实验5 数据拟合
数据拟合

%%%%%%%数据拟合根据一组二维数据,即平面上的若干点,要求确定一个一元函数y =f(x),即曲线,使这些点与曲线总体来说尽量接近。
这就是数据拟合成曲线的思想,简称为曲线拟合(fitting a curve)。
曲线拟合其目的是根据实验获得的数据去建立因变量与自变量之间有效的经验函数关系,为进一步的深入研究提供线索。
本章的目的,掌握一些曲线拟合的基本方法,弄清楚曲线拟合与插值方法之间的区别,学会使用MATLAB软件进行曲线拟合。
§5.1 引例拟合问题引例一电阻问题已知热敏电阻电阻值与温度的数据:求温度为63度时的电阻值。
拟合问题引例二给药问题一种新药用于临床之前,必须设计给药方案。
药物进入机体后血液输送到全身,在这个过程中不断地被吸收、分布、代谢,最终排出体外,药物在血液中的浓度,即单位体积血液中的药物含量,称为血药浓度。
一室模型:将整个机体看作一个房室,称中心室,室内血药浓度是均匀的。
快速静脉注射后,浓度立即上升;然后迅速下降。
当浓度太低时,达不到预期的治疗效果;当浓度太高,又可能导致药物中毒或副作用太强。
临床上,每种药物有一个最小有效浓度c 1和一个最大有效浓度c 2。
设计给药方案时,要使血药浓度 保持在c 1~c 2之间。
本题设c 1=10,c 2=25(ug/ml).要设计给药方案,必须知道给药后血药浓度随时间变化的规律。
从实验和理论两方面着手:在实验方面, t=0时对某人用快速静脉注射方式一次注入该药物300mg 后,在一定时刻t(小时)采集血药,测得血药浓度c(ug/ml)如下表:1. 在快速静脉注射的给药方式下,研究血药浓度(单位体积血液中的药物含量)的变化规律。
2. 给定药物的最小有效浓度和最大治疗浓度,设计给药方案:每次注射剂量多大;间隔时间多长。
§5.2 最小二乘法给定平面上的点(x i , y i ),(i = 1,2,…,n ),进行曲线拟合有多种方法,其中最小二乘法是解决曲线拟合最常用的方法。
物理实验技术使用中如何进行数据拟合与曲线拟合

物理实验技术使用中如何进行数据拟合与曲线拟合在物理实验中,数据拟合与曲线拟合是一项非常重要的技术。
通过对实验数据进行拟合,我们可以得到更准确的实验结果,进一步理解和解释实验现象。
本文将介绍物理实验中如何进行数据拟合与曲线拟合的常用方法和技巧。
一、数据拟合的基本概念与方法数据拟合是指根据一组离散的实验数据点,找到能够最好地描述这些数据点的某种函数形式。
常用的数据拟合方法有最小二乘法和非线性最小二乘法。
1. 最小二乘法最小二乘法是一种最常用的线性数据拟合方法。
它通过寻找最小化残差平方和的参数值,来确定拟合函数的参数。
残差是指实验数据和拟合函数值之间的差异。
在使用最小二乘法进行数据拟合时,首先需要确定拟合函数的形式。
然后,将实验数据代入拟合函数,并计算残差平方和。
通过对残差平方和进行最小化,可以得到最佳的拟合参数。
2. 非线性最小二乘法非线性最小二乘法是适用于非线性拟合问题的方法。
在非线性拟合中,拟合函数的形式一般是已知的,但是函数参数的确定需要通过拟合实验数据来进行。
非线性最小二乘法通过迭代寻找最小化残差平方和的参数值。
首先,假设初始参数值,代入拟合函数,并计算残差。
然后,根据残差的大小,调整参数值,直到残差平方和最小化。
二、曲线拟合的常用方法与技巧曲线拟合是一种在实验中常见的数据处理方法。
例如,在光谱实验中,我们常常需要对谱线进行拟合,来确定峰的位置、宽度等参数。
1. 多项式拟合多项式拟合是一种常用的曲线拟合方法。
多项式可以近似任何函数形式,因此可以适用于不同形状的实验数据曲线。
在多项式拟合中,我们根据实验数据点的分布情况,选择适当的多项式次数。
通过最小二乘法,确定多项式的系数,从而得到拟合曲线。
2. 非线性曲线拟合非线性曲线拟合适用于实验数据具有复杂形状的情况。
拟合函数的形式一般是已知的,但是参数的确定需要通过拟合实验数据来进行。
非线性曲线拟合的方法类似于非线性最小二乘法。
通过寻找最小化残差平方和的参数值,可以得到拟合曲线的形状和特征。
数学实验报告数据拟合

实验报告一·实验指导书解读本次实验是通过两个变量的多组记录数据利用最小二乘法寻求两个变量之间的函数关系!两个变量之间的函数关系要紧有两种:一是线性关系(一次函数);二是非线性关系(非一次的其它一元函数)。
因此本实验做两件事:一是线性拟合(练习1);二是非线性拟合(练习2、3、4)。
练习2是用多项式函数拟合,练习3是用指数函数、对数函数、双曲函数、三角函数、分式有理多项式函数等初等函数拟合,练习4是用分段函数(非初等函数)拟合。
二、实验打算1.用线性函数拟合程序线性拟合曲线ft1可由如下mathematica程序求出:lianxi1biao= { {100,45} , {110,51} , { 120,54} , {130,61} , {140,66} , {150,70} , {160,74} , {170,78} , {180,85} , {190,89} }ft1=Fit[lianxi1biao,{1,x},x]gp = Plot [ ft1 , {x,100,190} , PlotStyle -> { RGBColor[1,0,0]} ]fp = ListPlot [ lianxi1biao,PlotStyle->{PointSize[],RGBColor[0,0,1]} ]Show[fp,gp]a= ;b= ;f[x_]=a*x+b;dareta=Sum[(lianxi1biao[[i,2]]-f[lianxi1biao[[i,1]]])^2,{i,1,10}]修改、补充程序:要说明拟合成效,要紧从形(大多数散点是不是在拟合曲线上或周围)与量(残差是不是小)!计算残差的程序:假设对两个变量的多组记录数据已有程序biao={{x1,y1},{x2,y2},…,{xn,yn}}而且通过Fit取得线性拟合函数y=ax+b咱们能够先概念函数(程序)f[x_]:=a*x+b再给出计算残差的程序dareta=Sum[(biao[[i ,2]]-f[biao[[i ,1]]])^2,{i ,1, n}]程序说明:biao[[i]]是提取表biao的第i行,即{xi,yi}biao[[i ,1]] 是提取表biao的第i行的第一个数, 即xibiao[[i ,2]] 是提取表biao的第i行的第一个数, 即yibiao[[i ,2]]-f[biao[[i ,1]]] 即yi-(a*xi+b)实验思路1、先对练习1的十组数据线性拟合,并从形与量看拟合成效;2、对练习1的十组数据中的九组数据线性拟合,并从形与量看拟合成效;3、对练习1的十组数据中的八组数据线性拟合,并从形与量看拟合成效;4、对练习1的十组数据中的七组数据线性拟合,并从形与量看拟合成效;5、对练习1的十组数据中的六组数据线性拟合,并从形与量看拟合成效。
2013 丁军 计算方法大作业

2013级研究生《计算方法》作业姓名:学号:专业:学院:2013年11月19日实验一 Steffenson方法求解方程原理:Steffensen加速是Aitken加速与不动点迭代的结合1.x*cosx-x=0,取迭代函数g(x)=x-(x*cosx-x)/(cosx-x*sinx-1) 程序如下:function steffensenn=0;p(1)=1.5;N=20;tol=10e-5;while n<=Nfor k=1:2p(k+1)=p(k)-(p(k)*cos(p(k))-p(k))/(cos(p(k))-p(k)*sin(p(k))-1); endp1=p(1)-(p(2)-p(1))^2/(p(3)-2*p(2)+p(1));f0=p1*cos(p1)-p1;if abs(f0)<tolbreakendn=n+1;p(1)=p1;enddisp(p1);disp(n)运行结果:2.x^3-x^2-1=0,取迭代函数g(x)=x^3-x^2+x-1程序如下:function steffensen1p0=1.5;N=20;tol=10e-5;n=0;p(1)=p0;while n<=Nfor k=1:2p(k+1)=p(k)^3-p(k)^2+p(k)-1;endp1=p(1)-(p(2)-p(1))^2/(p(3)-2*p(2)+p(1));f0=p1^3-p1^2-1;if abs(f0)<tolbreakendn=n+1;p(1)=p1;enddisp(p1);disp(n);运行结果:实验二矩阵的列主元三角分解(要求矩阵十阶以上)实验矩阵如下:A=[1,2,2,2,3,5,4,7,9,8;1,4,3,2,7,5,6,8,8,5;2,5,7,9,4,3,5,7,8,6;4,6,7,3,7,4,9,6,2,5;1,3,4,6,2,5,4,7,6,5;1,2,3,4,5,6,7,8,9,0;4,3,2,5,7,6,9,0,8,1;1,4,2,5,6,8,7,0,4,2;1,6,9,3,5,8,3,2,7,6;9,4,5,2,6,8,7,1,0,6];>> [L,U,P]=lu(A)运行结果:实验三 Jacobi 、Seidel 和SOR 迭代的实现(具体方程自拟,阶数6阶以上)(1)Jacobi 迭代 原理:Jacobi 迭代方程:()11()()11,11,2,,0,1,i nk k k ii ij j ij j j j i x b a x a x i n k aii -+==+⎛⎫=--== ⎪⎝⎭∑∑程序如下:function yacobiA=ones(10);for i=1:10;A(i,i)=-12;endb=ones(10,1);B=-1*b;X0=zeros(10,1);Tol=10^-6;N=1000;X=X0;for K=1:Nfor i=1:10X(i)=(B(i)-A(i,:)*X0)/A(i,i)+X0(i); if norm(X-X0)<Toldisp(X);disp(K);return;endendX0=X;enddisp('·¢É¢')运行结果:(2)Seidel迭代原理:seidel迭代方程:()11(1)()11,11,2,,0,1,i nk k k ii ij j ij j j j i x b a x a x i n k aii -++==+⎛⎫=--== ⎪⎝⎭∑∑程序如下:function seidel A=ones(10); for i=1:10; A(i,i)=-12; endb=ones(10,1); B=-1*b;X0=zeros(10,1); Tol=10^-6; N=1000; X=X0; for K=1:N; for i=1:10X(i)=(B(i)-A(i,:)*X)/A(i,i)+X(i); if norm(X-X0)<Tol disp(X);disp(K); return end end X0=X; enddisp('·¢É¢')运行结果:(3)Sor 迭代原理:sor 迭代方程:()11()(1)()11,(1)1,2,,0,1,i nk k k k iii ij j ij i j j i w x w xb a x a x i n k aii -++==+⎛⎫=-+--== ⎪⎝⎭∑∑程序如下:(取w=1.1)function sor1 A=ones(10); for i=1:10; A(i,i)=-12; endb=ones(10,1); B=-1*b;X0=zeros(10,1); w=1.1; Tol=10^-6; N=1000; X=X0; for K=1:N; for i=1:10X(i)=w*(B(i)-A(i,:)*X)/A(i,i)+X(i); endif norm(X-X0)<Tol disp(X);disp(K); return end X0=X; End运行结果:实验四 渐进多项式插值(数据自拟,10个点以上)渐进多项式插值(数据自拟,10个点以上)。
数据拟合excel

数据拟合excel数据拟合ExcelExcel是一款广泛应用于数据处理和分析的软件,它可以帮助用户快速地进行数据拟合。
数据拟合是指通过一定的数学模型,将实验数据与理论模型进行比较,从而得到最优的拟合结果。
在Excel中,数据拟合可以通过多种方法实现,本文将介绍其中的两种方法:趋势线和回归分析。
一、趋势线趋势线是一种简单的数据拟合方法,它可以帮助用户快速地了解数据的趋势和规律。
在Excel中,趋势线可以通过以下步骤实现:1. 打开Excel,并将数据输入到工作表中。
2. 选中数据区域,然后点击“插入”选项卡中的“散点图”按钮,选择“散点图”类型。
3. 在图表中右键单击数据点,选择“添加趋势线”。
4. 在弹出的对话框中,选择需要的趋势线类型,如线性、指数、对数等。
5. 点击“确定”按钮,即可在图表中看到趋势线。
二、回归分析回归分析是一种更为精确的数据拟合方法,它可以通过建立数学模型,对数据进行更加准确的拟合。
在Excel中,回归分析可以通过以下步骤实现:1. 打开Excel,并将数据输入到工作表中。
2. 选中数据区域,然后点击“数据”选项卡中的“数据分析”按钮。
3. 在弹出的对话框中,选择“回归”分析工具,并点击“确定”按钮。
4. 在“回归”对话框中,输入自变量和因变量的数据区域,并选择需要的回归类型,如线性、多项式等。
5. 点击“确定”按钮,即可在工作表中看到回归分析的结果。
需要注意的是,在进行回归分析时,需要对数据进行预处理,如去除异常值、处理缺失值等,以保证分析结果的准确性。
总结数据拟合是数据分析中的重要环节,它可以帮助用户了解数据的趋势和规律,从而做出更加准确的决策。
在Excel中,数据拟合可以通过趋势线和回归分析两种方法实现,用户可以根据实际需求选择合适的方法。
同时,在进行数据拟合时,需要注意数据的预处理和分析结果的准确性,以保证分析结果的可靠性。
实验五 用Matlab数据拟合

2. 已知观测数据点如表所示 x 1.6 2.7 1.3 4.1 3.6 2.3 y 17.7 49 13.1 189.4 110.8 34.5
0.6
4
4.9
409.1
3
65
2.4
36.9
求a, b, c的值, 使得曲线 f(x)=aex+bsin x+c lnx 与已知数据 点在最小二乘意义上充分接近.
例4 已知观测数据点如表所示
x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 y 3.1 3.27 3.81 4.5 5.18 6 7.05 8.56 9.69 11.25 13.17 求三个参数 a, b, c的值, 使得曲线 f(x)=aex+bx2+cx3 与 已知数据点在最小二乘意义上充分接近.
1.55
500 106
2.47
2. 93
3. 03
2.89
1000 106 1500 106 2000 106 2375 106
3 1.953 103 1.517 103 1.219 10
/ / N / m 2 3.103 103 2.465 103
解: 描出散点图, 在命令窗口输入: t=[0:1:16] y=[30.0 29.1 28.4 28.1 28.0 27.7 27.5 27.2 27.0 26.8 26.5 26.3 26.1 25.7 25.3 24.8 24.0] plot(t,y,'*')
a=polyfit(t,y,1) a= -0.3012 29.3804 hold on
beta
= 3.0022 4.0304 0.9404
数据拟合与曲线拟合实验报告

数据拟合与曲线拟合实验报告【数据拟合与曲线拟合实验报告】1. 实验介绍数据拟合与曲线拟合是数学和统计学中非常重要的概念和方法。
在科学研究、工程技术和数据分析中,我们经常会遇到需要从一组数据中找到代表性曲线或函数的情况,而数据拟合和曲线拟合正是为了解决这一问题而存在的。
2. 数据拟合的基本原理数据拟合的基本思想是利用已知的一组数据点,通过某种数学模型或函数,找到一个能够较好地描述这组数据的曲线或函数。
常见的数据拟合方法包括最小二乘法、最小二乘多项式拟合、指数拟合等。
在进行数据拟合时,我们需要考虑拟合的精度、稳定性、可行性等因素。
3. 曲线拟合的实验步骤为了更好地理解数据拟合与曲线拟合的原理与方法,我们进行了一组曲线拟合的实验。
实验步骤如下:- 收集一组要进行拟合的数据点;- 选择合适的拟合函数或模型;- 利用最小二乘法或其他拟合方法,计算拟合曲线的参数;- 对拟合结果进行评估和分析;- 重复实验,比较不同的拟合方法和模型。
4. 数据拟合与曲线拟合的实验结果通过实验,我们掌握了数据拟合和曲线拟合的基本原理与方法。
在实验中,我们发现最小二乘法是一种简单而有效的数据拟合方法,能够较好地逼近实际数据点。
我们还尝试了多项式拟合、指数拟合等不同的拟合方法,发现不同的拟合方法对数据拟合的效果有着不同的影响。
5. 经验总结与个人观点通过这次实验,我们对数据拟合和曲线拟合有了更深入的理解。
数据拟合是科学研究和实践工作中不可或缺的一部分,它能够帮助我们从一堆杂乱的数据中提炼出有用的信息和规律。
曲线拟合的精度和稳定性对研究和实践的结果都有着重要的影响,因此在选择拟合方法时需要慎重考虑。
6. 总结在数据拟合与曲线拟合的实验中,我们深入探讨了数据拟合和曲线拟合的基本原理与方法,并通过实验实际操作,加深了对这一概念的理解。
数据拟合与曲线拟合的重要性不言而喻,它们在科学研究、工程技术和信息处理中发挥着重要的作用,对我们的日常学习和工作都具有重要的指导意义。
matlab_数学实验_实验报告_数据拟合

数据的分析之数据的拟合一、实验项目:Matlab 数据拟合 二、实验目的和要求1、掌握用matlab 作最小二乘多项式拟合和曲线拟合的方法。
2、通过实例学习如何用拟合方法解决实际问题,注意差值方法的区别。
3、鼓励不囿于固定的模式或秩序,灵活调整思路,突破思维的呆板性,找到打破常规的解决方法。
并在文献检索 动手和动脑等方面得到锻炼。
三、实验内容操作一:Malthus 人口指数增长模型用以上数据检验马尔萨斯人口指数增长模型,根据检验结果进一步讨论马尔萨斯人口模型的改进。
马尔萨斯模型的基本假设是人口的增长率为常数,记为r 。
记时刻t 的人口为()x t ,且初始时刻的人口为x 0,于是得到如下微分方程(0)dx rxdtx x ⎧=⎪⎨⎪=⎩ 需要先求微分方程的解,再用数据拟合模型中的参数。
一、分析有这个方程很容易解出0()*rtx t x e =r>0时,是表示人口箭杆指数规律随时间无限增长,称为指数增长模型。
将上式取对数,可得y=rt+a ,y=lnx ,a=lnx0 二、用matlab 编码t=1790:10:1980;x=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92 106.5 123.2 131.7 150.7 179.3 204.0 226.5]; p=polyfit(t,log(x),1); r=p(1) x0=exp(p(2)) x1=x0.*exp(r.*t); plot(t,x,'r',t,x1,'b')三、结果和图像 0.0214r =0 1.2480016x e =-17801800182018401860188019001920194019601980050100150200250300350操练二:旧车价格预测分析用什么形式的曲线来拟合数据,并预测使用4、5年后的轿车平均价格大致为多少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
1
2
3
4
5
6
7
8
9
10
y
1
3
11 12 28 32 45 70 80 104
>> polyfit(x,y,2)
ans =
1.1515 -1.3697 1.8000
则拟合多项式为:
y 1.1515x2 1.3697x 1.8000
Matlab 实现:polyval
x=[1 2 3 4 5 6 7 8 9 10]; y=[1 3 11 12 28 32 45 70 80 104]; plot(x,y,'*') n=polyfit(x,y,2); t=1:1:10; u=polyval(n,t) hold on plot(t,u)
1
二、Matlab 编程
1、基础知识:数据的 n 次多项式拟合中拟合函数的系数应满足的正规方程组如
下:
nm
m
[ k (xi ) j (xi )]a j k (xi ) yi
j0 i1
i 1
k 0,1,n
取函数类{1, x, x2 , , xn}
1
பைடு நூலகம்
1
x1
x2
x1n x2n
1
xm
%解线性方程组 Ax=b 的方式:A\b
end
2
你的函数:
3、做出下列离散点的图形,选定你认为的n次多项式,用以上命令进行拟合,最后将拟合 函数的图形和离散点的图形作在一起进行比较。 4、x=[1 2 3 4 5 6 7 8 9 10]; y=[1 3 11 12 28 32 45 70 80 104]; plot(x,y,'*') m=polyfit(x,y,2); t=1:0.01:10; u=polyval(m,t) hold on plot(t,u)
5
实验 5 数据拟合
一、Matlab 自带的数据拟合函数-polyfit
使用用法:polyfit(x,y,n) x-已知节点,为一个向量 y-节点所对应函数值,为一个向量 n-多项式的次数,为正整数
做出下列离散点的图形,选定你认为的 n 次多项式,用以上命令进行 拟合,最后将拟合函数的图形和离散点的图形作在一起进行比较。
x
m
n
则正规方程组表示为:
T a T y .
2、 写出数据拟合求解的 MATLAB 函数。 函数头如下:
function u= polyfitting(x,y,n) %x-已知节点,为一个向量 %y-节点所对应函数值,为一个向量 %n-多项式的次数,为正整数
%编程关键:上述 的实现
%可能会用到的 matlab 命令,ones(),length(),for 循环
x
1
2
3
4
5
6
7
8
9
10
y
1
3
11 12 28 32 45 70 80 104
你的离散图形:
你运行函数的结果:
两个图形放一起:
3
附分组名单:
(1)李 琳 孙 慧 张慧琴 徐少勇
4
(2)刘 丹 林兰芽 赖晓敏 陈 优 王都都 (3)杨西涛 田 欢 戴雯诗 严倩茹 何俊杰 (4)饶冬梅 陆玉霜 刘 余 李振林 程 博 (5)汪雪兰 曹 倩 潘 婷 刘明超 (6)邓 圳 马 晓 杨志艳 李 彬