江西省中考数学复习题 (37)
江西省2023年中考数学真题及参考答案

江西省2023年中考数学真题及参考答案一、单项选择题(本大题共6小题,每小题3分,共18分)1.下列各数中,正整数是()A .3B .1.2C .0D .2-2.下列图形中,是中心对称图形的是()3.若4-a 有意义,则a 的值可以是()A .1-B .0C .2D .64.计算()322m 的结果为()A .68mB .66mC .62mD .52m 5.如图,平面镜MN 放置在水平地面CD 上,墙面CD PD ⊥于点D ,一束光线AO 照射到镜面MN 上,反射光线为OB ,点B 在PD 上,若︒=∠35AOC ,则OBD ∠的度数为()A .︒35B .︒45C .︒55D .︒656.如图,点D C B A ,,,均在直线l 上,点P 在直线l 外,则经过其中任意三个点,最多可画出圆的个数为()A .3个B .4个C .5个D .6个二、填空题(本大题共6小题,每小题3分,共18分)7.单项式ab 5-的系数为.8.我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设总规模约1800万千瓦,比上一年同期翻一番,将18000000用科学计数法表示应为.9.化简:()=-+221a a .10.将含30°角的直角三角板和直尺按如图所示的方式放置,已知︒=∠60α,点C B ,表示的刻度分别为cm cm 31,,则线段AB 的长为cm .11.《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点Q B A ,,在同一水平线上,ABC ∠和AQP ∠均为直角,AP 与BC 相交于点D .测得m AQ cm BD cm AB 122040===,,,则树高=PQ m .12.如图,在▱ABCD 中,︒=∠60B ,AB BC 2=,将AB 绕点A 逆时针旋转角()︒<<︒3600αα得到AP ,连接PD PC ,.当PCD ∆为直角三角形时,旋转角α的度数为.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:03345tan 8-︒+;(2)如图,AD AB =,AC 平分BAD ∠.求证:ADC ABC ∆≅∆.14.如图是44⨯的正方形网格,请仅用无刻的的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角ABC ∆,使点C 在格点上;(2)在图2中的线段AB 行作点Q ,使PQ 最短.15.化简x x x x x x 1112-⋅⎪⎭⎫ ⎝⎛-++.下面是甲、乙两同学的部分运算过程:(1)甲同学解法的依据是,乙同学解法的依据是;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配率;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.16.为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动.根据活动要求,每班需要2名宣传员.某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是事件;(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.17.如图,已知直线b x y +=与反比例函数()0>=x x k y 的图象交于点()32,A ,与y 轴交于点B ,过点B 作x 轴的平行线交反比例函数()0>=x xk y 的图象于点C .(1)求直线AB 和反比例函数图象的表达式;(2)求ABC ∆的面积.四、解答题(本大题共3小题,每小题8分,共24分)18.今年植树节,某班同学共同发种植一批树苗,如果没人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?19.图1时某红色是文化主题公园内的雕塑,将其抽象成如图2所示的示意图,已知点B ,E D A ,,均在同一直线上,AD AC AB ==,测得︒=∠55B ,m DE m BC 28.1==,.(结果保留小数点后一位)(1)连接CD ,求证:BC DC ⊥;(2)求雕塑的高(即点E 到直线BC 的距离).(参考数据:82.055sin ≈︒,57.055cos ≈︒,43.155tan ≈︒)20.如图,在ABC ∆中,︒=∠=644C AB ,,以AB 为直径的☉O 与AC 相交于点E D ,为弧ABD 上一点,且︒=∠40ADE .(1)求E B 的长;(2)若︒=∠76EAD ,求证:CB 为☉O 的切线.五、解答题(本大题共2小题,每小题9分,共18分)21.为了解中学生的示例情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.(1)=m ,=n ;(2)被调查的高中学生视力情况的样本容量为;分析处理(3)①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量说明理由;②约定:视力未达到1.0的视力不良.若该区有26000名中学生,估计该区有多少名中学生视力不良?并对视力保护提出一条合理化建议.22.定理证明(1)为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.已知:在▱ABCD 中,对角线AC BD ⊥,垂足为O .求证:▱ABCD 是菱形.知识应用(2)如图②,在▱ABCD 中,对角线AC 和BD 相交于点O ,685===BD AC AD ,,①求证:▱ABCD 是菱形;②延长BC 至点E ,连接OE 交CD 与点F ,若ACD E ∠=∠21,求EFOF 的值.六、解答题(本大题共12分)23.综合与实践问题提出某兴趣小组开展综合实践活动:在ABC Rt ∆中,︒=∠90C ,D 为AC 上一点,2=CD .动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿A B C →→匀速运动,到达点A 时停止,以DP 为边作正方形DPEF .设点P 的运动时间为ts ,正方形DPEF 的面积为S ,探究S 与t 的关系.初步感知(1)如图1,当点P 由点C 运动到点B 时,①当1=t 时,=S ;②S 关于t 的函数解析式为.(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象.请根据图象信息,求S 关于t 的函数解析式及线段AB 的长.延伸探究(3)若存在3个时刻321,,t t t (321t t t <<)对应的正方形DPEF 的面积均相等.①=+21t t ;②当134t t =时,求正方形DPEF 的面积.参考答案一、选择题1.A2.B3.D4.A5.C6.D 二、填空题7.5-8.7108.1⨯9.12+a 10.211.612.90°或180°或270°三、解答题13.(1)解:原式=2+1-1=2(2)证明:∵AC 平分BAD ∠,∴DAC BC ∠=∠.在ABC ∆和ADC ∆中,⎪⎩⎪⎨⎧=∠=∠=AC AC DAC BAC AD AB ,∴ABC ∆≌()SAS ADC ∆.14.解:(1)如下左图(右图中的51~C C 亦可):答:ABC ∆即为所求.(2)如下图:答:点Q 即为所求.15.解:(1)②,③;(2)按甲同学的解法化简:原式()()()()()()x x x x x x x x x x 11111112-⋅⎥⎦⎤⎢⎣⎡+-++-+-=()()()()()()()()()()x xx x x x x x x x x x x x x x 2111121111112=-+⋅-+=-+⋅-+++-=按乙同学的解法化简:原式()()()()xx x x x x x x x x x x x x x x x x 111111111122-+⋅-+-+⋅+=-⋅-+-⋅+=x x x 211=++-=.16.解:(1)随机(2)解法一:列表如下:由上表可知,所有可能结果共有12种,且每种结果出现的可能性相等,其中甲、丁同学都被选为宣传员的结果有2种.∴P (甲、丁同学都被选为宣传员)61122==.解法二:画树状图如下:由树状图可以看出,所有可能结果共有12种,且每种结果出现的可能性相等,其中甲、丁同学都被选为宣传员的结果有2种.∴P (甲、丁同学都被选为宣传员)61122==.17.解:(1)∵直线b x y +=与反比例函数()0>=x x k y 的图象交于点()32,A ,∴32=+b ,23k =.∴1=b ,6=k .∴直线AB 的表达式为1+=x y ,反比例函数图象的表达式为()06>=x xy .(2)过点A 作BC AD ⊥,垂足为D .∵直线1+=x y 与y 轴交点B 的坐标为()1,0,x BC ∥轴,∴C 点的纵坐标为1.∴616==x x ,,即6=BC .由x BC ∥轴,得BC 与x 轴的距离为1.∴2=AD .∴6262121=⨯⨯=⋅=∆AD BC S ABC .四、解答题18.解:(1)设该班的学生人数为x 人.依题意,得254203-=+x x .解得45=x .答:该班的学生人数为45人.(2)由(1)可知,树苗总数为155203=+x .设购买甲种树苗y 棵,则购买乙种树苗()y -155棵.依题意得()54001554030≤-+y y .解得80≥y .答:至少购买了甲种树苗80棵.19.(1)证明:∵AD AC AB ==,∴点D C B ,,在以点A 为圆心,BD 为直径的圆上.∴︒=∠90BCD ,即BC DC ⊥.(2)解:过点E 作BC EF ⊥,垂足为F .在BCD Rt ∆中,BDBC B =cos ,8.1=BC ,∴16.355cos 8.1cos ≈︒==B BC BD .∴16.5216.3=+=+=DE BD BE .在EBF Rt ∆中,BEEF B =sin ,∴2.455sin 16.5sin ≈︒⨯=⋅=B BE EF .因此,雕塑的高约为m 2.4.20.解:(1)连接OE .∵︒=∠40ADE ,∴︒=∠=∠802ADE AOE .∴︒=∠-︒=∠100180AOE BOE .∴E B 的长ππ9101802100=⋅⋅=l .(2)证明:∵︒=∠=80AOE OE OA ,,∴︒=∠-︒=∠502180AOE OAE .∵︒=∠76EAD ,∴︒=∠-∠=∠26OAE EAD BAC .又︒=∠64C ,∴︒=∠-∠-︒=∠90180C BAC ABC ,即BC AB ⊥.又OB 是☉O 的半径,∴CB 为☉O 的切线.五、解答题21.解:(1)68,23%.(2)320.(3)①小胡的说法正确.理由如下:理由一:从中位数看,初中生视力的中位数为1.0,高中生视力的中位数为0.9,∴初中生的视力水平好于高中生.理由②:从众数看,初中生视力的众数为1.0,高中生视力的众数为0.9,∴初中生的视力水平好于高中生.②1430032020082604414342816826000=++++++++⨯(名).∴估计该区有14300名中足额生视力不良.建议:①勤做眼保健操;②不要长时间用眼;③不要在强光下看书;④加强户外运动.22.(1)证明:∵四边形ABCD 是平行四边形,∴OCOA =又AC BD ⊥,∴BD 垂直平分AC .∴BC BA =.∴▱ABCD 是菱形.(2)①证明:∵四边形ABCD 是平行四边形,68==BD AC ,,∴321421====BD OD AC OA ,.∴25342222=+=+OD OA .又25522==AD ,∴222AD OD OA =+,∴︒=∠90AOD ,即AC BD ⊥.∴▱ABCD 是菱形.②解:如图,取CD 的中点G ,连接OG .∵▱ABCD 是菱形,∴ACDACB OD OB AD BC ∠=∠===,,5∵ACD E ∠=∠21,∴ACB E ∠=∠21,即E ACB ∠=∠2,又COE E ACB ∠+∠=∠,∴COE E ∠=∠,∴4==CO CE ∵GD GC OD OB ==,,∴OG 为DBC ∆的中位线11∴BC OG ∥,且2521==BC OG ,∴CE OG ∥,∴ECF OGF ∆∆~,∴85==CE OG EF OF .六、解答题23.解:(1)①3.②22+=t S (2)由图象可知,当点P 运动到点B 时,6=S .将6=S 代入22+=t S ,得262+=t ,解得2=t 或2-=t (舍),当点P 由点B 运动到点A 时,设S 关于t 的函数解析式为()242+-=t a S .将()6,2代入,,得()24262+-=a ,解得1=a .故S 关于t 的函数解析式为()242+-=t S .由图像可知,当P 运动到A 时,18=S .由()24182+-=t ,得8=t 或0=t (舍)∴()6128=⨯-=AB .(3)①4.由(1)(2)可得()⎪⎩⎪⎨⎧≤≤+-<≤+=82,2420,222t t t t S .在图②中补全20<≤t 内的图象,根据图象可知20≤≤t 内的图象与42≤≤t 内的图象关于直线2=x 对称.因此421=+t t .②根据二次函数的对称性,可知832=+t t .由①可知421=+t t ,∴413=-t t .又134t t =,∴4411=-t t ,得341=t .此时正方形DPEF 的面积93422=+=t S.。
江西省中考数学复习题及答案 (30)

2020年江西省中考数学复习题
1.已知A、B两点分别在反比例函数y =(m ≠)和y =(m ≠)的图象上,且点A与点B关于y轴对称,则m的值为1.
【分析】根据题意,可以设出点A和点B的坐标,再根据点A和点B所在的函数解析式,即可求得m的值,本题得以解决.
【解答】解:设点A的坐标为(a,n),则点B的坐标为(﹣a,n),
∵A、B两点分别在反比例函数y =(m ≠)和y =(m ≠)的图象上,∴,
解得,m=1,
故答案为:1.
【点评】本题考查反比例函数图象上点的坐标特征、反比例函数的性质、正方形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.
第1 页共1 页。
江西省中考数学习题含答案

一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1.下列四个数中,最大的一个数是().A.2 B.C.0 D.-2【答案】 A.2.将不等式的解集表示在数轴上,正确的是().【答案】D.3.下列运算正确的是是().A.B.C.D.【答案】B.4.有两个完全相同的长方体,按下面右图方式摆放,其主视图是().【答案】C.5.设是一元二次方程的两个根,则的值是().A.2B.1C.-2D.-1【答案】D.6.如图,在正方形网格中,每个小正方形的边长均相等,网格中三个多边形(分别标记为,,)的顶点都在网格上,被一个多边形覆盖的网格线......中,竖直部分线段长度之和为,水平部分线段长度之和为,则这三个多边形满足的是()A.只有B.只有C.D.【答案】C.二、填空题(本大题共6小题,每小题3分,共18分)7.计算:-3+2=_______.【答案】-1.8.分解因式________.【答案】.9.如图所示,中,绕点A按顺时针方向旋转50°,得到,则∠的度数是________.第9题第10题第11题【答案】17°.10.如图所示,在,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF 的度数为_______.【答案】50°.11.如图,直线于点P,且与反比例函数及的图象分别交于点A,B,连接OA,OB,已知的面积为2,则______.【答案】4.12.如图,是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长...是_______.【答案】5,5,.如下图所示:C A三、(本大题共5小题,每小题6分,共30分) 13.(本题共2小题,每小题3分) (1)解方程组【解析】由得:,代入得:,解得把代入得:,∴原方程组的解是.(2)如图,Rt 中,∠ACB=90°,将Rt 向下翻折,使点A 与点C 重合,折痕为DE ,求证:DE ∥BC.【解析】由折叠知:,∴∠∠,又点A 与点C 重合,∴∠,∴∠∠,∴∠,∵∠,∴∠,∴∠,∴DE ∥BC.14.先化简,再求值:+)÷,其中.【解析】原式=+)DEB=+)=-=把代入得:原式=.15.如图,过点A(2,0)的两条直线分别交轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若【解析】(1)在Rt,∴∴∴点B的坐标是(0,3).(2)∵∴∴∴设,把(2,0),代入得:∴∴的解析式是.16.为了了解家长关注孩子成长方面的情况,学校开展了针对学生家长的“你最关注孩子哪方面成长”的主题调查,调查设置了“健康安全”,“日常学习”,“习惯养成”,“情感品质”四个项目,并随机抽取甲,乙两班共100位学生家长进行调查,根据调查结果,绘制了如下不完整的条形统计图.(1)补全条形统计图;(2)若全校共有3600位家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?【解析】(1)如下图所示:(2)(4+6)÷100×3600=360∴约有360位家长最关心孩子“情感品质”方面的成长.(3)没有确定答案,说的有道理即可.17.如图,六个完全相同的小长方形拼成一个大长方形,AB 是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:仅用无刻度直尺,保留必要的画图痕迹.(1)在图(1)中画一个45°角,使点A 或点B 是这个角的顶点,且AB 为这个角的一边;(2)在图(2)中画出线段AB 的垂直平分线.【解析】如图所示:(1)∠BAC=45o ;(2)OH 是AB 的垂直平分线.四、(本大题共4小题,每小题8分,共32分)18.如图,AB 是⊙O 的直径,点P 是弦AC 上一动点(不与A 、C 重合),过点P 作PE ⊥AB,垂足为E , 射线EP 交于点F ,交过点C 的切线于点D.(1)求证DC=DPAC AC(2)若∠CAB=30°,当F 是的中点时,判断以A 、O 、C 、F 为顶点的四边形是什么特殊四边形?说明理由;【解析】 (1)如图1连接OC,∵CD 是⊙O 的切线,∴OC ⊥CD ∴∠OCD=90o ,∴∠DCA=90o -∠OCA.又PE ⊥AB ,点D 在EP 的延长线上,∴∠DEA=90o ,∴∠DPC=∠APE=90o -∠OAC.∵OA=OC,∴∠OCA=∠OAC.∴∠DCA=∠DPC,∴DC=DP.(2)如图2四边形AOCF 是菱形.图连接CF 、AF ,∵F 是的中点,∴∴AF=FC.∵∠BAC=30o ,∴=60o ,又AB 是⊙O 的直径,∴=120o , ∴=60o ,∴∠ACF=∠FAC=30o.∵OA=OC,∴∠OCA=∠BAC=30o,BA C =C FA FB CA C B=C FA F∴⊿OAC≌⊿FAC(ASA),∴AF=OA,∴AF=FC=OC=OA,∴四边形AOCF是菱形.19.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成,闲置时鱼竿可收缩,完全收缩后,鱼竿的长度的长度即为第1节套管的长度(如图1所示),使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示),图3是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图,已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管都比前一节套管少4cm,完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为cm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求的值.图3【解析】(1)第5节的套管的长是34cm.(注:50-(5-1)×4)(2)(50+46+…+14)-9x=311∴320-9x=311,∴x=1∴x的值是1.20.甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);两人摸牌结束时,将所得牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”,若“点数”之和大于10,则“最终点数”是0;游戏结束之前双方均不知道对方“点数”;判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为.(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌,请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.【解析】(1).(2)如图:∴所有可能的结果是(4,5)(4,6)(4,7)(5,4)(5,6)(5,7)(6,4)(6,5)(6,7)(7,4)(7,5)(7,6)共12种.甲5[4 5 6 7甲“最终点数”9 10 11 12乙55 6 7 4 6 7 4 5 7 4 5 6乙“最终点数”10 11 12 9 11 12 9 10 12 9 10 11获胜情况乙胜甲胜甲胜甲胜甲胜甲胜乙胜乙胜平乙胜乙胜平∴21.如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯B端点B可以绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18o时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=18o不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9o≈0.1564,com9o≈0.9877o,sin18o≈0.3090,com18o≈0.9511,可使用科学计算器)【解析】(1)图1,作OC⊥AB,∵OA=OB,OC⊥AB,∴AC=BC,∠AOC=∠BOC=∠AOB=9°,在Rt⊿AOC中,sin∠AOC=,∴AC≈0.1564×10=1.564,∴AB=2AC=3.128≈3.13.∴所作圆的半径是3.13cm.(2)图2,以点A为圆心,AB长为半径画弧,交OB于点C,作AD⊥BC于点D;∵AC=AB,AD⊥BC,∴BD=CD,∠BAD=∠CAD=∠BAC,∵∠AOB=18°,OA=OB,AB=AC,∴∠BAC=18°,∴∠BAD=9°,在Rt⊿BAD中,sin∠BAD=,CBDB∴BD≈0.1564×3.128≈0.4892,∴BC=2BD=0.9784≈0.98∴铅笔芯折断部分的长度约为0.98cm.图2五、(本大题共10分)22.【图形定义】如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,⊿AOP为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(即⊿AOP)是等边三角形;(2)如图2,求证:∠OAB=∠OAE'.【归纳猜想】(3)图1、图2中“叠弦角”的度数分别为,;(4)图n中,“叠弦三角形”等边三角形(填“是”或“不是”);(5)图n中,“叠弦角”的度数为(用含n的式子表示).【解析】(1)如图1∵四ABCD是正方形,由旋转知:AD=AD',∠D=∠D'=90°,∠DAD'=∠OAP=60°∴∠DAP=∠D'AO,∴⊿APD≌⊿AOD'(ASA)∴AP=AO,又∠OAP=60°,∴⊿AOP是等边三角形.(2)如右图,作AM⊥DE于M,作AN⊥CB于N. ∵五ABCDE是正五边形,由旋转知:AE=AE',∠E=∠E'=108°,∠EAE'=∠OAP=60°∴∠EAP=∠E'AO,∴⊿APE≌⊿AOE'(ASA)∴∠OAE'=∠PAE.在Rt⊿AEM和Rt⊿ABN中,∴Rt⊿AEM≌Rt⊿ABN(AAS)∴∠EAM=∠BAN,AM=AN.在Rt⊿APM和Rt⊿AON中,∴Rt⊿APM≌Rt⊿AON(HL).∴∠PAM=∠OAN,∴∠PAE=∠OAB∴∠OAE'=∠OAB(等量代换).(3)15°,24°(4)是(5)∠OAB=÷2=60°-六、(本大题共共12分)23.设抛物线的解析式为y=ax2,过点B1(1,0)作x轴的垂线,交抛物线于点A1(1,2);过点B2(1,0)作x轴的垂线,交抛物线于点A2,…;过点B n(,0)(n为正整数)作x轴的垂线,交抛物线于点A n,连接A n B n+1,得直角三角形A nB n B n+1.(1)求a的值;(2)直接写出线段A n B n,B n B n+1的长(用含n的式子表示);(3)在系列Rt⊿A n B n B n+1中,探究下列问题:当n为何值时,Rt⊿A n B n B n+1是等腰直角三角形?设1≤k<m≤n(k,m均为正整数),问是否存在Rt⊿A k B k B k+1与Rt⊿A m B m B m+1相似?若存在,求出其相似比;若不存在,说明理由.【解析】(1)把A(1,2)代入得:2=,∴.(2)2×==-=(3)若Rt⊿A n B n B n+1是等腰直角三角形,则.∴,∴n=3.若Rt⊿A k B k B k+1与Rt⊿A m B m B m+1相似,则或,∴或,∴m=k(舍去)或k+m=6∵m>k,且m,k都是正整数,∴,∴相似比=,或. ∴相似比是8:1或64:1。
江西初三数学试题及答案

江西初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = a(x - h)^2 + kC. y = ax^2 + bx + c + dD. y = ax^2 + bx + c - d答案:A2. 一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. -2答案:A3. 如果一个三角形的两边长分别为3和4,且第三边长为整数,那么第三边长可能是:A. 1B. 3C. 4D. 5答案:B4. 以下哪个选项是等腰三角形的性质?A. 两底角相等B. 两腰相等C. 三边相等D. 两腰和底边都相等答案:B5. 一个圆的直径是10cm,那么它的半径是:A. 5cmB. 10cmC. 15cmD. 20cm答案:A6. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A7. 以下哪个选项是勾股定理的表达式?A. a^2 + b^2 = c^2B. a^2 - b^2 = c^2C. a^2 + c^2 = b^2D. a^2 - c^2 = b^2答案:A8. 一个数的绝对值是4,那么这个数可能是:A. 4B. -4C. 4或-4D. 0答案:C9. 以下哪个选项是平行四边形的性质?A. 对角线相等B. 对边平行且相等C. 对角线互相垂直D. 对角线互相平分答案:B10. 一个数的立方根是3,那么这个数是:A. 27B. 9C. 3D. -27答案:A二、填空题(每题3分,共30分)1. 一个数的平方是36,那么这个数是________。
答案:±62. 一个数的立方是-8,那么这个数是________。
答案:-23. 如果一个角是30°,那么它的余角是________。
答案:60°4. 一个直角三角形的两个锐角分别是30°和60°,那么它的斜边是最短边的________倍。
江西省中考数学真题(解析版)

江西省中考数学真题(解析版)江西省中考数学真题(解析版)一、选择题1. 下列四个数中,哪一个是质数?A) 18 B) 19 C) 20 D) 21解析:质数指除了1和本身外没有其他因数的数,所以选项B) 19是质数。
2. 30%用分数表示是?A) 1/3 B) 3/10 C) 1/10 D) 10/3解析:30%即30/100,可以约分为3/10,所以选项B) 3/10是正确答案。
3. 若a:b=3:4,b:c=5:2,求a:c的值。
A) 15:8 B) 3:10 C) 8:15 D) 10:3解析:根据题意,我们可以得到a:b:c=3:4:2,将比例中的a:b:c代入a:c,得到3:2,因此a:c的值是15:8,选项A) 15:8。
二、解答题1. 计算下列等式的值:7×8÷4-3+5×2÷5解析:7×8÷4-3+5×2÷5 = 56÷4-3+10÷5= 14-3+2= 16所以该等式的值是16。
2. 已知△ABC中,∠ABC=90°,BC=6cm,AC=8cm,求△ABC的面积。
解析:由勾股定理得AB的长度为√(BC^2 + AC^2) = √(6^2 + 8^2) = √100 = 10所以△ABC的面积为(1/2) × BC × AC = (1/2) × 6 × 8 = 24平方厘米。
三、应用题某商店原价出售一种电器每台800元,若打7折,则一台电器的售价是多少?解析:打7折即原价的70%,所以一台电器的售价为800元 × 70% = 560元。
四、综合题一桶装满的水果干重6kg,若每天吃掉这桶水果干的2/3,3天后还剩下多少千克?解析:每天吃掉的水果干重量为(2/3) × 6kg = 4kg,3天后吃掉的总重量为3 × 4kg = 12kg。
江西中考数学试题及答案doc

江西中考数学试题及答案doc 江西中考数学试题及答案第一部分:选择题1. 设集合 A = {1, 2, 3, 4},则集合 A 的幂集中元素的个数是_______。
A) 2 B) 4 C) 8 D) 162. 已知函数 f(x) = x^2 - 4x + 3,下列结论错误的是 _______。
A) 函数 f(x) 是奇函数B) 函数 f(x) 是偶函数C) 函数 f(x) 的图像在点 (2, -1) 处有切线D) 函数 f(x) 的值域为 [-1, +∞)3. 若 sinA = 3/5,且 A 是第二象限的角,则 cosA = _______。
A) 3/4 B) -3/4 C) 4/5 D) -4/54. 一辆汽车以每小时 60 千米的速度行驶,超过一辆自行车 30 分钟到达目的地,如果该路段长30 千米,那么该自行车的速度为_______。
A) 10 千米/小时 B) 12 千米/小时 C) 15 千米/小时 D) 20 千米/小时5. 在一个等边三角形 ABC 中,点 D 在 BC 边上,且 BD = 3 单位长度,DC = 6 单位长度。
则线段 AD 的长度为 _______。
A) 3 B) 6 C) 9 D) 12第二部分:解答题1. 解方程:2(x + 1) - 3(x - 2) = 10解答过程:2(x + 1) - 3(x - 2) = 102x + 2 - 3x + 6 = 10-x + 8 = 10-x = 2x = -2解:方程的解为 x = -2。
2. 计算:3/5 × 1/3 ÷ (1/2 + 2/3)解答过程:3/5 × 1/3 ÷ (1/2 + 2/3)3/5 × 1/3 ÷ (6/6 + 4/6)3/5 × 1/3 ÷ 10/63/5 × 1/3 × 6/1018/1503/25解:计算结果为 3/25。
江西中考初三数学试题及答案

江西中考初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 一个多项式f(x) = 3x^2 - 2x + 1,它的顶点坐标是多少?A. (1, 0)B. (1, 1)C. (0, 1)D. (-1, 2)答案:A4. 圆的周长是C,圆的半径是r,下列哪个公式是正确的?A. C = 2πrB. C = πrC. C = 4πrD. C = π/2r答案:A5. 一个数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 2答案:A6. 一个正数的倒数是1/5,这个数是多少?A. 5B. 1/5C. 1/3D. 3答案:A7. 一个等差数列的首项是3,公差是2,第10项是多少?A. 23B. 25C. 27D. 29答案:A8. 一个长方体的长、宽、高分别是3cm、4cm和5cm,它的体积是多少?A. 60cm³B. 48cm³C. 36cm³D. 24cm³答案:A9. 一个分数的分子是7,分母是8,它的最简形式是什么?A. 7/8B. 1/2C. 7/4D. 1/8答案:A10. 一个圆的直径是14cm,它的面积是多少?A. 153.94cm²B. 100cm²C. 78.5cm²D. 50cm²答案:A二、填空题(每题3分,共15分)11. 一个数的立方根是3,这个数是______。
答案:2712. 如果一个数的绝对值是5,那么这个数可能是______或-5。
答案:513. 一个二次方程x² - 5x + 6 = 0的解是______。
答案:2和314. 一个直角三角形的两条直角边分别是6和8,它的面积是______。
2022年江西省中考数学真题(解析版)

江西省2022年初中学业水平考试数学试题卷说明:1.全卷满分120分,考试时间120分钟.2.请将答案写在答题卡上,否则不给分.一、单项选择题(本大题共6小题,每小题3分,共18分)1.下列各数中,负数是()A.1- B.0 C.2 D.【答案】A【解析】【分析】根据负数的定义即可得出答案.【详解】解:-1是负数,2是正数,0既不是正数也不是负数,故选:A .【点睛】本题考查了实数,掌握在正数前面添加“-”得到负数是解题的关键.2.实数a ,b 在数轴上的对应点的位置如图所示,则下列结论中,正确的是()A.a b >B.a b =C.a b <D.a b=-【答案】C【解析】【分析】根据数轴上点的特点,进行判断即可.【详解】ABC.根据数轴上点a 、b 的位置可知,0a <,0b >,∴a b <,故AB 错误,C 正确;根据数轴上点a 、b 的位置可知,a b -<,故D 错误.故选:C .【点睛】本题主要考查了数轴上点的特点,熟练掌握数轴上点表示的数,越向右越大,是解题的关键.3.下列计算正确的是()A.236m m m ⋅= B.()m n m n --=-+C.2()m m n m n+=+ D.222()m n m n +=+【答案】B【解析】【分析】利用同底数幂的乘法,去括号法则,单项式乘多项式,完全平方公式对各选项依次判断即可.【详解】解:A 、2356m m m m ⋅=≠,故此选项不符合题意;B 、()m n m n --=-+,故此选项符合题意;C 、22()m m n m mn m n +=+≠+,故此选项不符合题意;D 、22222()2m m n m n m n n +=++≠+,故此选项不符合题意.故选:B .【点睛】本题考查了整式的混合运算,涉及到同底数幂的乘法,去括号法则,单项式乘多项式的运算法则,完全平方公式等知识.熟练掌握各运算法则和222()2a b a ab b +=++的应用是解题的关键.4.将字母“C ”,“H ”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H ”的个数是()A.9B.10C.11D.12【答案】B【解析】【分析】列举每个图形中H 的个数,找到规律即可得出答案.【详解】解:第1个图中H 的个数为4,第2个图中H 的个数为4+2,第3个图中H 的个数为4+2×2,第4个图中H 的个数为4+2×3=10,故选:B .【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.5.如图是四个完全相同的小正方体搭成的几何体,它的俯视图为()A. B.C. D.【答案】A【解析】【分析】从上面观察该几何体得到一个“T ”字形的平面图形,横着两个正方形,中间有一个正方形,且有两条垂直的虚线,下方有半个正方形.画出图形即可.【详解】俯视图如图所示.故选:A .【点睛】本题主要考查了几何体的三视图,俯视图是从上面观察几何体得出的平面图形..注意:能看到的线用实线,看不到而存在的线用虚线.6.甲、乙两种物质的溶解度(g)y 与温度()t ℃之间的对应关系如图所示,则下列说法中,错误的是()A.甲、乙两种物质的溶解度均随着温度的升高而增大B.当温度升高至2t ℃时,甲的溶解度比乙的溶解度大C.当温度为0℃时,甲、乙的溶解度都小于20gD.当温度为30℃时,甲、乙的溶解度相等【答案】D【解析】【分析】利用函数图象的意义可得答案.【详解】解:由图象可知,A 、B 、C 都正确,当温度为t 1时,甲、乙的溶解度都为30g ,故D 错误,故选:D .【点睛】本题主要考查了函数的图象,熟练掌握横纵坐标表示的意义是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.因式分解:23a a -=__________.【答案】(3)a a -【解析】【分析】直接提公因式a 即可.【详解】解:原式=(3)a a -.故答案为:(3)a a -.【点睛】此题主要考查了提公因式法分解因式,关键是正确确定公因式.8.正五边形的外角和等于_______◦.【答案】360【解析】【详解】试题分析:任何n 边形的外角和都等于360度.考点:多边形的外角和.9.已知关于x 的方程220x x k ++=有两个相等的实数根,则k 的值是______.【答案】1【解析】【分析】由一元二次方程根的判别式列方程可得答案.【详解】解:一元二次方程有两个相等的实数根,可得判别式0= ,∴440k -=,解得:1k =.故答案为:1.【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键.10.甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为__________.【答案】16014010x x =-【解析】【分析】先表示乙每小时采样(x-10)人,进而得出甲采样160人和乙采样140人所用的时间,再根据时间相等列出方程即可.【详解】根据题意可知乙每小时采样(x-10)人,根据题意,得16014010x x =-.故答案为:16014010x x =-.【点睛】本题主要考查了列分式方程,确定等量关系是列方程的关键.11.沐沐用七巧板拼了一个对角线长为2的正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为__________.【答案】【解析】【分析】根据图形可得长方形的长是正方形的对角线为2,长方形的宽是正方形对角线的一半为1,然后利用勾股定理即可解决问题.【详解】解:根据图形可知:长方形的长是正方形的对角线为2,长方形的宽是正方形对角线的一半为1,∴根据勾股定理可知,长方形的对角线长:=.【点睛】本题主要考查了正方形的性质,七巧板,矩形的性质,勾股定理,解决本题的关键是所拼成的正方形的特点确定长方形的长与宽.12.已知点A 在反比例函数12(0)y x x=>的图象上,点B 在x 轴正半轴上,若OAB 为等腰三角形,且腰长为5,则AB 的长为__________.【答案】5或【解析】【分析】因为等腰三角形的腰不确定,所以分三种情况分别计算即可.【详解】解:①当AO =AB 时,AB =5;②当AB =BO 时,AB =5;③当OA =OB 时,则OB =5,B (5,0),设A (a ,12a)(a >0),∵OA =5,5=,解得:13a =,24a =,∴A (3,4)或(4,3),∴AB =或AB =;综上所述,AB 的长为5或.故答案为:5或.【点睛】本题考查了等腰三角形的性质,反比例函数图象上点的坐标特征,考查分类讨论的思想,当时,求出点的坐标是解题的关键.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:0|2|2--;(2)解不等式组:26325x x x <⎧⎨>-+⎩【答案】(1)3;(2)1<x <3【解析】【分析】(1)根据绝对值的性质,算术平方根的意义,零指数幂的意义解答即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】(1)原式=2+2-1,=3.(2)26325x x x ⎧⎨-+⎩<①>②解不等式①得:x <3,解不等式②得:x >1,∴不等式组的解集为:1<x <3.【点睛】本题考查的是实数的运算和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.以下是某同学化筒分式2113422x x x x +⎛⎫-÷ ⎪-+-⎝⎭的部分运算过程:(1)上面的运算过程中第__________步出现了错误;(2)请你写出完整的解答过程.【答案】(1)③(2)见解析【解析】【分析】根据分式的运算法则:先乘方,再加减,最后乘除,有括号先算括号里面的计算即可.【小问1详解】第③步出现错误,原因是分子相减时未变号,故答案为:③;【小问2详解】解:原式=112(2)(2)23x x x x x ⎡⎤+--⨯⎢⎥+-+⎣⎦122(2)(2)(2)(2)3x x x x x x x ⎡⎤+--=-⨯⎢⎥+-+-⎣⎦122(2)(2)3x x x x x +-+-=⨯+-32(2)(2)3x x x -=⨯+-12x =+【点睛】本题主要考查了分式的混合运算,熟练掌握分式的运算法则是解决本题的关键.15.某医院计划选派护士支援某地的防疫工作,甲、乙、丙、丁4名护士积极报名参加,其中甲是共青团员,其余3人均是共产党员.医院决定用随机抽取的方式确定人选.(1)“随机抽取1人,甲恰好被抽中”是__________事件;A .不可能B .必然C .随机(2)若需从这4名护士中随机抽取2人,请用画树状图法或列表法求出被抽到的两名护士都是共产党员的概率.【答案】(1)C(2)12【解析】【分析】(1)根据随机事件的定义即可解决问题;(2)从甲、乙、丙、丁名护士积极报名参加,设甲是共青团员用T 表示,其余3人均是共产党员用G 表示,从这4名护士中随机抽取2人,所有可能出现的结果共有12种,然后利用树状图即可解决问题.【小问1详解】解:“随机抽取1人,甲恰好被抽中”是随机事件;故答案为:C ;【小问2详解】从甲、乙、丙、丁4名护士积极报名参加,设甲是共青团员用T 表示,其余3人均是共产党员用G 表示.从这4名护士中随机抽取2人,所有可能出现的结果共有12种,如图所示:它们出现的可能性相同,所有的结果中,被抽到的两名护士都是共产党员的(记为事件A)的结果有6种,则()61 122P A==,则被抽到的两名护士都是共产党员的概率为12.【点睛】本题考查的是用列表法或画树状图法求概率,随机事件.解决本题的关键是掌握列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率所求情况数与总情况数之比.16.如图是44⨯的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作ABC∠的角平分线;(2)在图2中过点C作一条直线l,使点A,B到直线l的距离相等.【答案】(1)作图见解析部分(2)作图见解析部分【解析】【分析】(1)连接AC,HG,AC与HG交于点P,作射线BP即可;(2)取格点D,过点C和点D作直线l即可.【小问1详解】解:如图1,连接AC、HG,AC与HG交于点P,设小正方形的边长为1个单位,∵线段AC和HG是矩形的两条对角线且交于点P,∴AP CP=,又∵AB==BC==∴AB BC=,∴BP平分ABC∠,∴射线BP即为所作;【小问2详解】如图2,连接AD、AB、BC、CD,直线l经过点C和点D,设小正方形的边长为1个单位,∴AB==,AD==,BC==CD==∴AB AD CD BC===,∴四边形ABCD是菱形,又∵1AE DF==,2BE AF==,90AEB DFA∠=∠=︒,在AEB△和DFA中,AE DFAEB DFABE AF=⎧⎪∠=∠⎨⎪=⎩∴()AEB DFA SAS△≌△,∴ABE DAF∠=∠,∵90ABE BAE∠+∠=︒,∴90DAF BAE∠+∠=︒,∴90BAD∠=︒,∴四边形ABCD是正方形,∴AD l⊥,BC l⊥,且AD BC=,∴直线l即为所作.【点睛】本题考查作图一应用与设计作图,考查了等腰三角形三线合一的性质,矩形的性质,正方形的判定和性质,全等三角形的判定和性质,直角三角形两锐角互余,勾股定理等知识.解题的关键是理解题意,学会利用数形结合的思想解决问题.17.如图,四边形ABCD 为菱形,点E 在AC 的延长线上,ACD ABE ∠=∠.(1)求证:ABC AEB ∽;(2)当6,4AB AC ==时,求AE 的长.【答案】(1)见解析(2)AE =9【解析】【分析】(1)根据四边形ABCD 是菱形,得出CD AB ∥,AB CB =,根据平行线的性质和等边对等角,结合ACD ABE ∠=∠,得出ACD ABE CAB ACB ∠=∠=∠=∠,即可证明结论;(2)根据ABC AEB ∆∆∽,得出AB ACAE AB=,代入数据进行计算,即可得出AE 的值.【小问1详解】证明:∵四边形ABCD 为菱形,∴CD AB ∥,AB CB =,ACD CAB ∴∠=∠,CAB ACB ∠=∠,∵ACD ABE ∠=∠,∴ACD ABE CAB ACB ∠=∠=∠=∠,∴ABC AEB ∆∆∽.【小问2详解】∵ABC AEB ∆∆∽,∴AB ACAE AB =,即646AE =,解得:9AE =.【点睛】本题主要考查了菱形的性质,平行线的性质,等腰三角形的性质,三角形相似的判定和性质,根据题意得出ACD ABE CAB ACB ∠=∠=∠=∠,是解题关键.四、解答题(本大题共3小题,每小题8分,共24分)18.如图,点(,4)A m 在反比例函数(0)ky x x=>的图象上,点B 在y 轴上,2OB =,将线段AB 向右下方平移,得到线段CD ,此时点C 落在反比例函数的图象上,点D 落在x 轴正半轴上,且1OD =.(1)点B 的坐标为__________,点D 的坐标为__________,点C 的坐标为__________(用含m 的式子表示);(2)求k 的值和直线AC 的表达式.【答案】(1)(0,2),(1,0),(m +1,2)(2)1;y =-2x +6【解析】【分析】(1)根据OB =2可得点B 的坐标,根据OD =1可得点D 的坐标为(1,0),由平移规律可得点C 的坐标;(2)根据点C 和D 的坐标列方程可得m 的值,从而得k 的值,再利用待定系数法可得直线AC 的解析式.【小问1详解】∵点B 在y 轴上,2OB =,∴B (0,2),∵点D 落在x 轴正半轴上,且1OD =∴D (1,0),∴线段AB 向下平移2个单位,再向右平移1个单位,得到线段CD ,∵点A (m ,4),∴C (m +1,2),故答案为:(0,2),(1,0),(m +1,2);【小问2详解】∵点A 和点C 在反比例函数(0)ky x x=>的图象上,∴k =4m =2(m +1),∴m =1,∴A (1,4),C (2,2),∴k =1×4=4,设直线AC 的表达式为:y sx t =+,∴422s t s t +=⎧⎨+=⎩解得26s t =-⎧⎨=⎩,∴直线AC 的表达式为:y =-2x +6.【点睛】此题主要考查了一次函数和反比例函数的综合应用以及平移的性质,根据OB 和OD 的长得出平移的规律是解题关键.19.(1)课本再现:在O 中,AOB ∠是 AB 所对的圆心角,C ∠是 AB 所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O 与C ∠的位置关系进行分类.图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种情况证明12∠=∠C AOB ;(2)知识应用:如图4,若O 的半径为2,,PA PB 分别与O 相切于点A ,B ,60C ∠=°,求PA 的长.【答案】(1)见解析;(2)【解析】【分析】(1)①如图2,当点O在∠ACB的内部,作直径,根据三角形外角的性质和等腰三角形的性质可得结论;②如图3,当O在∠ACB的外部时,作直径CD,同理可理结论;(2)如图4,先根据(1)中的结论可得∠AOB=120°,由切线的性质可得∠OAP=∠OBP=90°,可得∠OPA=30°,从而得PA的长.【详解】解:(1)①如图2,连接CO,并延长CO交⊙O于点D,∵OA=OC=OB,∴∠A=∠ACO,∠B=∠BCO,∵∠AOD=∠A+∠ACO=2∠ACO,∠BOD=∠B+∠BCO=2∠BCO,∴∠AOB=∠AOD+∠BOD=2∠ACO+2∠BCO=2∠ACB,∴∠ACB=12∠AOB;如图3,连接CO,并延长CO交⊙O于点D,∵OA =OC =OB ,∴∠A =∠ACO ,∠B =∠BCO ,∵∠AOD =∠A +∠ACO =2∠ACO ,∠BOD =∠B +∠BCO =2∠BCO ,∴∠AOB =∠AOD -∠BOD =2∠ACO -2∠BCO =2∠ACB ,∴∠ACB =12∠AOB ;(2)如图4,连接OA ,OB ,OP ,∵∠C =60°,∴∠AOB =2∠C =120°,∵PA ,PB 分别与⊙O 相切于点A ,B ,∴∠OAP =∠OBP =90°,∠APO =∠BPO =12∠APB =12(180°-120°)=30°,∵OA =2,∴OP =2OA =4,∴PA ==【点睛】本题考查了切线长定理,圆周角定理等知识,掌握证明圆周角定理的方法是解本题的关键.20.图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知AB CD FG ∥∥,A ,D ,H ,G 四点在同一直线上,测得72.9, 1.6m, 6.2m FEC A AD EF ∠=∠=︒==.(结果保留小数点后一位)(1)求证:四边形DEFG 为平行四边形;(2)求雕塑的高(即点G 到AB 的距离).(参考数据:sin 72.90.96,cos72.90.29,tan 72.9 3.25︒≈︒≈︒≈)【答案】(1)见解析(2)雕塑的高为7.5m ,详见解析【解析】【分析】(1)根据平行四边形的定义可得结论;(2)过点G 作GP ⊥AB 于P ,计算AG 的长,利用∠A 的正弦可得结论.【小问1详解】证明:∵AB CD FG ∥∥,∴∠CDG =∠A ,∵∠FEC =∠A ,∴∠FEC =∠CDG ,∴EF ∥DG ,∵FG ∥CD ,∴四边形DEFG 为平行四边形;【小问2详解】如图,过点G 作GP ⊥AB 于P ,∵四边形DEFG 为平行四边形,∴DG =EF =6.2,∵AD =1.6,∴AG =DG +AD =6.2+1.6=7.8,在Rt △APG 中,sin A =PGAG,∴7.8PG=0.96,∴PG =7.8×0.96=7.488≈7.5.答:雕塑的高为7.5m.【点睛】本题考查解直角三角形的应用,解题的关键是理解题意,正确作辅助线构建直角三角形解决问题.五、解答题(本大题共2小题,每小题9分,共18分)21.在“双减”政策实施两个月后,某市“双减办”面向本市城区学生,就“‘双减’前后参加校外学科补习班的情况”进行了一次随机问卷调查(以下将“参加校外学科补习班”简称“报班”),根据问卷提交时间的不同,把收集到的数据分两组进行整理,分别得到统计表1和统计图1:整理描述表1:“双减”前后报班情况统计表(第一组)(1)根据表1,m 的值为__________,nm的值为__________;(2)分析处理:请你汇总表1和图1中的数据,求出“双减”后报班数为3的学生人数所占的百分比;(3)“双减办”汇总数据后,制作了“双减”前后报班情况的折线统计图(如图2).请依据以上图表中的信息回答以下问题:①本次调查中,“双减”前学生报班个数的中位数为__________,“双减”后学生报班个数的众数为__________;②请对该市城区学生“双减”前后报班个数变化情况作出对比分析(用一句话来概括).【答案】(1)300;1 50(2)见解析;2.4%(3)①1;0;②见解析【解析】【分析】(1)将表1中“双减前”各个数据求和确定m的值,然后再计算求得n值,从而求解;(2)通过汇总表1和图1求得“双减后”报班数为3的学生人数,从而求解百分比;(3)①根据中位数和众数的概念分析求解;②根据“双减”政策对学生报班个数的影响结果角度进行分析说明.【小问1详解】解:由题意得,1024875512425515240mn m=++++⎧⎨++++=⎩,解得3006mn=⎧⎨=⎩,∴6130050 nm==,故答案为:300;1 50【小问2详解】汇总表1和图1可得:01234及以上总数“双减”前172821188246500“双减”后4232440121500∴“双减”后报班数为3的学生人数所占的百分比为12100% 2.4% 500⨯=;【小问3详解】“双减”前共调查500个数据,从小到大排列后,第250个和第251个数据均为1,∴“双减”前学生报班个数的中位数为1,“双减”后学生报班个数出现次数最多的是0,∴“双减”后学生报班个数的众数为0,故答案为:1;0;②从“双减”前后学生报班个数的变化情况说明:“双减”政策宣传落实到位,参加校外培训机构的学生大幅度减少,“双减”取得了显著效果.【点睛】本题考查统计的应用,理解题意,对数据进行采集和整理,掌握中位数和众数的概念是解题关键.22.跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K 为飞行距离计分的参照点,落地点超过K 点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA 为66m ,基准点K 到起跳台的水平距离为75m ,高度为m h (h 为定值).设运动员从起跳点A 起跳后的高度(m)y 与水平距离(m)x 之间的函数关系为2(0)y ax bx c a =++≠.(1)c 的值为__________;(2)①若运动员落地点恰好到达K 点,且此时19,5010a b =-=,求基准点K 的高度h ;②若150a =-时,运动员落地点要超过K 点,则b 的取值范围为__________;(3)若运动员飞行的水平距离为25m 时,恰好达到最大高度76m ,试判断他的落地点能否超过K 点,并说明理由.【答案】(1)66(2)①基准点K 的高度h 为21m ;②b >910;(3)他的落地点能超过K 点,理由见解析.【解析】【分析】(1)根据起跳台的高度OA 为66m ,即可得c =66;(2)①由a=﹣150,b=910,知y=﹣150x2+910x+66,根据基准点K到起跳台的水平距离为75m,即得基准点K的高度h为21m;②运动员落地点要超过K点,即是x=75时,y>21,故﹣150×752+75b+66>21,即可解得答案;(3)运动员飞行的水平距离为25m时,恰好达到最大高度76m,即是抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,可得抛物线解析式为y=﹣2125x﹣25)2+76,当x=75时,y=36,从而可知他的落地点能超过K点.【小问1详解】解:∵起跳台的高度OA为66m,∴A(0,66),把A(0,66)代入y=ax2+bx+c得:c=66,故答案为:66;【小问2详解】解:①∵a=﹣150,b=910,∴y=﹣150x2+910x+66,∵基准点K到起跳台的水平距离为75m,∴y=﹣150×752+910×75+66=21,∴基准点K的高度h为21m;②∵a=﹣1 50,∴y=﹣150x2+bx+66,∵运动员落地点要超过K点,∴当x=75时,y>21,即﹣150×752+75b+66>21,解得b>9 10,故答案为:b >910;【小问3详解】解:他的落地点能超过K 点,理由如下:∵运动员飞行的水平距离为25m 时,恰好达到最大高度76m ,∴抛物线的顶点为(25,76),设抛物线解析式为y =a (x ﹣25)2+76,把(0,66)代入得:66=a (0﹣25)2+76,解得a =﹣2125,∴抛物线解析式为y =﹣2125(x ﹣25)2+76,当x =75时,y =﹣2125×(75﹣25)2+76=36,∵36>21,∴他的落地点能超过K 点.【点睛】本题考查二次函数的应用,解题的关键是读懂题意,能根据题意把实际问题转化为数学问题.六、解答题(本大题共12分)23.问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板()90,60PEF P F ∠=︒∠=︒的一个顶点放在正方形中心O 处,并绕点O 逆时针旋转,探究直角三角板PEF 与正方形ABCD 重叠部分的面积变化情况(已知正方形边长为2).(1)操作发现:如图1,若将三角板的顶点P 放在点O 处,在旋转过程中,当OF 与OB 重合时,重叠部分的面积为__________;当OF 与BC 垂直时,重叠部分的面积为__________;一般地,若正方形面积为S ,在旋转过程中,重叠部分的面积1S 与S 的关系为__________;(2)类比探究:若将三角板的顶点F 放在点O 处,在旋转过程中,,OE OP 分别与正方形的边相交于点M ,N .①如图2,当BM CN =时,试判断重叠部分OMN 的形状,并说明理由;②如图3,当CM CN =时,求重叠部分四边形OMCN 的面积(结果保留根号);(3)拓展应用:若将任意一个锐角的顶点放在正方形中心O 处,该锐角记为GOH ∠(设GOH α∠=),将GOH ∠绕点O 逆时针旋转,在旋转过程中,GOH ∠的两边与正方形ABCD 的边所围成的图形的面积为2S ,请直接写出2S 的最小值与最大值(分别用含α的式子表示),(参考数据:sin15,cos15,tan15244︒=︒=︒=-)【答案】(1)1,1,114S S =(2)①OMN 是等边三角形,理由见解析;②1-(3)tan,1tan 4522αα⎛⎫-︒- ⎪⎝⎭【解析】【分析】(1)如图1,若将三角板的顶点P 放在点O 处,在旋转过程中,当OF 与OB 重合时,OE 与OC 重合,此时重叠部分的面积=△OBC 的面积=14正方形ABCD 的面积=1;当OF 与BC 垂直时,OE ⊥BC ,重叠部分的面积=14正方形ABCD 的面积=1;一般地,若正方形面积为S ,在旋转过程中,重叠部分的面积S 1与S 的关系为S 1=14S .利用全等三角形的性质证明即可;(2)①结论:△OMN 是等边三角形.证明OM =ON ,可得结论;②如图3中,连接OC ,过点O 作OJ ⊥BC 于点J .证明△OCM ≌△OCN (SAS ),推出∠COM =∠CON =30°,解直角三角形求出OJ ,即可解决问题;(3)如图4-1中,过点O 作OQ ⊥BC 于点Q ,当BM =CN 时,△OMN 的面积最小,即S 2最小.如图4-2中,当CM =CN 时,S 2最大.分别求解即可.【小问1详解】如图1,若将三角板的顶点P 放在点O 处,在旋转过程中,当OF 与OB 重合时,OE 与OC 重合,此时重叠部分的面积=△OBC 的面积=14正方形ABCD 的面积=1;当OF 与BC 垂直时,OE ⊥BC ,重叠部分的面积=14正方形ABCD 的面积=1;一般地,若正方形面积为S ,在旋转过程中,重叠部分的面积S 1与S 的关系为S 1=14S .理由:如图1中,设OF 交AB 于点J ,OE 交BC 于点K ,过点O 作OM ⊥AB 于点M ,ON ⊥BC 于点N .∵O 是正方形ABCD 的中心,∴OM =ON ,∵∠OMB =∠ONB =∠B =90°,∴四边形OMBN 是矩形,∵OM =ON ,∴四边形OMBN 是正方形,∴∠MON =∠EOF =90°,∴∠MOJ =∠NOK ,∵∠OMJ =∠ONK =90°,∴△OMJ ≌△ONK (AAS ),∴S △PMJ =S △ONK ,∴S 四边形OKBJ =S 正方形OMBN =14S 正方形ABCD ,∴S 1=14S .故答案为:1,1,S 1=14S .【小问2详解】①如图2中,结论:△OMN 是等边三角形.理由:过点O作OT⊥BC,∵O是正方形ABCD的中心,∴BT=CT,∵BM=CN,∴MT=TN,∵OT⊥MN,∴OM=ON,∵∠MON=60°,∴△MON是等边三角形;②如图3中,连接OC,过点O作OJ⊥BC于点J.∵CM=CN,∠OCM=∠OCN,OC=OC,∴△OCM≌△OCN(SAS),∴∠COM=∠CON=30°,∴∠OMJ=∠COM+∠OCM=75°,∵OJ⊥CB,∴∠JOM=90°-75°=15°,∵BJ=JC=OJ=1,∴JM=OJ∴CM =CJ -MJ =1-(,∴S 四边形OMCN =2×12×CM ×OJ -1.【小问3详解】如图,将HOG ∠沿OH 翻折得到HOG '∠,则MON M ON ' ≌,此时则当,M N 在BC 上时,2S 比四边形NOM C '的面积小,设,=M C a CN b '=,则当MNM S ' 最大时,2S 最小, MNM S ' 211222a b ab +⎛⎫=≤ ⎪⎝⎭,即C NC '=时,MNM S ' 最大,此时OC 垂直平分M N ',即ON OM '=,则OM ON=如图4-1中,过点O 作OQ ⊥BC 于点Q ,OM ON =,OQ MN⊥∴BM =CN∴当BM =CN 时,△OMN 的面积最小,即S 2最小.在Rt △MOQ 中,MQ =OQ •tan 2α=tan 2α,∴MN =2MQ =2tan2α,∴S 2=S △OMN =12×MN ×OQ =tan2α.如图4-2中,同理可得,当CM =CN 时,S 2最大.,,OC OC OCN OCM CN CM=∠=∠=则△COM ≌△CON ,∴∠COM =2α,∵∠COQ =45°,∴∠MOQ =45°-2α,QM =OQ •tan (45°-2α)=tan (45°-2α),∴MC =CQ -MQ =1-tan (45°-2α),∴S 2=2S △CMO =2×12×CM ×OQ =1-tan (45°-2α).【点睛】本题属于四边形综合题,考查了正方形的性质,旋转变换,全等三角形的判定和性质,四边形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年江西省中考数学复习题
1.国家规定“中小学生每天在校体育活动时间不低于1h”.渝北区某中学就“每天在校体育活动时间”的问题随机调查了本校若干名初中学生,根据调查结果绘制成如图所示的条形统计图与扇形统计图,其中分组情况是:
A组:t<0.5hB组:0.5h≤t<1hC组:1h≤t<1.5hD组:t≥1.5请根据上述信息解答下列问题:
(1)本次调查数据的中位数落在B组内,达到规定的C,D两组学生运动的平均时间至少是 1.1小时(结果保留一位小数).请补全条形统计图.
(2)若渝北区区内约有24 000名初中学生,请你估计其中达国家规定体育活动时间的人数约有多少.
【分析】(1)先由A组人数及其所占百分比求得总人数,再利用各组人数之和等于总人数求得B组人数,从而利用中位数和加权平均数的定义求解可得;
(2)用总人数乘以样本中C、D组人数所占比例即可得.
【解答】解:(1)∵被调查的学生总人数为10÷20%=50人,
∴B组人数为50﹣(10+16+6)=18,
又中位数为第25、26个数据的平均数,而这2个数据均落在B组,
∴本次调查数据的中位数落在B组;
达到规定的C,D两组学生运动的平均时间至少是≈1.1(小时),补全统计图如下:
故答案为:B、1.1;
(2)估计其中达国家规定体育活动时间的人数约有24000×=10560人.
【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.。