示同理,最小运行方式即阻抗值最大,分析可知在只有 应地有最小运行方式等效电路图如图所示16 U AAA图最大运行方式等效电路图9 10 // 10 12 10.2G i 和L i 运行,相smaxX GI X LI18 20 38式中 E —系统等效电源的相电动势;乙一短路点至保护安装处之间的阻抗;Z s —保护安装处到系统等效电源之间的阻抗;K —短路类型系数、三相短路取1,两相短路取于(1)对于保护2等值电路图如图所示,母线 D 最大运行方式下发生三 相短路流过保护2的最大短路电流为kDmaxX smin XBCX CD图最小运行方式等效电路图保护短路点及短路点的选取选取B 、C D E 点为短路点进行计算。
三段电流保护整定实例

目录
• 概述 • 整定实例一:变压器保护 • 整定实例二:线路保护 • 整定实例三:电动机保护 • 结论
01
概述
定义与重要性
定义
三段电流保护是电力系统中的一种重 要保护措施,主要用于保护变压器、 发电机和输电线路等设备。
重要性
在电力系统中,当发生短路故障或其 他异常情况时,三段电流保护能够快 速切断故障线路,防止事故扩大,保 障电力系统的安全稳定运行。
整定实例的具体步骤
根据实际情况选择合适的电 流互感器变比和保护装置型
号。
收集线路的参数和运行数据, 包括线路长度、导线截面、
最大负荷电流等。
01
02
03
根据整定公式计算出各项保 护的整定值。
将计算出的整定值输入到保 护装置中进行设置。
04
05
对保护装置进行校验,确保 其功能正常并符合要求。
04
整定实例三:电动机保 护
三段电流保护整定的未来发展方向
智能化发展
随着人工智能和大数据技术的应用,三段电流保护整定将逐步实现 智能化,通过智能算法和数据分析提高保护的准确性和可靠性。
集成化发展
未来三段电流保护整定将趋向于与其他电力设备进行集成,形成一 体化的保护监控系统,便于集中管理和维护。
定制化发展
针对不同电力系统和设备的需求,三段电流保护整定将提供更加定制 化的解决方案,以满足个性化需求和提高系统性能。
收集变压器参数
包括额定容量、额定电流、额 定电压等。
选择继电器
根据计算结果选择合适的差动 继电器、瓦斯继电器和过流继 电器。
调试与验收
对安装好的变压器保护装置进 行调试和验收,确保其正常工 作。
三段式电流保护整定计算实例

三段式电流保护整定计算实例:如图所示单侧电源放射状网络,AB 和BC 均设有三段式电流保护。
已知:1)线路AB 长20km ,线路BC 长30km ,线路电抗每公里0.4欧姆;2)变电所B 、C 中变压器连接组别为Y ,d11,且在变压器上装设差动保护;3)线路AB 的最大传输功率为9.5MW ,功率因数0.9,自起动系数取1.3;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗7.9欧,系统最小电抗5.4欧。
试对AB 线路的保护进行整定计算并校验其灵敏度。
其中25.1=I rel K ,15.1=II rel K ,15.1=IIIrel K ,85.0=re K整定计算:① 保护1的Ⅰ段定值计算)(1590)4.0*204.5(337)(31min .)3(max .A l X X E I s skB =+=+=)(1990159025.1)3(max ,1A I K I kB I rel I op =⨯==工程实践中,还应根据保护安装处TA 变比,折算出电流继电器的动作值,以便于设定。
按躲过变压器低压侧母线短路电流整定:选上述计算较大值为动作电流计算值.最小保护范围的校验:=3.49KM满足要求②保护1的Ⅱ段限时电流速断保护与相邻线路瞬时电流速断保护配合)(105084025.12A I I op =⨯= =1.15×=1210A选上述计算较大值为动作电流计算值,动作时间0.5S 。
灵敏系数校验:可见,如与相邻线路配合,将不满足要求,改为与变压器配合。
③保护1的Ⅲ段定限时过电流保护按躲过AB 线路最大负荷电流整定:)(6.3069.010353105.985.03.115.136max 1.A I K K K I L re ss III rel IIIop =⨯⨯⨯⨯⨯⨯== =501.8A动作时限按阶梯原则推。
此处假定BC 段保护最大时限为1.5S ,T1上保护动作最大时限为0.5S ,则该保护的动作时限为1.5+0.5=2.0S 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 三段式电流保护实验 【实验名称】 三段式电流保护实验 【实验目的】 1. 掌握无时限电流速断保护、限时电流速断保护及过电流保护的电路原理,工作特性及整定原则; 2. 理解输电线路阶段式电流保护的原理图及保护装置中各继电器的功用; 3. 掌握阶段式电流保护的电气接线和操作实验技术。 【预习要点】 1. 复习无时限电流速断保护、限时电流速断保护及过电流保护相关知识。 2. 根据给定技术参数,对三段式电流保护参数进行计算与整定。 【实验仪器设备】 序号 设备名称 使 用 仪 器 名 称 数量 1 控制屏 1
2 EPL-01 输电线路
1
3 EPL-03A AB站故障点设置
1
4 EPL-03B BC站故障点设置
1
5 EPL-04 继电器(一)—DL-21C电流继电器
1
6 EPL-05 继电器(二)—DS-21时间继电器
1
7 EPL-06 继电器(四)—DZ-31B中间继电器
1
8 EPL-17 三相交流电源
1
9 EPL-11 直流电源及母线
1
10 EPL-32
继电器(三)—DL-21C电流继电器 —DS-21时间继电器 1 【实验原理】 1.无时限电流速断保护 三段式电流保护通常用于3-66kV电力线路的相间短路保护。在被保护线路上发生短路时,流过保护安装点的短路电流值,随短路点的位置不同而变化。在线路的始端短路时,短路电流值最大;短路点向后移动时,短路电流将随线路阻抗的增大而减小,直至线路末端短路时短路回路的阻抗最大,短路电流最小。短路电流值还与系统运行方式及短路的类型有关。图3-1曲线1表示在最大运行方式下发生三相短路时,线路各点短路电流变化的曲线;曲线2则为最小运行方式下两相短路时,短路电流变化的曲线。
图3-1 瞬时电流速断保护的整定及动作范围 由于本线路末端f1点短路和下一线路始端的f2点短路时,其短路电流几乎是相等的(因f1离f2很近,两点间的阻抗约为零)。如果要求在被保护线路的末端短路时,保护装置能够动作,那么,在下一线路始端短路时,保护装置不可避免地也将动作。这样,就不能保证应有的选择性。为了保证保护动作的选择性,将保护范围严格地限制在本线路以内,就应使保护的动作电流Iop1.1(为保护1的动作电流折算到一次电路的值)大于最大运行方式下线路末端发生三相短路时的短路电流If.B.max,即 Iop1.1If.b.max, Iop1.1=KrelIf.b.max 式中,Krel—可靠系数,当采用电磁型电流继电器时,取Krel=1.2~1.3。 显然,保护的动作电流是按躲过线路末端最大短路电流来整定,可保证在其他各种运行方式和短路类型下,其保护范围均不至于超出本线路范围。但是,按照以上公式整定的结果(如图3-1中的直线3)。保护范围就必然不能包括被保护线路的全长。因为只有当短路电流大于保护的动作电流时,保护才能动作。从图3-1中能够得出保护装置的保护范围。还可以看出,这种保护的缺点是不能保护线路的全长,而且随着运行方式及故障类型的不同,其保护范围也要发生的相应变化。图3-1中在最大运行方式下三相短路时,其保护范围为lmax;而在最小运行方式下两相短路时,其保护范围则缩小至lmin。无时限电流速断保护的优点是:因为不反应下一线路的故障,所以动作时限将不受下一线路保护时限的牵制,可以瞬时动作。 无时限电流速断保护的灵敏度可用其保护范围占线路全长的百分数来表示。通常,在最大运行方式下保护区达到线路全长的50%、在最小运行方式下发生两相短路时能保护线路全长的15%—20%时,即可装设瞬时电流速断。所以在线路始端一定范围内短路时,无时限电流速断保护可以做到快速地切除附近故障。 2.带时限电流速断保护 无时限电流速断保护(也称第I段保护)虽然能实现快速动作,但却不能保护线路的全长。因此,必须装设第II段保护,即带时限电流速断保护,用以反应无时限电流速断保护区外的故障。对第II段保护的要求是能保护线路的全长,还要有尽可能短的动作时限。 (1)带时限电流速断保护的保护范围分析 带时限电流速断保护要求保护线路的全长,那么保护区必然会延伸至下一线路,因为本线路末端短路时流过保护装置的短路电流与下一线路始端短路时的短路电流相等,再加上还有运行方式对短路电流的影响,如若较小运行方式下保护范围达到线路末端,则较大运行方式下保护范围必然延伸到下一线路。为尽量缩短保护的动作时限,通常要求带时限电流速断延伸至下一线路的保护范围不能超出下一线路无时限电流速断的保护范围,因此线路L1带时限电流速断保护的动作电流IIopI1.1应大于下一线路无时限电流速断保护的动作电流IopI2.1,即 IopIIopII2.11.1
IoprelIIopIKI2.11.1 式中,Krel—可靠系数,考虑到非周期分量的衰减一般取Krel=1.1~1.2。 图3-2 限时电流速断保护的保护范围分析 该保护的保护范围分析见图3-2。由图可知,为保证保护动作的选择性,带时限电流速断保护的动作时限需要与下一线路的无时限电流速断保护相配合,即应比后者的时限大一个时限级差Δt。 时限级差,从快速性的角度要求,应愈短愈好,但太短了保证不了选择性。其时限配合如图3-3所示。当在下一线路首端f点发生短路故障时,本线路L1的带时限电流速断保护和下一线路L2的无时限电流速断保护同时启动,但本线路L1的带时限电流速断保护需经过延时后才能跳闸,而下一线路L2的无时限电流速断保护瞬时跳闸将故障切除,这就保证了选择性。要做到这一点Δt应在0.3-0.6s间,一般取0.5s。
图3-3 限时电流速断保护和瞬时电流速断的时限配合 (2)灵敏度校验 为了使带时限电流速断能够保护线路的全长,应以本线路的末端作为灵敏度的校验点,以最小运行方式下的两相短路作为计算条件,来校验保护的灵敏度。其灵敏度为 IIopBfsenIIK1
min..
式中:If.B.min—在线路L1末端短路时流过保护装置的最小短路电流; IIopI1—线路L1带时限电流速断保护的动作电流值折算到一次电路的
值。 根据规程要求,灵敏度系数应不小于1.3。如果保护的灵敏度不能满足要求,有时还采用降低动作电流的方法来提高其灵敏度。为此,应使线路L1上的带时限电流速断保护范围与线路L2上的带时限电流速断保护相配合,即 IIoprelIIopIKI2.11.1
tttIIII21
式中:IIopI2.1——L2上的带时限电流速断保护的一次动作电流值。
IIt
2
——L2上的带时限电流速断保护的动作时间。
显然,动作时限增大了,但灵敏度却提高了,而且仍保证了动作的选择性。 3.定时限过电流保护 无时限电流速断保护和带时限电流速断保护能保护线路全长,可作为线路的主保护用。为防止本线路的主保护发生拒动,必须给线路装设后备保护,以作为本线路的近后备和下一线路的远后备。这种后备保护通常采用定时限过电流保护(又称为第III段保护),其动作电流按躲过最大负荷电流整定,动作时限按保证选择性的阶梯时限来整定。其原理接线图与带时限电流速断保护相同,但由于保护范围和保护的作用不同,其动作电流和动作时限则不同。 (1)定时限过电流保护的工作原理和动作电流 过电流保护工作原理: 正常运行时,线路流过负荷电流,保护不动。当线路发生短路故障时,保护启动,经过保证选择性的延时动作,将故障切除。 过电流保护动作电流: 过电流保护动作电流的整定,要考虑可靠性原则,即只有在线路存在短路故障的情况下,才允许保护装置动作。 过电流保护应按躲过最大的负荷电流计算保护的动作电流,根据可靠性要求,过电流保护的动作电流必须满足以下两个条件。 a. 在被保护线路通过最大负荷电流的情况下,保护装置不应该动作,即
max1LIIIopII。
式中,IIIopI1——保护的一次动作电流值
maxLI——被保护线路的最大负荷电流 最大负荷电流要考虑电动机自启动时的电流。由于短路时电压下降,变电所母线上所接负荷中的电动机被制动,在故障切除后电压恢复时,电动机有一个自启动过程,电动机自启动电流大于正常运行时的额定电流IN.M,则线路的最大负荷电流ILmax也大于其正常值IR,即RastLIKImax。 式中,Kast——自启动系数,一般取1.53。
图3-4 过电流保护动作电流 b.对于已经启动的保护装置,故障切除后,在被保护线路通过最大负荷电流的情况下应能可靠地返回。如图3-4所示,在线路L1、L2分别装有过电流保护1和保护2,当在f点短路时,短路电流流过保护1也流过保护2,它们都启动。按选择性的要求,应该由保护2动作将QF2跳开切除故障。但由于变电所B仍有其他负荷,并且因电动机自启动,线路L1可能出最大负荷电流,为使保护1的电流继电器可靠返回,它的返回电流Irel(继电器的返回电流折算到一次电路的值),应大于故障切除后线路L1最大负荷电流ILmax。
RastrelIKI
RastrelrelIKKI 式中,Irel——保护1的返回电流 由于oprereIIK,即rerelopKII1