交流伺服系统的发展和展望

合集下载

伺服驱动器_原理_概述及解释说明

伺服驱动器_原理_概述及解释说明

伺服驱动器原理概述及解释说明1. 引言1.1 概述伺服驱动器作为一种关键的控制设备,在现代工业中发挥着重要的作用。

它主要用于控制电机和执行器的运动,通过实时监测和调整输出信号,使得目标位置或速度可以精确控制。

伺服驱动器具有高精度、高稳定性和高可靠性等特点,已广泛应用于机械加工、自动化生产线、机器人技术等领域。

1.2 文章结构本文将分为五个部分进行介绍和解释说明。

首先,在引言部分我们将对伺服驱动器的基本概念和原理进行简要叙述,并明确文章的研究框架。

其次,我们将详细讲解伺服驱动器的原理,包括定义与基本原理、控制系统组成以及运行方式和特点等方面内容。

然后,我们将对伺服驱动器进行概述,涉及其发展历史、应用领域与需求以及常见类型和分类等方面。

接下来,我们会在第四部分解释说明伺服驱动器的工作原理,重点介绍反馈系统、控制算法和实时响应性能以及电机控制和反馈信号处理技术等内容。

最后,在结论部分,我们将总结主要内容与观点、归纳核心意义和应用价值,并展望未来伺服驱动器的发展方向。

1.3 目的本文旨在全面介绍伺服驱动器的原理与概述,并解释说明其工作原理。

通过对伺服驱动器的深入研究和分析,可以帮助读者更好地理解和运用伺服驱动器技术,并为相关领域的工程师、学者和爱好者提供有益信息和启示。

此外,文章还致力于探讨未来伺服驱动器发展的趋势和前景,以期推动相关技术的进步与创新。

2. 伺服驱动器原理:2.1 定义与基本原理伺服驱动器是一种用于控制伺服电机运动的设备,通过将输入信号转换为输出控制信号来实现精确的位置、速度和加速度控制。

它主要由控制系统和执行系统两部分组成。

基本原理是通过接收反馈信号并与参考输入进行比较,根据误差信号来调整输出信号,以使系统稳定在期望的状态。

伺服驱动器可以实现高精度和高性能的运动控制,广泛应用于自动化领域。

2.2 控制系统组成伺服驱动器的控制系统主要由下列几个组成部分构成:- 参考输入:指定所需的运动参数,如位置、速度和加速度。

机器人视觉伺服的发展现状

机器人视觉伺服的发展现状

机器人视觉伺服的发展现状摘要:本文对机器人视觉伺服系统的发展现状进行简单的介绍,之后提出视觉伺服领域主要存在的问题,,并对机器人视觉伺服的未来研究方向进行了展望关键词:机器人视觉伺服系统;发展;现状1机器视觉伺服的发展现状1.1机器视觉的发展历程一直以来,人类都是通过眼睛获取大多数外部信息,然而随着科技的不断进步,科学家们提出创造一种具有人眼功能的智能机器代替人类工作,更加丰富地认识和理解外部世界。

机器视觉,顾名思义就是采用现代科学技术手段,软硬件相结合,使机器代替人类的眼睛,从而获取视觉信息,辅助设备完成期望的工作。

机器视觉不仅能够识别出眼睛可以观察到的表面信息,还能够识别目标的内部信息。

机器视觉最早发展与日本以及欧美风国家。

随着智能机械设备不断应用,发明一种代替人眼进行识别工作的辅助设备被提出,涉及领域包括字符识别、工件表面缺陷检测、航空图像解译等技术的研究,机器视觉技术由此而来。

在60年代左右,美国麻省理工学院的的一名学者提出了可以利用物体的二维图像来对一些三维模型和空间关系情况进行再现,从而建立起面向三维场景理解的立体视觉研究。

70年代麻省理工学院MARR创立了系统化的视觉信息处理理论,指出人类视觉从三维场景中提取对观测者有用信息的过程需要经过多层次的处理,并且这种处理过程可以用计算的方式重现。

此后,越来越多的学者进入了机器视觉领域,关于主动视觉等新的概念、方法与理论不断涌现。

与此同时,随着CCD相机、CPU与DSP等硬件与软件的发展,计算机视觉逐步从实验室理论研究转向工业领域的相关技术应用,从而产生了机器视觉。

由于具有实时性好、定位精度与智能化程度高等特点,机器视觉已经在智能汽车、电子、医药、食品、农业等领域得到了广泛的应用,诞生了许多著名的机器视觉相关产业公司,包括光源供应商日本Moritex、镜头厂家美国Navitar、德国Schneide等,工业相机厂家德国AVT、瑞士AOS;视觉分析软件厂家德国MVTec、美国康耐视、加拿大Adept等。

数控个人技术总结范文(3篇)

数控个人技术总结范文(3篇)

第1篇一、前言随着我国制造业的快速发展,数控技术已成为制造业的核心技术之一。

作为一名数控技术人员,我在过去的一年里,通过不断学习、实践和总结,在数控技术方面取得了一定的进步。

现将我的数控技术总结如下:一、数控技术基础知识1. 数控机床的基本原理数控机床是一种利用数字程序控制刀具进行加工的自动化机床。

它主要由数控系统、伺服系统、刀具、夹具和工件等组成。

数控系统能够根据预先编写的程序,控制伺服系统使刀具按照预定轨迹进行加工。

2. 数控编程基础数控编程是数控技术的重要组成部分,主要包括刀具路径编程、刀具补偿编程、循环编程等。

在编程过程中,要熟悉各种数控系统的编程指令,掌握编程技巧,提高编程效率。

3. 数控加工工艺数控加工工艺是指根据工件材料、形状、尺寸和加工要求,选择合适的数控机床、刀具、夹具和加工参数,制定加工工艺的过程。

在加工过程中,要注重工艺参数的优化,提高加工质量和效率。

二、数控技术实践1. 数控机床操作在操作数控机床的过程中,我熟练掌握了机床的基本操作,如开机、关机、换刀、对刀、设置加工参数等。

同时,我还学习了机床的维护保养知识,确保机床的正常运行。

2. 数控编程实践在编程实践中,我熟练掌握了多种数控系统的编程方法,如G代码、M代码、F代码等。

通过实际编程,我提高了编程效率,优化了加工参数,降低了加工成本。

3. 数控加工工艺实践在加工实践中,我积累了丰富的加工经验,能够根据工件特点,选择合适的加工工艺和参数。

通过不断尝试和改进,我提高了加工质量和效率。

三、数控技术总结1. 技术能力提升在过去的一年里,我在数控技术方面取得了以下成果:(1)熟练掌握了数控机床的基本操作和维护保养知识;(2)掌握了多种数控系统的编程方法,提高了编程效率;(3)积累了丰富的加工经验,提高了加工质量和效率。

2. 团队协作能力在数控技术工作中,我注重与团队成员的沟通与协作,共同完成各项任务。

通过团队协作,我们提高了工作效率,解决了许多技术难题。

机器人视觉伺服系统

机器人视觉伺服系统
组成
机器人视觉伺服系统主要由图像采集设备、图像处理单元、目标识别与定位模块 、伺服控制器和机器人执行机构等部分组成。
02
视觉伺服系统的关键技术
图像获取
相机选择
根据应用需求选择合适的相机类 型,如CCD或CMOS,以及相应 的分辨率。
照明条件
确保足够的照明以获得清晰、对 比度高的图像,并考虑使用红外 或紫外光谱的特殊照明。
图像处理
预处理
包括噪声去除、对比度增强和图像缩放等,以提高图像质量 。
特征提取
利用算法检测和提取图像中的关键特征,如边缘、角点或纹 理。
目标识别与跟踪
目标检测
利用模式识别和机器学习技术检测图像中的目标物体。
目标跟踪
连续帧间跟踪目标,处理目标运动、遮挡等问题。
姿态估计与控制
姿态估计
通过分析图像特征和相机参数,计算 机器人与目标之间的相对姿态。
拓展应用领域
将机器人视觉伺服系统应用到更多领域,如 医疗、农业、工业等。
未来趋势
深度学习技术
利用深度学习技术提高机器人视觉伺 服系统的识别和分类能力。
多模态融合
将图像信息与其他传感器信息融合, 提高机器人视觉伺服系统的感知能力 。
强化学习
利用强化学习技术训练机器人视觉伺 服系统,使其能够自主适应不同环境 和任务。
特点
具有高精度、高速度和高可靠性的特 点,能够实现快速、准确的视觉伺服 控制,提高机器人作业的自动化和智 能化水平。
工作原理
工作流程
图像采集
机器人视觉伺服系统的工作流程主要包括 图像采集、图像处理、目标识别与定位、 伺服控制等步骤。
通过相机等图像采集设备获取目标物体的 图像。
图像处理

闭环伺服系统设计

闭环伺服系统设计
设计用户登录界面和权限管理功能,确保系统的安全性和 可靠性。
主控界面设计
设计简洁明了的主控界面,方便用户进行系统监控和控制。
自定义报表和图形显示
根据用户需求,设计各类报表和图形显示,提供直观的数 据分析和可视化功能。
05 闭环伺服系统调试与优化
系统调试流程
硬件检查
检查伺服系统的硬件连接是否 正确,确保电机、编码器、驱
数据分析
对记录的数据进行统计分析,找出最优的控制参数组合。
参数应用
将最优的控制参数应用到伺服系统中,并进行验证和确认。
06 闭环伺服系统发展趋势与 展望
新技术与新材料的应用
01
数字孪生技术
利用数字孪生技术建立系统的虚拟模型,实现物理系统与数字模型的实
时交互,提高系统的预测和优化能力。
02
新型传感器技术
模糊控制算法
基于模糊逻辑和专家经验, 处理不确定性和非线性问 题,提高系统鲁棒性。
神经网络控制算法
模拟人脑神经元网络,通 过学习自适应调整系统参 数,实现复杂系统的智能 控制。
通信协议设计
串行通信协议
如RS-232、RS-485等,实现设备间的数据传输和命令控制。
网络通信协议
如TCP/IP、UDP等,实现远程数据交换和控制,提高系统扩展性。
驱动器选型与设计
01
02
03Байду номын сангаас
驱动器类型选择
根据电机类型和控制需求, 选择合适的驱动器类型, 如直流电机驱动器、交流 电机驱动器等。
驱动器参数匹配
根据电机参数和控制要求, 选择合适的驱动器参数, 如电压、电流、功率等。
驱动器控制算法
根据电机控制策略,设计 驱动器的控制算法,如 PID控制、模糊控制等。

《2024年永磁同步电机伺服控制系统的研究》范文

《2024年永磁同步电机伺服控制系统的研究》范文

《永磁同步电机伺服控制系统的研究》篇一一、引言随着工业自动化和智能制造的快速发展,永磁同步电机(PMSM)因其高效率、高精度和高动态性能等特点,在伺服控制系统中得到了广泛应用。

永磁同步电机伺服控制系统作为实现自动化生产、智能化控制和精准位置定位的重要设备,其研究具有重大的现实意义和工程应用价值。

本文将围绕永磁同步电机伺服控制系统的相关内容展开深入的研究和探讨。

二、永磁同步电机的基本原理永磁同步电机(PMSM)是一种基于永磁体产生磁场和电磁感应原理的电机。

其基本原理是利用永磁体产生的磁场与定子电流产生的磁场相互作用,实现电机的旋转。

PMSM具有高效率、高功率密度、低噪音等优点,在伺服控制系统中得到了广泛应用。

三、伺服控制系统的基本原理及组成伺服控制系统是一种基于反馈控制的自动控制系统,其基本原理是通过传感器实时检测被控对象的实际状态,与设定值进行比较,然后根据比较结果调整控制信号,使被控对象达到预期的稳定状态。

伺服控制系统主要由控制器、传感器、执行器等部分组成。

四、永磁同步电机伺服控制系统的研究现状目前,永磁同步电机伺服控制系统在国内外得到了广泛的研究和应用。

研究方向主要包括控制策略优化、系统稳定性分析、故障诊断与容错控制等方面。

其中,控制策略优化是提高系统性能的关键,包括矢量控制、直接转矩控制、滑模控制等。

此外,随着人工智能和机器学习等技术的发展,智能控制在永磁同步电机伺服控制系统中的应用也日益广泛。

五、永磁同步电机伺服控制系统的研究方法针对永磁同步电机伺服控制系统,常用的研究方法包括数学建模、仿真分析、实验研究等。

首先,通过建立系统的数学模型,可以更好地理解系统的运行原理和性能特点;其次,利用仿真软件对系统进行仿真分析,可以预测系统的动态性能和稳定性;最后,通过实验研究验证理论分析的正确性,并进一步优化系统性能。

六、永磁同步电机伺服控制系统的优化策略针对永磁同步电机伺服控制系统的优化策略主要包括以下几个方面:1. 控制策略优化:通过改进控制算法,提高系统的动态性能和稳定性。

伺服电机实验报告小结(3篇)

伺服电机实验报告小结(3篇)

第1篇一、实验背景随着自动化技术的飞速发展,伺服电机在工业自动化领域的应用越来越广泛。

本次实验旨在通过搭建直流伺服电机控制系统,深入了解伺服电机的工作原理、控制方法及其在实际应用中的技术特性。

二、实验目的1. 掌握直流伺服电机的基本结构和工作原理。

2. 熟悉伺服电机的控制方法,包括位置控制、速度控制和转矩控制。

3. 通过实验,了解伺服电机的性能指标及其在实际应用中的重要性。

4. 培养实验操作技能和数据分析能力。

三、实验内容及方法1. 实验设备:MEL系列电机系统教学实验台主控制屏(MEL-I、MEL-IIA、B)、被测电机(PN185W,UN220V,IN1.1A,N1600rpm)等。

2. 实验步骤:(1)搭建直流伺服电机控制系统,连接实验台主控制屏与被测电机;(2)对系统进行初始化,设置电机参数;(3)进行位置控制实验,观察电机运动轨迹;(4)进行速度控制实验,观察电机转速变化;(5)进行转矩控制实验,观察电机输出转矩;(6)对实验数据进行记录和分析。

四、实验结果与分析1. 位置控制实验:实验结果表明,通过改变控制信号,可以实现对伺服电机的精确位置控制。

在实验过程中,电机运动轨迹基本呈直线,说明伺服电机具有较好的定位精度。

2. 速度控制实验:通过调整控制信号,可以实现对伺服电机转速的精确控制。

实验中,电机转速随控制信号的变化而变化,满足实验要求。

3. 转矩控制实验:实验结果表明,通过改变控制信号,可以实现对伺服电机输出转矩的精确控制。

在实验过程中,电机输出转矩随控制信号的变化而变化,满足实验要求。

五、实验体会1. 通过本次实验,对直流伺服电机的基本结构、工作原理和控制方法有了更加深入的了解。

2. 实验过程中,学会了如何搭建直流伺服电机控制系统,掌握了实验操作技能。

3. 通过对实验数据的分析,提高了数据分析能力,为今后的学习和工作打下了基础。

六、实验总结本次实验圆满完成了预定的实验目的,达到了预期效果。

直流伺服系统设计

直流伺服系统设计
器械、印刷机械等领域。
02 直流伺服系统设计基础
CHAPTER
电机选择
根据系统需求选择合适的电机 类型,如无刷直流电机、有刷 直流电机等。
考虑电机的扭矩、转速、尺寸 和重量等参数,以确保电机能 够满足系统性能要求。
考虑电机的效率和温升,以降 低能耗和提高系统稳定性。
驱动器设计
根据电机类型和系统需求,设计合适的驱动器电路,包括电源、控制信号、保护电 路等。
工作原理
控制器
控制器是直流伺服系统的核心部 分,负责接收指令信号,并与电 机反馈信号进行比较,根据比较
结果输出控制信号。
电机
直流电机是系统的执行元件,根据 控制信号调整电机的输入电流或电 压,从而实现精确的运动控制。
反馈装置
为了实现精确控制,直流伺服系统 ቤተ መጻሕፍቲ ባይዱ常配备位置、速度或力矩传感器 等反馈装置,将实际运动状态反馈 给控制器。
霍尔编码器
霍尔编码器也具有较高的测量精度和可靠性,适用于对测量精度 要求较高的应用。
磁编码器
磁编码器利用磁场变化来测量转速和位置,具有较小的体积和较 高的测量精度。
控制器
1 2
微控制器
微控制器是伺服控制系统的核心,负责接收输入 信号、计算输出信号并控制伺服系统的运行。
数字信号处理器
数字信号处理器具有较高的计算能力和数据处理 能力,适用于对计算能力要求较高的应用。
3
可编程逻辑控制器
可编程逻辑控制器适用于需要自动化控制和逻辑 运算的应用,具有较好的可靠性和稳定性。
驱动器
晶体管驱动器
晶体管驱动器利用晶体管的开关特性 来控制电流的通断,具有较快的响应 速度和较大的输出电流。
继电器驱动器
继电器驱动器利用继电器的触点开关 来控制电流的通断,适用于对输出电 流要求较低的应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

交流伺服系统的发展和展望 阅览次数:819 作者:张宏波 单位:

交流伺服系统作为现代工业生产设备的重要驱动源之一,是工业自动化不可缺少的基础技术。本文在总结当前交流伺服系统的发展趋势和研究与应用成果的基础上,对交流伺服系统的未来发展做出了展望。

1.0 概述 目前,基于稀土永磁体的交流永磁伺服驱动系统,能提供最高水平的动态响应和扭矩密度。所以拖动系统的发展趋势是用交流伺服驱动取替传统的液压、直流和步进调速驱动,以便使系统性能达到一个全新的水平,包括更短的周期、更高的生产率、更好的可靠性和更长的寿命。因此,交流伺服这样一种扮演重要支柱技术角色的自动控制系统,在许多高科技领域得到了非常广泛的应用,如激光加工、机器人、数控机床、大规模集成电路制造、办公自动化设备、雷达和各种军用武器随动系统、以及柔性制造系统(FMS-Flexible Manufacturing System)等。

2.0 步进电机和交流伺服电机性能比较 步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。 虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。

2.1控制精度不同 两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72°、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。 交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。

2.2低频特性不同 步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。 交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。

2.3矩频特性不同 步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。

2.4过载能力不同 步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。以松下交流伺服系统为例,它具有速度过载和转矩过载能力。其最大转矩为额定转矩的三倍,可用于克服惯性负载在启动瞬间的惯性力矩。步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象。

2.5运行性能不同 步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。

2.6速度响应性能不同 步进电机从静止加速到工作转速(一般为每分钟几百转)需要200~400毫秒。交流伺服系统的加速性能较好,以松下MSMA 400W交流伺服电机为例,从静止加速到其额定转速3000RPM仅需几毫秒,可用于要求快速启停的控制场合。

综上所述,交流伺服系统在许多性能方面都优于步进电机。 3.0 交流伺服系统的分类 交流伺服系统根据其处理信号的方式不同,可以分为模拟式伺服、数字模拟混合式伺服和全数字式伺服;如果按照使用的伺服电动机的种类不同,又可分为两种:一种是用永磁同步伺服电动机构成的伺服系统,包括方波永磁同步电动机(无刷直流机)伺服系统和正弦波永磁同步电动机伺服系统;另一种是用鼠笼型异步电动机构成的伺服系统。二者的不同之处在于永磁同步电动机伺服系统中需要采用磁极位置传感器而感应电动机伺服系统中含有滑差频率计算部分。若采用微处理器软件实现伺服控制,可以使永磁同步伺服电动机和鼠笼型异步伺服电动机使用同一套伺服放大器。 4.0 交流伺服系统的发展与数字化控制的优点 伺服系统的发展紧密地与伺服电动机的不同发展阶段相联系,伺服电动机至今已有五十多年的发展历史,经历了三个主要发展阶段:

第一个发展阶段(20世纪60年代以前),此阶段是以步进电动机驱动的液压伺服马达或以功率步进电动机直接驱动为中心的时代,伺服系统的位置控制为开环系统。

第二个发展阶段(20世纪60-70年代),这一阶段是直流伺服电动机的诞生和全盛发展的时代,由于直流电动机具有优良的调速性能,很多高性能驱动装置采用了直流电动机,伺服系统的位置控制也由开环系统发展成为闭环系统。在数控机床的应用领域,永磁式直流电动机占统治地位,其控制电路简单,无励磁损耗,低速性能好。

第三个发展阶段(20世纪80年代至今),这一阶段是以机电一体化时代作为背景的,由于伺服电动机结构及其永磁材料、控制技术的突破性进展,出现了无刷直流伺服电动机(方波驱动),交流伺服电动机(正弦波驱动)等种种新型电动机。

进入20世纪80年代后,因为微电子技术的快速发展,电路的集成度越来越高,对伺服系统产生了很重要的影响,交流伺服系统的控制方式迅速向微机控制方向发展,并由硬件伺服转向软件伺服,智能化的软件伺服将成为伺服控制的一个发展趋势。

伺服系统控制器的实现方式在数字控制中也在由硬件方式向着软件方式发展;在软件方式中也是从伺服系统的外环向内环、进而向接近电动机环路的更深层发展。

目前,伺服系统的数字控制大都是采用硬件与软件相结合的控制方式,其中软件控制方式一般是利用微机实现的。这是因为基于微机实现的数字伺服控制器与模拟伺服控制器相比,具有下列优点: (1) 能明显地降低控制器硬件成本。速度更快、功能更新的新一代微处理机不断涌现,硬件费用会变得很便宜。体积小、重量轻、耗能少是它们的共同优点。 (2) 可显著改善控制的可靠性。集成电路和大规模集成电路的平均无故障时(MTBF)大大长于分立元件电子电路。

(3) 数字电路温度漂移小,也不存在参数的影响,稳定性好。 (4) 硬件电路易标准化。在电路集成过程中采用了一些屏蔽措施,可以避免电力电子电路中过大的瞬态电流、电压引起的电磁干扰问题,因此可靠性比较高。

(5) 采用微处理机的数字控制,使信息的双向传递能力大大增强,容易和上位系统机联运,可随时改变控制参数。

(6) 可以设计适合于众多电力电子系统的统一硬件电路,其中软件可以模块化设计,拼装构成适用于各种应用对象的控制算法;以满足不同的用途。软件模块可以方便地增加、更改、删减,或者当实际系统变化时彻底更新。

(7) 提高了信息存贮、监控、诊断以及分级控制的能力,使伺服系统更趋于智能化。 (8) 随着微机芯片运算速度和存贮器容量的不断提高,性能优异但算法复杂的控制策略有了实现的基础。

5.0 高性能交流伺服系统的发展现状和展望 近10年来,永磁同步动机性能快速提高,与感应电动机和普通同步电动机相比,其控制简单、良好的低速运行性能及较高的性价比等优点使得永磁无刷同步电动机逐渐成为交流伺服系统执行电动机的主流。尤其是在高精度、高性能要求的中小功率伺服领域。而交流异步伺服系统仍主要集中在性能要求不高的、大功率伺服领域。 自20世纪80年代后期以来,随着现代工业的快速发展,对作为工业设备的重要驱动源之一的伺服系统提出了越来越高的要求,研究和发展高性能交流伺服系统成为国内外同仁的共识。有些努力已经取得了很大的成果,“硬形式”上存在包括提高制作电机材料的性能,改进电机结构,提高逆变器和检测元件性能、精度等研究方向和努力。“软形式”上存在从控制策略的角度着手提高伺服系统性能的研究和探索。如采用“卡尔曼滤波法”估计转子转速和位置的“无速度传感器化”;采用高性能的永磁材料和加工技术改进PMSM转子结构和性能,以通过消除/削弱因齿槽转矩所造成的PMSM转矩脉动对系统性能的影响;采用基于现代控制理论为基础的具有将强鲁棒性的滑模控制策略以提高系统对参数摄动的自适应能力;在传统PID控制基础上进入非线性和自适应设计方法以提高系统对非线性负载类的调节和自适应能力;基于智能控制的电机参数和模型识别,以及负载特性识别。

对于发展高性能交流伺服系统来说,由于在一定条件下,作为“硬形式”存在的伺服电机、逆变器以相应反馈检测装置等性能的提高受到许多客观因数的制约;而以“软形式”存在的控制策略具有较大的柔性,近年来随着控制理论新的发展,尤其智能控制的兴起和不断成熟,加之计算机技术、微电子技术的迅猛发展,使得基于智能控制的先进控制策略和基于传统控制理论的传统控制策略的“集成”得以实现,并为其实际应用奠定了物质基础。

伺服电机自身是具有一定的非线性、强耦合性及时变性的“系统”,同时伺服对象也存在较强的不确定性和非线性,加之系统运行时受到不同程度的干扰,因此按常规控制策略很难满足高性能伺服系统的控制要求。为此,如何结合控制理论新的发展,引进一些先进的“复合型控制策略”以改进“控制器”性能是当前发展高性能交流伺服系统的一个主要“突破口”。

6.0结束语 21世纪是一个崭新的世纪,也定将是各项科学技术飞速发展的世纪。相信随着材料

相关文档
最新文档